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Clustering Techniques Applied to Sensor Placement for Leak Detection

and Location in Water Distribution Networks

Ramon Sarrate, Joaquim Blesa and Fatiha Nejjari

Abstract— This work presents an optimization strategy that
maximizes the leak locatability performance of water dis-
tribution networks (WDN). The goal is to characterize and
determine a sensor configuration that guarantees a maximum
degree of locatability while the sensor configuration cost satisfies
a budgetary constraint. The method is based on pressure
sensitivity matrix analysis and an exhaustive search strategy.
In order to reduce the size and the complexity of the problem
the present work proposes to combine this methodology with
clustering techniques. The strategy developed in this work is
successfully applied to determine the optimal set of pressure
sensors that should be installed in a district metered area
(DMA) in the Barcelona WDN.

I. INTRODUCTION

Leaks and abnormal situation diagnosis is of great im-

portance for distribution network systems. It represents an

important factor for quality service, in water distribution

networks (WDN). In these systems, it is obvious that only

a limited number of sensors can be installed due to budget

constraints. Since improper selections may seriously hamper

diagnosis performance, the development of sensor placement

strategies has become an important research issue in recent

years. In particular, leaks in WDNs are an issue of great con-

cern for water utilities. Continuous improvements in water

loss management are being applied, and new technologies

are developed to achieve higher levels of efficiency [1].

Ideally, a sensor network should be configured to facilitate

leak detection and maximize diagnosis performance under a

given sensor cost limit.

There are several contributions dedicated to sensor place-

ment in WDNs. Most of the works have addressed the sensor

placement problem regarding contamination monitoring. In

[2] and [3], the problem of sensor placement in a large WDN

is considered in order to detect the malicious introduction of

contaminants. On the other hand, less work has been done

regarding sensor placement for leak location. In [4] a leak

location method based on the pressure measurements and

sensitivity analysis of nodes in a network has been proposed.

In order to maximize the isolability with a reasonable number

of sensors an optimal sensor placement methodology based
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on genetic algorithms has also been proposed. The optimiza-

tion goal consisted in minimizing the size of the larger set

of non-isolable leaks.In [5], a strategy based on isolability

maximization allows one to optimally locate sensors for leak

location based on the structural model of water network. An

efficient branch and bound search strategy was developed

based on a structural network model. A structural model just

considers the relation between variables that exists through

equations, so efficient graph-based methods can be then

applied to solve the sensor placement problem. However,

optimal results can not be guaranteed due to the simplistic

nature of structural representation.

In the present paper, a richer model description is pro-

posed for the sensor placement problem through the fault

sensitivity matrix concept. However, since no efficient branch

and bound search strategy will be possible, a clustering

approach to sensor placement is proposed in this paper. In

[6], clustering techniques were also applied to leak detection

and location, but combined with a structural approach. The

clustering problem has been addressed by researchers in

many contexts and disciplines [7]. It is a mature and active

research area [8] and many efficient clustering algorithms

have been developed in the literature.

The paper is organized as follows: Section II, introduces

the model-based fault diagnosis applied to leak detection and

loaction. The sensor placement problem tackled in this paper

is formally presented in Section III. In Section IV, the sensor

placement methodology is applied to a real DMA network in

Barcelona. Finally, some conclusions and remarks are given

in Section V.

II. FAULT DIAGNOSIS PRINCIPLES

A. Model-based fault diagnosis

Model-based fault diagnosis techniques are applied to

detect and locate leaks in WDNs. In model-based fault

diagnosis [9] a set of residuals are designed based on a

process model. Fault detection and isolation is achieved

through the evaluation of residual expressions under available

measurements. A threshold-based test is usually implemented

in order to cope with noise and model uncertainty effects.

At the absence of faults, all residuals remain below their

given thresholds. Otherwise, when a fault is present the

model is no longer consistent with the observations (known

process variables). Thus, some residuals will exceed their

corresponding thresholds, signalling the occurrence of a

fault.

Residual fault sensitivities are a key issue for fault diag-

nosis. Given a set of m target faults fj ∈ F and a set of n



residuals ri ∈ R, residual fault sensitivities are collected in

the Fault Sensitivity Matrix (FSM), Ω

Ω =

⎛

⎜

⎝

∂r1
∂f1

· · · ∂r1
∂fm

...
. . .

...
∂rn
∂f1

· · · ∂rn
∂fm

⎞

⎟

⎠
. (1)

A fault can be detected as long as there exists at least

a residual sensitive to it. However, isolating faults requires

more than one residual being sensitive to them. Fault isola-

tion is achieved by matching the evaluated residual vector

pattern to the closest residual fault sensitivity vector pattern

(i.e., FSM column vector).

B. Leak detection and location

The FSM can be obtained by convenient manipulation of

model equations as long as fault effects are included in them

[10]. Alternatively, it can be obtained by sensitivity analysis

through simulation [4]. The latter approach is used in the

present paper. Just primary residuals are regarded. Primary

residuals are obtained by comparing each actual pressure

measurement pi to the corresponding estimated value in the

fault free case p̂i0

ri = pi − p̂i0 (2)

A model of the WDN is used by a simulation engine

to produce the estimated node pressure. An approximate

procedure to obtain the FSM involves using as well the

simulator to estimate pressure measurements p̂ij for every

node i under fault condition fj

Ω =

⎛

⎜

⎝

p̂11 − p̂10 · · · p̂1m − p̂10
...

. . .
...

p̂n1 − p̂n0 · · · p̂nm − p̂n0

⎞

⎟

⎠
. (3)

Thus, every FSM column corresponds to an estimation

of the residual vector in every leak condition. The same

nominal leak magnitude is assumed in all simulations. This

leak magnitude is not considered in the FSM since it has a

scaling factor roll.

Sometimes a binary version of the FSM is used in the

leak location procedure [4]. Then, leak location is achieved

by looking for the smallest Hamming distance between FSM

columns and the binarized actual residual vector. This and

several other alternative leak location methods are compared

in [11].

In the present paper, a projection based method is con-

sidered. Let r = [r1 · · · rn]
T be the actual residual vector

corresponding to all pressure measurement points, and ω •j

be the column of Ω corresponding to leak j. Then, leak

location is achieved by solving the problem

argmax
j

ω
T
•j · r

‖ω•j‖‖r‖
, (4)

where ‖v‖ stands for the Euclidean norm of vector v.

Thus, the biggest normalized projection of the actual residual

vector on the fault sensitivity space is sought.

The quality of a leak diagnosis system can be determined

through the evaluation of leak detectability and locatability

properties.

Definition 1 (Detectable leak set). Given a set of residuals

ri ∈ R, a set of leaks fj ∈ F and the corresponding leak

(fault) sensitivity matrix Ω, the set of detectable leaks FD

is defined as

FD = {fj ∈ F : ∃ri ∈ R : |ωij | ≥ ǫ}, (5)

where ǫ is a threshold to account for noise and model

uncertainty.

Definition 2 (Leak locatability index). Given a set of resid-

uals ri ∈ R, a set of leaks fj ∈ F and the corresponding

leak (fault) sensitivity matrix Ω, the leak locatability index

I is defined as

I =
∑

(fk,fl)∈F

1−
ω

T
•k · ω•l

‖ω•k‖‖ω•l‖
, (6)

where F = {(fk, fl) ∈ F× F : k < l}.

Following the leak location criteria defined in Eq. (4), the

leak locatability index aggregates the normalized projection

degree between the residual fault sensitivity vectors for all

combinations of two faults. Since a minimal normalized

projection is desired, the greater the index is, the better it

is.

In order to better evaluate the leak locatability capacity of

a diagnosis system the following definition is provided.

Definition 3 (Uniform projection angle). Given a set of leaks

fj ∈ F and a leak locatability index I , the uniform projection

angle ᾱ, is defined as

ᾱ = arccos(1−
I

(

|F|
2

)
), (7)

where, |A| stands for the cardinality of set A.

ᾱ provides a reference value for the angle between any pair

of fault sensitivity vectors in the FSM, assuming a uniform

contribution to the leak locatability index. ᾱ will be later

used when comparing different sensor placement solutions.

III. SENSOR PLACEMENT METHODOLOGY

A. Problem statement

Usually, the sensor placement problem is presented as an

optimization problem where the cheaper sensor configuration

fulfilling some given diagnosis specifications is sought [12],

[13]. Nevertheless, a baseline budget is usually assigned

to instrumentation by water distribution companies which

constraints the cost of the sought sensor configuration. Thus,

in the water distribution domain, companies are not interested

in achieving a given diagnosis performance but in the best

diagnosis performance that can be reached by installing a

specific number of sensors that satisfy the budget constraint.

Let S be the candidate pressure sensor set and mp the

number of pressure sensors that will be installed in the

system. Then, the problem can be roughly stated as the



choice of a configuration of mp pressure sensors in S such

that the diagnosis performance is maximized. This diagnosis

performance depends on the set of sensors installed in the

network S ⊆ S and it will be stated in terms of the detectable

leak set and the leak locatability index, i.e., FD(S) and I(S).
To solve the sensor placement problem, a network model is

also required. The leak sensitivity matrix Ω corresponding

to the complete set of candidate sensors is assumed to be

previously computed following the methodology described in

Section II-B. Hence, the sensor placement for leak diagnosis

can be formally stated as follows:

GIVEN a candidate sensor set S, a leak sensitivity matrix

Ω, a leak set F, and the number mp of pressure

sensors to be installed.

FIND the mp-pressure sensor configuration S ⊆ S such

that:

1) all leaks in F are detectable, FD(S) = F, and

2) the leak locatability index is maximized, i.e.

I(S) ≥ I(S⋆) for any S⋆ ⊆ S such that

|S⋆| = mp.

This optimization problem can not be solved by efficient

branch and bound search strategies. Thus, a suboptimal

search algorithm based on clustering techniques will be

applied. However, in order to alleviate the suboptimality

drawback of clustering techniques a two-step hybrid method-

ology that combines them with an exhaustive search is

proposed:

Step 1 Clustering techniques are applied to reduce the

initial set of candidate sensors S to S
′, such that

next step is tractable. Step 1 will be described in

detail in next section.

Step 2 An exhaustive search is applied to the reduced

candidate sensor set S
′. This search implies that

the diagnosis performance must be evaluated
(

|S′|
mp

)

times. The most time demanding test concerns the

evaluation of the leak locatability index for every

pair of leaks which involves computing
(

|F|
2

)

times

the normalized projection of the leak sensitivity

vectors. Thus, in all, an exhaustive search is of

exponential complexity, but an optimal solution is

guaranteed.

B. Clustering approach

Given a set of objects X = {x1, x2, · · · , xne
} clustering

consists in partitioning the ne observations into ℓ sets C =
{C1, C2, · · · , Cℓ} (ℓ ≤ ne) in such a way that objects in

the same group (called cluster) are more similar (in some

sense) to each other than those in other groups (clusters). For

example, k-means clustering algorithm [14] minimizes the

within-cluster sum of distances by solving the optimization

problem

argmin
C

ℓ
∑

i=1

∑

xj∈Ci

d (xj ,µi) (8)

where d is a distance and µi is the centroid of cluster Ci (i.e.

it is the mean of observations in Ci according to metric d).

Problem (8) is nonconvex and obtaining the solution is NP-

hard, but there are efficient heuristic algorithms that converge

quickly to a local optimum. K-means belongs to closed data

sets methods, which do not allow overlapping of clusters.

This is a drawback when some similar data points originating

from different classes cannot be correctly classified into a

specific class because of the limitation of the probabilistic

framework. This is more precisely due to its inability to

make a clear distinction between the full lack of knowledge

and the full knowledge of the equiprobable cases. In this

sense, some clustering techniques have been developed in the

belief functions framework [15]. They provide the centroids

of the ℓ clusters and the degree of membership of every

element to every cluster pli(Ck). pli(Ck) represents the

plausibility (or the possibility) that object xi belongs to

cluster Ck . One of these algorithms is the Evidential c-means

(ECM) [16], which also provides a validity index allowing

the determination of the proper number of clusters. A hard

partition can be easily obtained by assigning each object to

the cluster with highest plausibility i.e

g(i) = argmax {pli(C1), · · · , pli(Cℓ)} i = 1, · · · , ne (9)

where g is the vector that contains the cluster membership

of the ne elements.

In this paper, a reduction in the number of candidate

sensors is proposed by grouping the ne initial sensors into ℓ
clusters applying the ECM algorithm. Then N representative

sensors will be selected for each cluster, setting up the new

candidate sensor set of Nℓ elements (Nℓ ≤ ne). The number

of groups ℓ will be determined by means of a study of

the evolution of the validity index provided by the ECM

algorithm for different number of groups. Finally, the number

N (N ≥ 1 ) will be given by

N =
⌈nr

ℓ

⌉

(10)

where nr is the expected cardinality of the reduced candidate

sensor set and ⌈ ⌉ denotes the nearest integer in the direction

of positive infinity.

In this case, the criterion used for determining the simili-

tude between elements (sensors) is the sensitivity pattern of

their primary residuals to faults. In particular, according to

the procedure described in Section II, this is provided by

every row i of the fault sensitivity matrix Ω defined in Eq.

(1). So, choosing xj=
ωj•

‖ωj•‖
, j = 1, ..., ne (where ωj• is the j

row vector of matrix Ω, xj the normalized vector of ω j• and

ne the number of rows of Ω i.e. ne = n) and applying the

ECM algorithm defined in [16], a set of ℓ clusters defined by

their centroids µi (i = 1, . . . , ℓ) and the plausibility matrix

Π (n × ℓ) that contains the membership degree of every

element to every cluster are obtained

Π =

⎛

⎜

⎝

pl1(C1) · · · pl1(Cℓ)
...

. . .
...

plne
(C1) · · · plne

(Cℓ)

⎞

⎟

⎠
(11)



The groups of sensors with a similar fault sensitivity

pattern can be obtained by means of (9). Once the elements

xj (sensors) have been grouped into ℓ clusters, the most N
representative sensors of every cluster Ci can be chosen as

the ones that have the maximum plausibility.

IV. APPLICATION TO A WDN

A. DMA case study

The sensor placement methodology is applied to a DMA

located in Barcelona area (see Fig. 1) with 883 nodes and 927

pipes. The network consists of 311 nodes with demand (RM

type), 60 terminal nodes with no demand (EC type), 48 nodes

hydrants without demand (HI type) and 448 dummy nodes

without demand (XX type). Only dummy nodes can have

leaks. Thus, since there are 448 dummy nodes (XX type)

in the network, there are 448 potential leaks to be detected

and isolated. The network has two inflow inputs modeled as

reservoir nodes.

The total inflow is distributed using a constant coefficient

in each consumption node according to the total demand

which is estimated using demand patterns.

Fig. 1. Case study network map

This work focuses on the placement of pressure moni-

toring points as they are more frequently used than flow

rate sensors. Collecting pressure data is cheaper and easier,

and the pressure transducers give instantaneous readings

whereas most flow meters do not react instantaneously to

flow changes [17]. Therefore, only pressure sensors will

be considered in the sensor placement problem. In order

to reduce the problem complexity, a subset of pressures is

chosen as candidate variables to be measured. This subset

consists of pressures at nodes of RM type. There exist

311 pressures that can be measured at these nodes, which

represent the candidate sensor set. It is also assumed that

there is no sensor already installed in the network before

solving the sensor placement problem.

B. DMA network model

A fault sensitivity matrix has been obtained using

the EPANET hydraulic simulator. Leaks are simulated in

EPANET through the corresponding emitter coefficient,

which is designed to model fire hydrants/sprinklers, and it

can be adapted to provide the desired leak magnitude in the

network, according to the equation:

EC = Q/PPext (12)

where EC is the emitter coefficient, Q is the flow rate,

P is the fluid pressure and Pext is the pressure exponent.

EPANET permits the value of the Emitter Coefficient to be

specified for individual leak sites, but the pressure exponent

can be only specified for the entire network. Data of node

pressures are obtained from extensive simulations of normal

and leak scenarios.

Given a set of boundary conditions (such as water de-

mands) EPANET software has been firstly used to estimate

the steady-state pressure at the 311 RM type nodes. Next,

448 leaks have been simulated in the XX type nodes and the

steady-state pressure has been estimated again in the 311

RM type nodes. Finally, a fault sensitivity matrix has been

obtained as the pressure difference between the fault free

case and each faulty situation, according to the procedure

described in Section 2. Although the fault sensitivity matrix

depends on the leakage size, the properties are robust against

this uncertainty. In this case, the leak sensitivity matrix has

been computed for a leak magnitude of 6.3 lps (liters per

second).

C. Sensor placement analysis

Assume that the water distribution company has assigned

a baseline budget for investment on instrumentation that

just makes it possible to install 5 pressure sensors. Hence,

5 pressure sensors should be chosen out of 311 such that

all leaks are detectable and the leak locatability index is

maximized. Recall from Section III-A that an exhaustive

search is of exponential complexity. So, clustering techniques

will be applied to set up a reduced set of 25 candidate

pressure sensors. With this new setup, complexity will be

reduced (3115 )/(255 )
≈ 440000 times, which seems reasonably

promising.

In order to reduce the number of candidate pressure

sensors from 311 to nr = 25, clustering techniques have

been applied to the data set (311 normalized rows of the

sensitivity matrix Ω) as described in Section III-B. First,

ECM clustering algorithm [16] has been used to classify the

data set in different numbers of clusters and the evolution

of the validity index with the number of clusters has been

studied. From this study, it has been concluded that 5 is a

proper number of clusters. The algorithm takes 30 seconds in

the classification procedure to obtain 5 clusters. In order to

verify the validity of the solution provided by the clustering

algorithm, it has been run 500 times. Fig. 2 depicts the

histogram of the sensors chosen as centroids in the 500 runs.

Remark that some sensors are almost chosen in 200 out of



500 runs while other sensors are never chosen. Despite the

clusters are different for each run, the leak locatability index

(6), computed choosing the closest 5 sensors to the ℓ = 5
cluster centroids, varies less than 2% (see Fig. 3). Therefore,

the result obtained in a single run of the ECM algorithm

could be already considered meaningful.

Fig. 2. Sensor centroids histogram

Fig. 3. Evolution of the locatability Index

With the plausibility matrix (11), obtained from the clus-

tering algorithm, a hard partition has been obtained by

assigning each element to its highest plausibility cluster

applying Eq. (9). Fig. 5 depicts in different colors the 5

different network node clusters, where the closest node to

the centroid have been highlighted in every cluster. Finally,

the most N representative sensors of every cluster have been

chosen as was proposed in Section III-B with N = 5 given

by Eq. (10).

The reduced set S
′ with |S′| = N × ℓ = 25 candidate

pressure sensor places suggested by the clustering approach

is displayed in Fig. 5 as blue circled nodes. The exhaustive

Fig. 4. Clustering results

search is next applied to solve the sensor placement problem,

providing the set of 5 pressure sensor places signaled as red

starred nodes in the same figure. Installing these pressure

sensors, all 448 leaks are detectable and the leak locatability

index amounts to 35631.96. According to Eq. (7), its cor-

responding uniform projection angle is 49.9 o, which seems

reasonably good.

Fig. 5. DMA network sensor placement results

The exhaustive search approach provides an optimal result.

However, due to its computational complexity just a reduced

candidate pressure sensor set must be provided. Thus, the

optimality of this result over the set of 311 original candidate

pressure sensors relies on the performance of the clustering

algorithm.

The closest node to each class centroid determined by

the clustering procedure could be taken as an alternative

solution to the sensor placement problem. This solution also

guarantees full leak detectability, and the leak locatability

index amounts to 31953.49, which corresponds to a uniform



projection angle of 47.1o. Remark that this angle is very close

to the one corresponding to the exhaustive search solution.

Thus, according to these results, the clustering approach

fails to provide the optimal solution, but results are suffi-

ciently satisfactory. The advantage of applying a clustering

technique is that complex problems can be addressed in

reasonable time. ECM takes 30 seconds to provide a result

for the full candidate sensor set, whereas the exhaustive

search takes more than 3 hours to get a solution for the

reduced candidate sensor set.

V. CONCLUSIONS

The sensor placement problem in WDNs has been ad-

dressed in this paper. A distribution network usually de-

scribes a mesh topology involving hundreds of intercon-

nected nodes whose behavior follows nonlinear physical

laws. Such complexity requires the development of tools

applicable to large-scale systems.

This work presents an optimal sensor placement strat-

egy based on pressure sensitivity matrix analysis and an

exhaustive search strategy that maximizes some diagnosis

specifications. In order to reduce the size and the complexity

of the problem, the present work proposes to combine this

methodology with clustering techniques.

A first contribution of the paper is the definition of the leak

locatability index as a diagnsosis performance measure. This

index aggregates the normalized projection degree between

the residual fault sensitivity vectors for all fault pairs. The

goal is to characterize and determine a sensor set that

guarantees a maximum degree of leak locatability while a

budgetary constraint is satisfied. As a second contribution, to

overcome the complexity of the sensor placement problem,

the number of candidate sensors is reduced applying cluster-

ing techniques such that it can be tackled through exhaustive

evaluation.

The strategy developed is successfully applied to a DMA

of the Barcelona WDN. One the one hand, the results show

that these combined techniques manage to solve the sensor

placement problem in a reasonable time, which otherwise

would not be possible. On the other hand, a quick solution of

the sensor placement problem, close to the global optimum,

can be directly obtained from clustering analysis.
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