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Abstract

We present a novel clustering method, SON clustering, formulated as a con-

vex optimization problem. The method is based on over-parameterization

and uses a sum-of-norms regularization to control the trade-o� between

the model �t and the number of clusters. Hence, the number of clusters

can be automatically adapted to best describe the data, and need not to

be speci�ed a priori. We apply SON clustering to cluster the particles in a

particle �lter, an application where the number of clusters is often unknown

and time varying, making SON clustering an attractive alternative.

Keywords: Clustering, particle �lter, sum-of-norms
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ABSTRACT

We present a novel clustering method, SON clustering, formulated
as a convex optimization problem. The method is based on over-
parameterization and uses a sum-of-norms regularization to control
the trade-off between the model fit and the number of clusters.
Hence, the number of clusters can be automatically adapted to best
describe the data, and need not to be specified a priori. We apply
SON clustering to cluster the particles in a particle filter, an ap-
plication where the number of clusters is often unknown and time
varying, making SON clustering an attractive alternative.

Index Terms— Clustering, particle filter, sum-of-norms

1. INTRODUCTION

Clustering is the problem of dividing a given set of data points into
different groups, or clusters, based on some common properties
of the points. Clustering is a fundamental cornerstone of machine
learning, pattern recognition and statistics and an important tool in
e.g., image processing and biology. Clustering has a long history
and, naturally, a huge variety of clustering techniques has been
developed. We refer to [1] for en excellent survey of the field.

Many existing approaches, such as the as the well known k-
means method [2, 3], are formulated in terms of non-convex opti-
mization problems. The solution algorithms for such problems can
thus be sensitive to initialization. It can easily be shown that k-means
clustering, as an example, can yield considerably different results for
two different initializations [4]. A number of clustering algorithm
with convex objectives, which therefore are independent of initial-
ization, have been proposed, see e.g., [5, 6].

In this paper, we present a novel method for clustering, called
sum-of-norms (SON) clustering. Two key features of this approach
are that i) the problem is convex ii) the number of clusters need not
be specified beforehand. In [7], we analyse the method further and
show that it can be seen as a convex relaxation of the k-means prob-
lem. A similar formulation to SON clustering was previously dis-
cussed by [8]. However, there is a main difference in how the reg-
ularization term is constructed. The presentation in [8] can be seen
as inspired by lasso [9, 10] while our formulation can be seen as
inspired by group-lasso [11]. Related contributions, using SON reg-
ularization in other contexts, are for instance [12, 13].

Besides providing a generally applicable clustering method,
we shall in this paper focus on one specific application, namely
particle clustering in a particle filter (PF). The PF [14, 15] is used
for state inference by Monte Carlo integration in general (typically
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nonlinear/non-Gaussian) state-space models. The posterior distribu-
tion of the state is represented by a set of weighted point-masses,
or particles. To be able to cluster the particles online, without prior
knowledge about the number of clusters, opens up for a range of
different algorithmic modification and extensions.

There are several PF based methods in the literature, in which
particle clustering is an essential part. The distributed PFs by [16]
rely on fitting a Gaussian mixture model (GMM) to the set of parti-
cles. Here, they use the EM algorithm [17]. However, this requires
the number of clusters to be specified beforehand, and it can also
be slow to converge [18]. The clustered PF by [19] uses a simple
greedy method, but also state that “There are more robust clustering
algorithms, based on the EM algorithm; however, these methods rely
on knowing the number of clusters a priori”. A similar approach is
used in the mixture PF by [20], where k-means clustering is used
together with splitting and merging of clusters in a heuristic manner.
However, they also state that “The reclustering function can be im-
plemented in any convenient way”. In all of the above mentioned
methods (and many more), SON clustering serves as an interesting
alternative. However, the applicability of SON clustering for parti-
cle clustering will in this paper be illustrated on the simpler, but still
interesting, problem of PF output computation.

The remaining of this paper is organized as follows. In Sec-
tion 2 we formulate the general clustering problem and present the
SON clustering method. This is followed by a discussion on possible
extensions of the method in Section 3. In Section 4 we turn to the
problem of particle clustering in a PF and give experimental results
using SON clustering. Finally, in Section 5 we draw conclusions.

2. SUM-OF-NORMS CLUSTERING

Let {xj}Nj=1 be a set of observations in Rd. We wish to divide these
observations into different clusters. Informally, points close to each
other (in the Euclidian sense) should be assigned to the same cluster,
and vice versa. Also, the number of clusters should not be unnec-
essary large, but we do not know beforehand what the appropriate
number is.

It is natural to think of the clusters as subsets of Rd, such that if
any point xj belongs to this subset it also belongs to the correspond-
ing cluster. Consequently, we can say that each cluster has a centroid
in Rd. Now, since we do not want to specify how many clusters we
are dealing with, we let µj be the centroid for the cluster containing
xj . Two x’s are then said to belong to the same cluster if the cor-
responding µ’s are the same. The sum-of-squares error, or the fit, is
then given by

∑N
j=1 ‖xj − µj‖

2. Minimizing this expression with
respect to the µj’s would, due to the over-parameterization, not be of
any use. The result would simply be to let µj = xj , j = 1, . . . , N ,
i.e., we would get N “clusters”, each containing just one point. To



circumvent this, we introduce a regularization term, penalizing the
number of clusters. This leads to the SON clustering problem,

min
µ1...µN

N∑
j=1

‖xj − µj‖2 + λ

N∑
j=2

∑
i<j

‖µi − µj‖p, (1)

for some p ≥ 1 (see Section 2.1 for a discussion on the choice of
p). The name refers to the sum-of-norms (SON) used as a regular-
ization. The reason for using SON is that it is a well known sparsity
regularization, see e.g., [11]. Hence, at the optimum, several of the
terms ‖µi−µj‖p will (typically) be exactly zero. Equivalently, sev-
eral of the centroids {µj}Nj=1 will be identical, and associated x’s
can be seen as belonging to the same cluster, efficiently reducing the
number of clusters.

Remark 1 (Sum-of-norms regularization). The SON regularization
used in (1) is an `1-regularization of the p-norm of differences µi −
µj , j = 1, . . . , N, i < j. That is, the SON term is the `1-norm of
the vector obtained by stacking ‖µi−µj‖p, for j = 1, . . . , N, i <
j. Hence, this stacked vector, and not the individual µ-vectors, will
become sparse.

The regularization parameter λ is a user choice that will con-
trol the tradeoff between model fit and the number of clusters. In
many existing clustering algorithms (see e.g., [1]), the user is asked
to specify the number of clusters k beforehand. In SON clustering,
this user choice is moved to the regularization parameter λ. Note
that the number of clusters k does not appear in the criterion (1).

Another key property of SON clustering is that the criterion (1)
is convex. That means that the global optimum can be found inde-
pendently of initialization. Many existing clustering methods (there
among k-means clustering) are dependent on a good initialization
for a good result [4]. The same property also implies that convex
constraints easily can be added to SON clustering.

2.1. Implementation aspects

Apart from the regularization parameter λ, we need to choose which
norm to use in the regularization term, i.e., to choose a value for
p. We will in general use p = 2, but other choices are also pos-
sible. However, to get the properties discussed above, p should be
chosen greater than one. With p = 1, we obtain a regularization
variable having many of its components equal to zero, we obtain a
sparse vector. When we use p > 1, the whole estimated regular-
ization variable vector often becomes zero; but when it is nonzero,
typically all its components are nonzero. Here, p > 1 is clearly to
be preferred, since we desire the whole parameter vectors µ to be the
same if they are not needed to be different. In a statistical linear re-
gression framework, sum-of-norms regularization (p > 1) is called
group-lasso [11], since it results in estimates in which many groups
of variables are zero.

Also, when solving the problem (1), it is useful to apply an ad-
ditional step. Having found the minimizing µ, say µ∗, of (1) we
carry out a constrained least squares, where µi is set equal to µj if
µ∗
i = µ∗

j . This is done to avoid a biased solution. In the follow-
ing, we assume that the procedure of solving (1) is always followed
by such a constrained least squares problem, whenever referring to
SON clustering. However, note that this last step is relevant only if
the actual centroid-values are of interest. To merely compute which
x’s that belong to which cluster, the last step can be skipped since
we only need to know whether or not µ∗

i equals µ∗
j , not the actual

values of the individual elements of µ∗.

2.2. Solution algorithms and software

Many standard methods of convex optimization can be used to solve
the problem (1). Systems such as CVX [21, 22] or YALMIP [23]
can readily handle the sum-of-norms regularization, by converting
the problem to a cone problem and calling a standard interior-point
method. For the special case p = 1, more efficient, special pur-
pose algorithms and software can be used, such as l1 ls [24]. Re-
cently, many authors have developed fast, first order methods for
solving `1 regularized problems, and these methods can be extended
to handle the sum-of-norms regularization used here; see, for ex-
ample, [25, §2.2]. A code-package for solving (1) using CVX is
available for download at http://www.control.isy.liu.
se/˜ohlsson/code.html.

3. EXTENSIONS

The problem (1) can be seen as the basic formulation of SON cluster-
ing. Here, we discuss two possible extensions to the method. First,
since it is based on the Euclidian distance between data points, (1)
can only handle linearly separable clusters. To address nonlinear
clustering problems, the “kernel trick” can be used. We do not con-
sider such problems further in this paper.

Second, it may be beneficial to add weights to the regularization
term in (1). In [7], it is discussed that SON regularizations prefer
unequally sized clusters. Since the sum in the regularization term
ranges over all pairs of point, it will penalize distinct µ-values even
if the corresponding data points are far apart. To circumvent this,
we can localize the regularization penalty by adding data dependent
weights. A modified optimization problem is then,

min
µ1...µN

N∑
j=1

‖xj − µj‖2 + λ

N∑
j=2

∑
i<j

κ(xi, xj)‖µi − µj‖p, (2)

where κ is a local kernel. Note that, since κ depends only on the
(fixed) data points {xi}Ni=1 and not on the optimization variables
{µi}Ni=1, it does not change the convexity or the dimension of the
problem.

Any local kernel (e.g., Gaussian) can of course be used. How-
ever, from a computational point of view, it can be beneficial to use a
kernel with bounded support, since this can significantly reduce the
number of nonzero terms in the regularization sum. In this paper, we
use a simple kNN-kernel (k nearest neighbours), i.e.,

κ(xi, xj) =

{
1 if xi ∈ kNN(xj) or xj ∈ kNN(xi),

0 otherwise,
(3)

where kNN(x) is the set of x’s k nearest neighbours.

4. PARTICLE FILTER OUTPUT COMPUTATION

In this section we shall study one application in which SON clus-
tering is attractive, namely particle clustering in a PF. As mentioned
in Section 1, there are several PF based methods in the literature, in
which particle clustering is an essential part. It is also fairly easy to
come up with new ideas on how existing methods could benefit from
clustering. Take for instance the Gaussian sum PF [26], in which
particles are used to fit a GMM to the filtering distribution, using
“predefined clusters”. By augmenting this approach with a cluster-
ing step, the mixture becomes more adaptive, e.g., allowing for a
varying number of components. A similar idea could be used also



with the PF presented in [27], designed for multi-rate sensor sys-
tems. However, due to space limitations, we will not pursue any of
these algorithmic modifications, nor the ones discussed in Section 1,
here. Instead, we illustrate the applicability of SON clustering on PF
output computation, which is an interesting problem on its own. In
the process, we will also propose a slight modification of the method,
to make it more suitable for particle clustering.

In the PF, the posterior distribution of the state of a dynamical
system is approximated by a point-mass distribution, defined by N
weighted particles {xjt , w

j
t}Nj=1, where xjt are the particle position

and wjt are the corresponding importance weights.
One of the strengths of the PF is its ability to approximate ba-

sically any distribution, and can for instance handle multimodality
without problem. Multimodal posterior distributions might at first
appear somewhat fictitious, but this is not the case as they arise in
many realistic applications, e.g., as a result of track confusion in
target tracking (see also Section 4.2). Intuitively, multimodality is
handled by the PF by splitting the particles into two or more groups,
or clusters, each keeping track of a single mode of the distribution.
Now assume that the PF is connected to some other system, or mon-
itored by an end user. We then need to decide on some interface to
the PF, i.e., in what way the information available in the filter should
be presented. A few common choices are,

1. Present all particles and weights. By doing so, we deliver all
available information. However, if the number of particles N
is high (which it typically is), this might be prohibitive due to
limited communication capacities. Also, the result might be hard
to interpret.

2. Compute the mean. This is probably the most common way to
present an estimate derived from the PF. However, for multimodal
distribution, the mean can be very misleading.

3. Compute the MAP estimate. Usually, this is done by simply ex-
tracting the one particle with the highest weight. This approach
will focus the estimate on one of the modes of the distribution, but
neglects the remaining ones. Also, the particle with the highest
weight can in fact be far from the true MAP (see e.g., [15]), and
can thus be a poor estimate of the state. Also, if the distribution
has two or more equally probable modes, the MAP estimate can
“jump” back and forth between the modes, giving the impression
that the state is very erratic.

Here, we propose to find the modes of the distribution by par-
ticle clustering, and then deliver one estimate for each mode. More
precisely, at each iteration we apply SON clustering to the particles
(or rather the modified version of the method, presented below). For
each cluster, we then compute a mean estimate and these estimates
are delivered as output from the PF.

4.1. Including the weights

In the PF setting, we are concerned with a weighted particle system
{xjt , w

j
t}Nj=1. The weights wjt can be seen as measures of how “im-

portant” the corresponding samples, or particles, xjt are. It is natural
to incorporate the weighting in the clustering method. This is done
by replacing the sum-of-squares term in the criterion with a weighted
sum-of-squares, i.e., instead of (2) we use,

min
µ1
t ...µ

N
t

N∑
j=1

wjt‖x
j
t − µ

j
t‖

2 + λ

N∑
j=2

∑
i<j

κ(xit, x
j
t)‖µ

i
t − µjt‖p.

(4)

In the example presented below, the above criterion will be used
when referring to SON clustering. Similarly, since we compare
SON clustering with k-means clustering, we use a (straightfor-
wardly) modified version of k-means clustering which aims at
minimizing the weighted within-cluster sum-of-squares.

4.2. Output computation in a target tracking example

To study the applicability of SON clustering for PF output compu-
tation we consider a target tracking example, in which we seek to
track a vehicle moving in an urban environment. The position of the
vehicle is measured using a range only sensor. The tracker is also
supported by a road network, and tracking is done under the hypoth-
esis that the vehicle always stays on the road (see e.g., [28]). Hence,
at each instant we know that the target is on one of the roads, but
due to the rather uniformative measurement it is not always possible
to determine which road. This ambiguity will cause multimodality
in the posterior distribution. A bootstrap PF [14], using N = 1000
particles, is used to track the target.

Figure 1 shows three snapshots of the horizontal position of the
vehicle, as seen from above. The particles, which is the trackers
internal representation of the posterior distribution of the vehicle po-
sition, are shown as small dots. The top row of the figure shows the
result from SON clustering applied to the particles, with λ = 0.1
and using a kNN-kernel with k = 10. The bottom row shows simi-
lar results, using k-means clustering with k = 5 clusters. The cluster
centers, or mode estimates, are shown as circles and the total particle
weight sum for each cluster is given next to the cluster. It should be
emphasized that the individual particle weight are not visible in the
figure, but the weights will indeed influence the clustering as dis-
cussed in Section 4.1. At t = 30, the rightmost cluster(s) have very
low total weight. From a visualization point of view we could, of
course, have chosen discard clusters with a total weight below some
threshold. As can be seen from the plots, k-means uses a static num-
ber of clusters, even when the underlying distribution is unimodal.
The mean and MAP estimates are not displayed in Figure 1, to avoid
cluttering of the plots. However, it is not hard to see that the mean es-
timate, for instance, would fail at time t = 15 when the distribution
is clearly bimodal.

5. CONCLUSION

We have proposed a novel clustering method, SON clustering, for-
mulated as a convex optimization problem. The method does not
require the number of clusters to be specified a priori. Instead, a
regularization parameter λ is used to control the trade-off between
model fit and the number of clusters. This feature gives the method
the ability to dynamically adapt the number of clusters, e.g., if it is
applied to sequential data with a varying number of clusters.

This property was illustrated on a target tracking example,
where the particles in a particle filter (PF) were clustered to find the
modes of the particle distribution. SON clustering was compared
with the common k-means clustering method. The latter produces a
static number of clusters, even when the modality of the distribution
changes. There are of course methods for estimating the number of
clusters from the data. Such methods could be used together with k-
mean to allow for a varying number of clusters. However, this would
add an extra model order selection step, which needs to be carried
out each time the clustering is to be performed. In this paper, we
have illustrated that SON clustering has the ability to automatically
adapt the number of clusters, for the same value of λ. However,
how well this generalizes to other sequential clustering problems is
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Fig. 1. Three snapshots of a two dimensional urban tracking scenario. The tracker is supported by a road network, shown in the background.
The particles are shown as small black dots and the circles shows the cluster centroids. Next to each centroid is the total weight sum of the
corresponding cluster. The top row gives the results from using SON clustering, and the bottom row using k-means clustering.

a topic for further research, as it is not clear that the same value for
λ gives the “best” result at each time step in the sequence.

We have studied the applicability of SON clustering for parti-
cle clustering on the above mentioned output computation exam-
ple. However, there are many PF based methods in the literature,
in which clustering is an essential part. The intention of this paper
has been to present SON clustering as a potential tool to be used
together with these methods, as well as with future applications of
clustering in a PF setting.
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