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Understanding travel patterns of vehicle can support the planning and design of better services. In addition, vehicle clustering can
improve management e	ciency through more targeted access to groups of interest and facilitate planning by more speci
c survey
design. �is paper clustered 854,712 vehicles in a week using �-means clustering algorithm based on license plate recognition
(LPR) data obtained in Shenzhen, China. Firstly, several travel characteristics related to temporal and spatial variability and activity
patterns are used to identify homogeneous clusters. �en, Davies-Bouldin index (DBI) and Silhouette Coe	cient (SC) are applied
to capture the optimal number of groups and, consequently, six groups are classi
ed in weekdays and three groups are sorted
in weekends, including commuting vehicles and some other occasional leisure travel vehicles. Moreover, a detailed analysis of
the characteristics of each group in terms of spatial travel patterns and temporal changes are presented. �is study highlights the
possibility of applying LPR data for discovering the underlying factor in vehicle travel patterns and examining the characteristic of
some groups speci
cally.

1. Introduction

�e trip starting and ending time, travel distance, travel
frequency, activity duration, and some analogous features are
the typical form of vehicle travel behaviors. All these aspects
have a signi
cant e�ect on the tra	c condition in a direct
or indirect way [1, 2]. For example, the distribution of the
trip starting and ending time of all vehicles will decide the
peak-hour time. Better understanding of these characteristics
will be helpful to analyze the travel pattern and travel mode
of vehicles. Identifying homogeneous travel behavior groups
has been the research subject in several prior studies and the
travel behavior analysis has always attracted great interest of
transport authorities, since vehicle travel behavior has a vital
impact on strategic and operational decisions [3–5].

Clustering is one of themost importantmethods to count
and mine meaningful information in large amount of data
since understanding themain di�erences between groups can
contribute to a better understanding of their travel behaviors,
which can provide valuable information for transportation
planning [6]. Meanwhile, clustering vehicles based on their
travel characteristics is one of the vital methods for studying

the representativeness of speci
c groups among the whole
vehicle population and the travel pro
le of each group
provides an aggregated characterization for the vehicles of a
group as a whole [7]. It can also provide transportation plan-
ners with richer travel demand information for improving the
system performance or better assessing network investments.

In the 
eld of transportation, clustering has been widely
accepted in dealing with big data and tra	c problems [8, 9].

Reference [10] investigated the determination of historical
tra	c patterns by means of Ward’s hierarchical clustering
procedure. It classi
es the tra	c patterns in highways with
the data collected by automatic vehicle identi
cation (AVI)
system into four groups and the resultant weekday tra	c pat-
terns can be used as input for macroscopic tra	c models and
as a basis for tra	c management. Moreover, when predicting
tra	c �ows based on historical data, a preclassi
cation (e.g.,
holidays, Mondays, core weekdays, and Fridays) can be made
to guide the authorities, and these patterns can be used to
detect and replace erroneous data and to imputemissing data.

Besides, [11, 12] utilized the density-based clustering
algorithms to classify trajectories using GPS data. �e study
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of trajectory data can reveal individual trajectory patterns,
understand the characteristics of human dynamics, and
thus support trajectory prediction, urban planning, tra	c
monitoring, and so forth. �e characteristics will be similar
inside each group and signi
cantly di�erent outside the
groups. According to the similarity, the individual similar
trajectory recognition can be achieved; and by clustering, the
abnormal trajectory mode detection can also be conducted.
Similarly, literature [13, 14] combined DBSCAN and SVM
(support vector machines) cluster algorithm to sort the GPS
trajectories to identify the activity stop locations, which has
signi
cance in analyzing human urban mobility.

In the analysis of the time series characteristics of tra	c
�ow data [15], clusteringmethod is popular too. According to
the similarity of tra	c �ow characteristics, the tra	c sections
are divided into di�erent groups and in the literature [16];
performance of the proposed approach and the stability of
the clustering technique are evaluated using the extensive
simulation for di�erent tra	c densities.

Numerous researches concerning tra	c and travel have
been conducted by previous studies but there are some
drawbacks at the same time. It is di	cult to obtain the
large amount of data. �e acquisition is mostly based on
arti
cial method but at the expense of consuming lots of
manpower and resources. Worse still, there are much error
and abnormities in the information usually; thus, the research
results always show lower reliability and higher deviation.

Recently, a number of well-established technologies for
collecting vehicle related data have emerged, including loop
detectors, GPS data, and probe car data [17, 18]. Loop
detectors have the merit that once they are installed, there
will be continuous record when every vehicle is passing the
monitored road section. However, the share of segments in
the network equipped with these sensors is typically low
and cannot represent the urban network as a whole, which
will leave the tra	c conditions in most of the network
unknown. Dedicated probe vehicles, meanwhile, are used to
collect the travel time and other data for designated routes
in the network. Nevertheless, due to cost considerations, the
number of tra	c studies with probe vehicles is typically small
and the number of vehicles involved is very few. Hence,
they can only cover a limited number of routes for a limited
duration of time.

A number of limitations mean that new sophisticated
methods are needed to process the data and generate
useful information, compared to traditional sensors [19].
Most recently, with the emerging technologies and advanced
devices, image recognition technology has been greatly
improved. License plate recognition (LPR) system provides
the opportunity to study in detail vehicle travel patterns.
Compared to manual data collection techniques, LPR pro-
vides lower marginal costs, more detailed and disaggregated
information, large sample size, and real-time data availability
[20, 21]. LPR data is mainly applied in LPR data is mainly
applied in solving three kinds of problems in the 
eld of
transportation, that is, (1) road network state discrimina-
tion, (2) vehicle microscopic characteristics mining, and
(3) vehicle travel time/path estimation [22, 23]. Zhan et al.

[24] proposed a lane-based real-time queue length estima-
tion model applying the LPR data. By using ground truth
information of the maximum queue length from the city of
Langfang in China, the model is validated. In addition, a
novel trip route estimation method was given by researchers
to estimate the vehicle travel path [25]. Similarly, based on
LPR data, an approach for forecasting urban short-term
OD matrix which can be used to obtain the original OD
information was came up with, and then the OD amount
between the detection points can be inferred and 
nally
the OD information between fast track ramps is obtained
[26, 27]. All of that mentioned above has proved that the
massive amount of LPR data has been created and provides us
with rich information and thus can be an e�ective analytical
data source.

Methods for clustering are usually divided into two
categories, supervised and unsupervised. Supervised meth-
ods use the past data as training samples or previously
known outputs to create and learn a clustering rule that
allows the clustering of future or new observations [28].
Because the form of the data is not 
tting for this study,
unsupervised methods are more applicable. Unsupervised
cluster algorithms include the hierarchical algorithms and
the partition algorithms. Hierarchical clustering algorithms
have high computational complexity and cost, limiting their
application to large-scale data sets and the shortcomings
and advantages of these algorithms will be explained in the
following paragraph.

�-means clustering algorithm, which belongs to the
distance-based clustering algorithms, is not only the most
classic, but also the most widely used. It has the property of
rapid computing speed, easily explained principle, and high
e	ciency. �-means clustering algorithm is tested using load
pro
les of 100 residential smart meters collected over the
interval extending from July 20th until August 9th, 2009.
�e method has shown high accuracy in dealing with tra	c
problems, which proved its great applicability [29].

In this paper, data from LPR system in Shenzhen, China,
from November 4th to 10th, 2013, during seven days (a
week) in total are analyzed. Variables chosen for clustering
include the proportion of di�erent starting/ending points,
maximum/minimum/average travel distance for one trip,
days of travel within a week, the number of trips per day,
the average start time of the 
rst trip, the average end
time of the last trip, and activity duration [30]. Firstly, data
cleaning is conducted to remove the wrong and repeated
data.�en, deviation standardization is utilized to normalize
each value for eliminating the error caused by dimension
and considerable di�erences of magnitude. A�er preliminary
treatment, data is divided into two groups, namely, the
weekdays and weekends. Finally, to measure the optimal
number of clusters, Davies-Bouldin index (DBI) [31] and
Silhouette Coe	cient (SC) [32] are employed.

In general, the purpose of this study is to classify vehicles
into several categories based on some variables and deter-
mine travel behavior consistency over time and space by
analyzing the vehicle temporal and spatial variability. It can
support the study of representing speci
c groups among the
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Networks

Detection points

Figure 1: Road network and distribution of LPR system in Shenzhen.

Table 1: Raw data sample.

Vehicle ID Detector ID Lane number Date and time

2a0ada�3bedf3ad09730c47e0b195b5 20400801 3 2013/11/04 23:00

686ded4bef182aeb03cf361eb6ac6f65 101A0753 2 2013/11/05 00:13

88765784c6cd4464ded7f2336c24eaf2 20602701 1 2013/11/06 14:26

14c397a9bc79e52854194e6c49a69b3e 30606705 2 2013/11/07 15:03

6c43c9bb61e730194de304f0ce9e99ae 206A0480 1 2013/11/08 09:21

�567b73e8e3db9fa03a4d265b6bddbe 20605302 2 2013/11/09 04:18

45e8dca9594b91c5fdb40706b6f0abc7 10100210 3 2013/11/10 19:14

total population and help establish the predictive level of
vehicle trips.

�e rest of the paper is organized in the following way.
Section 2 o�ers a brief description of data source. �e
methodology is introduced in Section 3. Section 4 displays
the variables chosen for clustering. Section 5 shows the results
of the clustered data and Section 6 is the conclusion and

ndings.

2. Data Description

2.1. Data Overview. �e potential of LPR system has been
explored for planning, managing, and assessing the perfor-
mance of tra	c systems. Further, data collected by these sys-
tems allows more comprehensive view of vehicle travel pat-
terns and travel behaviors.

2.1.1. Data Source. �e LPR system in Shenzhen, China, cov-
ersmajority of parking lots and expressways for this city. Over

0.9 million vehicles are detected in a week and according to
Shenzhen Statistical Yearbook in 2013, the total number of
vehicles in Shenzhen is about 2.1 million, implying 42.86% of
vehicles are detected by the LPR system. A�er data cleaning,
there are still almost 128,000 recorded vehicles each day.
Figure 1 is the sketched network of Shenzhen, where the red
points represent the detectors installed on roads and the black
lines show the roads.

LPR detectors are mainly installed in the expressways of
the city unevenly, most of which are on the intersection or the
pedestrian bridge nearby. �ey are denser in the city center
area, while more are dispersed in the rest of the region. �e
sample of raw data is given in Table 1.

It is worth noting that the detector ID has two types,
10100610 and 101A0753. If “A” is contained in the ID, the
detector is a parking lot.Otherwise, it represents a detector on
road. Table 2 shows the amount of detectors for each day from
November 4th to November 10th, 2013, for which more than
83% detectors are parking lots.
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Table 2: Amount of detection ID for each day.

Date Nov. 4 Nov. 5 Nov. 6 Nov. 7 Nov. 8 Nov. 9 Nov. 10

All detectors 918 942 936 934 933 910 873

Parking lots 759 783 777 775 774 751 717

On roads 159 159 159 159 159 159 156

�ere are three main types of parking lots, (1) residen-
tial parking lots (including residential and o	ce buildings,
commercial places, and shared parking lots), (2) temporary
parking lots, and (3) public parking lots.�e parking lots with
detection data account for about 20% of all the parking lots
in Shenzhen.

2.1.2. Data Cleaning. �e data cleaning is conducted before
vehicle clustering and there are two main steps.

(1) Extract the Data by Day. �e whole dataset is for seven
days (a week), which has been separated into seven 
les by
date thus each 
le contains the data of the same day.

(2) Verify the Original LPR Data

(1) Delete erroneous LPR data: there are two kinds of
erroneous data in our study: (a) the detected time of
the record is beyond the range of [0:00–24:00] and (b)
the latitude and longitude of the detection site of the
record are beyond the scope of Shenzhen.

(2) Remove duplicated LPR data records: if there are two
identical records, only one needs to be kept.

(3) Extract the trip chain in accordance with the de
ni-
tion of one trip: that is, the data has been processed
into the following form.

Vehicle a-time(1)- location(1), vehicle a-time(2)- location
(2),. . .,vehicle a-time(n)- location (n)
Vehicle b-time(1)- location (1), vehicle b-time(2)- location
(2),. . .,vehicle b-time(n)- location (n)

Based on the trip chain of the vehicles, all of the men-
tioned variables can be calculated, such as the trip starting
time, ending time, the whole activity duration, and the travel
distance.

2.2. Identi�cation of Taxi. �e purpose of this paper is to
cluster all the vehicles in the dataset according to some
temporal and spatial variables. Each group will have some
characteristics di�erent from the other groups, so as to
explore vehicle travel patterns we may not know before. Traf-

c researchers have always paid much attention to taxi, due
to its special travel mode. It has the following characteristics
[33]:

(1) �ere are no 
xed route and running time.

(2) Operation is for 24 hours and can be located in any
place of the city.

(3) �e origins and destinations of taxi are completely
determined by passengers.

(4) �e operating routes are up to the driver, such as his
experience and hobbies.
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Figure 2: �e distribution of number of trips for taxi in Shenzhen.

On account of these features, taxis are removed from the
dataset tomake sure the analysis in this paper is more speci
c
on noncommercial vehicles and the future research will focus
on the travel behavior of taxi.

Figure 2 shows the distribution of the number of taxi
trips in Shenzhen. �ere are over 70% of vehicles traveling
20–35 trips per day, and only 7% vehicles are traveling less
than 10 trips.Meanwhile, from the clustering result, the travel
frequency of nontaxis in a day is no more than 10 trips per
day. As a result, we removed vehicles whose travel frequency
exceeded 10 trips per day. Under such a de
nition, there may
be two inaccurate results: (1) nontaxis traveling more than 10
times a day were removed and (2) taxis traveling less than 10
times were still retained.

However, in the light of Shenzhen Statistical Yearbook in
2013, the number of taxis is around 17,000 in total, in which
less than 50% were detected by the LPR system. �us, the
amount of these two kinds of vehicles will be no more than a
thousand, which appears insigni
cant when compared with
tens of thousands ordinary vehicles.

On the basis of the rule proposed above, almost 6,000
taxis for one day are removed from the dataset andwhen taxis
are removed, there are around 122,000 vehicles for each day
and 854,000 vehicles in a week.

3. Methodology

3.1. Clustering Methods. Clustering methods encompass sev-
eral techniques and algorithms used to group observations
based on similar qualitative or quantitative characteristics.
�ey are usually divided into supervised and unsupervised
clustering. Supervised methods require a training sample
which contains previously known information on each group
membership [34]. In accordance with the form of data in this
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Table 3: Advantages and disadvantages of some unsupervised algorithms.

Clustering
algorithm

Representational
algorithm

Advantage Disadvantage

Hierarchical
algorithms

BIRCH
(1) No input parameters are required
(2) High scalability

(1) high computational complexity and cost;
(2) low e	ciency in dealing with large-scale dataCURE

Chameleon

Partition
algorithms

�-means (1) High e	ciency in dealing with large-scale data
(2) Fast calculation speed

(1) dependent on initial center selection;
(2) uncertainty of category numberCLARANS

O1

D1(O2)

D2

�e �rst record

�e �rst record

�e second record

�e second record�e last record

�e last record

Figure 3: �e relationship between the travel trajectory and the detection points.

study, the training sample is not available and there are no
previously known classes; unsupervised clustering method
is the best option. Unsupervised clustering methods aim at
categorizing the data objects without a training sample; the
goal is to 
nd clusters based on similarities of the input data.
�ere are two main types of unsupervised clustering, the
hierarchical algorithms and the partition algorithms. Table 3
discusses the advantages and disadvantages of some unsuper-
vised algorithms [35].

3.2. �-Means Algorithm. As shown in Table 3, hierarchical
algorithms have been criticized for low robustness and high
sensitivity to noise and outliers. Since the assignment of an
object to a cluster is not iterative, hierarchical algorithms are
not able to correct potential misclassi
cations. On the con-
trast, partition algorithms optimize either a locally or a glob-
ally de
ned objective function to generate groups of obser-
vations so they are preferred in studies involving large-scale
dataset.
�-means is chosen for this study as a computationally

e	cient method, which is suitable for situations where all
variables are quantitative. It is easy to understand and apply
and thus is popular in dealing with the clustering problems.
�e time complexity of �-means algorithm is close to linear,
is simultaneously suitable for mining large-scale data sets,
and is scalable. In this study, the variables used for clustering
are all quantitative and we have a large amount of data. So,

�-means is chosen for this study. Nevertheless, the only dis-
advantage is the di	culty of choosing the number of clusters
and their dependency on the initialization scenario. For the

rst drawback, it can be adjusted by repeated iterations to

nd the optimal result. For the second one, we have tried
several cluster numbers and applied Davies-Bouldin index
(DBI) and Silhouette Coe	cient (SC) to 
nd the optimal
cluster number.

3.3. Criteria for One Trip. For the sake of turning the raw
data into the form of vehicle trips and the value of its
corresponding variables, the criteria for one trip should be
given 
rstly. Due to the inherent limitation of the LPR data,
only partial trajectory points of a vehicle can be obtained. As a
result, the realistic starting and ending points of a trip cannot
be speculated.

Figure 3 shows the travel trajectory of a vehicle in a brief
network, where the yellow curve represents the 
rst trip of the
vehicle and the green one displays its second trip. In addition,
the blue short lines show the detecting points. It is de
nite
that the true trip starting time in origin 1 (�1) is earlier than
the time of the 
rst trip record, and the trip ending time in
destination 1 (�1) is later than the time of the last record, as
well as the second trip or other trips of the vehicle.

Hence, deviation will exist in the value of some variables
inevitably. �e average starting time of the 
rst trip will be a
little later, and the average ending time of the last trip will be



6 Journal of Advanced Transportation

Table 4: �e average number of trips for di�erent thresholds.

�reshold (min) Number of trips �reshold (min) Number of trips

20 4.52 50 1.96

25 3.86 55 1.83

30 3.24 60 1.82

35 2.90 65 1.82

40 2.41 70 1.81

45 2.13 75 1.78

50 1.96 80 1.73

a little earlier. �e whole activity duration will be longer and
the travel distancewill be shorter. However, themain purpose
of our study is to extract the travel characteristics of vehicles
instead of the estimation of the �� matrix; these errors are
o�set in one direction for all vehicles; thus it may not have
a critical impact on the clustering result. From this point of
view, the de
nition of one trip is applicable. When applying
these values of variables in realistic transportation planning,
the deviation should be taken into account.

As mentioned, the “segmentation” refers to the interval
between two trips that is the interval of the last record of
the 
rst trip and the 
rst record of the second trip, which is
di�erent from the vehicle’s accumulated travel time. In order
to 
nd the optimal value of the segmentation, we have tested
the threshold.

Set AR to be the true threshold, BR to be the true number
of trips, � to be the threshold that we will apply, and � to be
the number of trips that we will calculate. If � ≤ AR, then
� ≥ BR; if � ≥ AR, then � ≤ BR; only when � = AR,
then � = BR. Di�erent thresholds ranging from 20min to
80min have been tested, and the average number of trips
under all circumstance is calculated.�e result was illustrated
as Table 4.

When the threshold spans from 50min to 80min, the
value of number of trips has been moving towards stabiliza-
tion. It implies that the probability of trips to be not detected
in this interval is relatively small. Also, the interval of two
trips from LPR data is larger than the actual interval. Hence,
it is reasonable that one hour is chosen to be the threshold.

4. Clustering Variables

4.1. Spatial and Temporal Variables. To estimate homoge-
neous vehicle groups based on their travel patterns using any
clustering method, it is necessary to have input information
on travel behaviors. Travel patterns can be described by
looking at speci
c variables that together characterize each
vehicle’s travel routines [36]. �e selected variables must
include those vehicles’ characteristics that make their travel
patterns distinct [37, 38]. A set of descriptive variables is
presented and vehicles are analyzed inweekdays andweekend
separately.

(1) 
e Proportion of Di�erent Origins/Destinations.�e per-
centage of di�erent origins/destinations has the potential to
be a useful indicator of their mobility patterns. To illustrate,

vehicles with the same starting point for the 
rst trip in a day
or the same ending point for the last trip in a day over a week
aremore likely to be commuters withwork or study purposes.
�is variable is an indicator of spatial travel variability, which
could help to infer the vehicle travel predictability. For such
vehicles that traveled 3 days in weekdays, the percentage of
di�erent origins for the 
rst trip in a day is de
ned as follows:

0:
e origins of the �rst trip in a day over the three days
are all the same.

1/3:
ere is one di�erence for the origins of the �rst trip
in a day over the three days.

2/3: 
ere are two di�erences for the origins of the �rst
trip in a day over the three days.

1:
e origins of the �rst trip in a day over the three days
are all di�erent.

When the value is 0, the origins for one trip are all the
same in the days of travel, suggesting that the behavior of this
kind of vehicles hasmuch regularity. In contrast, if the value is
1, the origins for one trip are all di�erent in the days of travel,
indicating the irregularity of the travel behaviors.

�e calculation for percentage of di�erent destinations
for the last trip in a day is de
ned in the same way, and for
vehicles in weekends the dealing method is comparable.

(2) Travel Distance. �e geometric distance between the
origin and destination of one trip can show how accessible
activity locations are to a vehicle. Travel distance variability
among the trip of a vehicle can also demonstrate travel
�exibility and vehicle mobility around the city. �e travel
distance variables adopted in this study incorporate the
maximum/minimum/average travel distance for one trip in
the whole week. For the lack of the track points, complete
travel trajectory of one trip for a vehicle cannot be obtained.
As a result, in this study, the distance of one trip for a vehicle is
de
ned as the exact distance between the start and end points
of one trip, which is calculated by the latitude and longitude
of the two points.

(3) Travel Frequency.�e travel frequency of vehicles, that is,
tripsmade over a day/a week (or any other period) incarnates
the uncertainty of the travel for vehicles. �ere are two
descriptive variables, number of trips per day, which is the
number of complete trips performed on each day of the week
and days of travel, which is the number of days within the
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period of analysis; a vehicle has at least one trip in a day. For
vehicles in weekdays and weekends, the value of their travel
days in a week ranges from zero to seven.

(4)
e Trip Start/Finish Time.�e trip start/
nish time could
give expression to the trip purpose and consistency of trip.
Volatility of the start time for the 
rst trip and the 
nish time
for the last trip are crucial aspects when analyzing vehicle
travel patterns.

(5) Total Activity Duration. Activity refers to all those actions
vehicles perform when they are not traveling and in this
paper the time interval between the two adjacent trips is
de
ned as the protocol of activity duration.�ere is a mass of
activities purposes, business, work, study, and entertainment,
among others.�e characteristics of the activity performed at
a destination may determine the vehicle’s travel decision and
the average activity duration of a vehicle in each day varies
from weekdays to weekends.

4.2. 
e Distribution of the Variables for All Vehicles

(1) Weekdays. Figure 4 illustrates the distribution of all the
temporal and spatial variables in weekdays which is a statis-
tical indicator of the whole vehicles.

In Figure 4(a), there is an obvious peak during the interval
of 8:30 am to 9:00 am, representing that the average trip start
time of vehicles is mostly focused between 8:30 am and 9:00
am, implying the morning peak hours. Figure 4(b) shows the
tendency of the average trip 
nish time and the majority of
the vehicles 
nish their trip at around 18:00 pm–19:30 pm,
which means the a�ernoon peak hour. Additionally, there is
also a large amount of vehicles that start their trip at 12:30
pm–13:30 pm.

For the number of trips per day in Figure 4(c), vehicles
traveling 1.5 trips/day occupy a high proportion and vehicles
traveling 3.5 trips/day, 2 trips/day, and 4 trips/day followed.
�e result seems to be confused that vehicles traveling 1.5
trips/day (less than 2 trips/day) conquer such a high rate.
Probably, it is because the de
nition of one trip in the study
and the incomplete vehicle detection data.

Figure 4(d) demonstrates days of travel. Vehicles that only
travel one day in a week occupy a high rate. �e activity
duration of most vehicles is within 11 h in Figure 4(e). Figures
4(f), 4(g), and 4(h) re�ect the travel distance of vehicles. �e
maximum travel distance of vehicles for one trip is almost
within 60 km, theminimum travel distance is less than 30 km,
and the average travel distance is within 40 km. At the same
time,we can see that, for the average travel distance of vehicles
for one trip, over 68% of trips are within 10 km.

According to Figures 4(i) and 4(j), for the percentage of
di�erent starting or ending points, values 0 and 1 seize on a
high proportion. Value 0 means the starting/ending points of
each trip are identical, and the regularity is high. Analogously,
value 1 means that the starting/ending points of each trip are
all di�erent, and irregularity is high.

(2) Weekends. For vehicles traveling in weekends, the dis-
tribution of their temporal indicators is basically similar to
the weekdays. For the value of both of the percentages for

di�erent starting and ending points in weekends, value 0
takes up the highest ratio; in other words, these vehicles
travel with less regularity. Compared with the weekday
vehicles, they travel a relatively short distance; whether it
is the maximum travel distance, minimum travel distance,
or average travel distance, almost all are within 10 km and
relatively concentrated within 5 km.

5. Results and Discussions

�e values of within-cluster variation and the DBI/SC are
shown as functions of the number of clusters in Figures 5(a)
and 5(b). A smaller value of DBI and a larger value of SC are
better. In Figure 5(a), when the cluster number is six, the value
of DBI is the smallest, and when it turns to seven, the value of
SC is the largest.�e value of SC of seven groups is just a little
better than six groups but the value of DBI of six groups is
much better than seven groups. As a result, “six” is a relatively
better choice. In Figure 5(b) when the cluster number is
three, both values of SC and DBI are optimal; there is a
lowest point of DBI and a highest point of SC. So, the cluster
number for weekdays and weekends is selected as six and
three, respectively. �e�-means clustering method provides
not only information about each cluster’s core characteristics
but also information about the average characteristics of each
cluster. Tables 5 and 6 display the average values of each index
for each category in weekdays and weekends.

For Vehicles in Weekdays, Six Groups Are Clustered. �e last
column of Table 5 illustrates the proportion of the total
number of each category. �e smallest cluster contains 4.1%
of the vehicles in the sample, and the largest one accounts
for 33.7%. Groups 1 to 6 are identi
ed as follows, long travel
distance vehicles, commuting vehicles, noon travel vehicles
with short travel distance, o�-peak hour travel vehicles,
midnight travel vehicles, and peak-hour travel with short
activity duration vehicles, respectively.

Group 1 is inferred as long travel distance vehicle that
travels 1.82 days in a week and makes 2.13 daily trips. On
average, the 
rst trip starting time of Group 1 is 10:14 am
and the last trip ending time is 19:02 pm. Additionally, the
travel behavior of this group is irregular because the trip
origins and destinations are all di�erent. Besides, the total
activity duration of this group is about 7.41 hours, and the
travel distance of this group of vehicles is relatively long. �e
maximum travel distance for one trip is 78.1 km on average.

Group 2 may be commuting vehicle, which travels 5.94
days of the week on average and makes 2.18 trips per day.�e

rst trip of the day starts at approximately 8:42 am and the last
trip of the day ends at 18:18 pm. �e activity duration lasts
8.67 hours on average. Furthermore, the distance between
the origin and destination of their trips varies from 6.9 km
to 59.2 km, and their average travel distance is about 17.5 km
for one trip. �e proportion of di�erent starting and ending
points for Group 2 is 0.12 and 0.09, representing a high
regularity in the daily origins and destinations. All of these
features support the speculation of Group 2 to be commuting
vehicles.
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Figure 4: Continued.
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Group 3 is de
ned as noon travel vehicle with short travel
distance. �e 
rst travel starts at 10:07 am and the last travel
ends at 15:14 pm; it only travels at noon. Moreover, Group 3
travels only 1.08 days in a week and 1.82 trips in a day, and the
activity duration is also short, only 4.02 hours on average.�e
travel distance varies between 1.9 km and 3.5 km, dropping
in a short range and the travel origins and destinations are
almost di�erent.

Group 4 is concluded to be o�-peak hour travel vehicle;
the 
rst trip of the day starts at 10:20 am and the last trip of the
day ends at 19:48 pm, which staggers the peak hours. �ere
are 1.82 days of travel in a week and 1.63 trips in a day and
the travel distance of Group 4 is similar to that of Group 3. In

particular, the maximum travel distance is only 2.9 km and
in accordance with the percentage of di�erent starting and
ending points, the travel for Group 4 is not so regular too.

Unlike other groups, Group 5 may be midnight travel
vehicle, which has the most distinguish feature. Vehicles start
their travel at 0:40 am and the activity duration is around 17.14
hours. Besides, the number of travel times per day is 2.99,
which is also higher than others and the travel distance varies
between 4.8 km and 32.5 km. �e origins and destinations
also have a certain degree of randomness.

Group 6 is de
ned as peak-hour travel with short activity
duration vehicle. It starts the 
rst travel at 8:55 amand
nishes
at 6:11 pm. �ey travel 1.82 days in a week and 2.71 trips in a
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Figure 5: DBI and SC of weekdays and weekends. (a) Weekdays. (b) Weekends.

day and they have short activity duration. �e travel origins
and destinations are not regular and they travel for 28.1 km in
average.

In general, the start time of the 
rst trip and the end time
of the last trip for Group 2 are similar to those of Group 6,
both in the peak hour. Even so, the days of Group 6 traveling
in a week are less and its travel distance is much longer.
Comparing the characteristics of Group 2 with Group 6, we
can conjecture that Group 2 is commuting vehicles traveling
twice everyday andGroup 6may be vehicles commuting only
in part of the days in a week and consistent with activities
for leisure, recreational, or sporadic work in the rest days.
Moreover, Groups 2, 3, and 4 are the main composition of
tra	c �ow, taking up 79.1% of the whole vehicle population.
Group 4 is o�-peak hour travel vehicle and there is no clear
travel purpose that could be inferred using only these travel
behavior characteristics. �ese clusters could be composed
of leisure travelers, visitors, or sporadic vehicles. �ey may
be vehicles coming out to pick up child or shopping nearby.
Group 5 has distinguishing features from others; they travel
only in the midnight; it is similar to taxi or online hailing
vehicles (i.e., Uber); the travel time,and travel purposes are
random and not sure.

For Vehicles in Weekends, 
ree Groups Are Clustered. �e
characteristics of each group are shown in Table 6.

Group 1 is deduced as o�-peak hour travel, where the
starting time of the 
rst travel is 10:11 am and the trip ending
time is 19:30 pm. �ey travel 1.87 days in a week and 2.02
trips in a day. In addition, the average travel distance is
about 30.8 km and the similarity of the travel origins and
destinations is high. Combining with the travel frequency,
travel time, and travel distance of these vehicles, they may

live in the city center for work in the weekdays and during
weekends they may visit their parents or relatives in the
suburbs or have picnics to relax.

Group 2 is de
ned as a�ernoon travel with short activity
duration vehicle, which travels 1.27 trips per day and 1.66
days in a week. It travels in o�-peak hour, which is 12:30
am and 16:18 pm, the travel distance is not long and the
activity duration is about 3 hours. Additionally, the origins
and destinations are relatively stable. Combined with all of
these features, group 2 tends to be vehicles going shopping or
leisure on weekends.

Group 3 may be peak-hour travel vehicle, the average
start time of the 
rst trip is 7:42 am and the average 
nish
time of last trip is 18:50 pm and it only travels 2.11 days
in a week. �e travel distance is as short as Groups 3 and
4 in weekdays. Vehicles in this group resemble commuting
vehicles in weekdays. �is kind of vehicles may work only in
weekends, for example, people working for cram schools and
the like.

6. Conclusions

�is paper shows that it is possible to analyze the travel char-
acteristics of vehicles and identify vehicle groups with similar
travel behavior using LPR data.�emain contribution of this
paper is summarized as follows:

(i) Six vehicle groups with similar travel characteristics
in weekdays and three groups in weekends are iden-
ti
ed and the detailed behavior of each cluster is
presented.

(ii) Travel characteristics are studied by analyzing the
distribution of these variables and the values of each
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variable for each category. In addition, we de
ned
vehicle type for each group of vehicle, to identify
the commuting vehicle and other ordinary leisure
travel vehicles, and the clustering result can be used
in several aspects, such as

(1) policy making in vehicle classi
cation manage-
ment;

(2) transport planning and vehicle travel forecast-
ing;

(3) urban tra	c simulation and monitoring.

For example, with the clustering, we can e�ectively
extract the commuting travel vehicles which provide better
decision information for developing urban tra	c demand
and managing policy by analyzing the spatial and temporal
distribution of its travel behavior. In addition, summarizing
the clustering result, there are almost 46% (type 3 and type 4)
o�-peak hour travel vehicles traveling in short distance (less
than 3.5 km) in weekdays. Considering that the detectors are
mainly installed on expressways, we can guide these vehicles
to take arterial roads instead of expressways by implementing
some tra	c management schemes during o�-peak hour to
improve the level of services of arterial roads and 
nally
release the tra	c pressure of o�-peak hours on expressways.

In general, 
rstly, this study has shown that it is possible
to analyze the travel characteristic of vehicles and identify
vehicle groups with similar travel behavior using LPR data.
Besides, a study of the vehicles’ travel pattern can be per-
formed based on this study results and this information can
be used to preferably understand how the behavior of the
di�erent groups a�ects the road system, the travel patterns,
and travel modes.

Secondly, from the standpoint of transportation plan-
ning, clustering vehicle travel patterns allow the analysis
of possible di�erences in level of service experienced by
di�erent vehicle segments and the identi
cation of potential
biases. It can also provide better understanding of how
changes in level of service a�ect di�erent vehicles and how
they respond to those changes. Knowing themain di�erences
between groups can contribute to a better understanding of
the e�ect of disruptions on travel behavior.

Finally, the method displayed in this study is innovative
and practical which can be applied in several similar prob-
lems and researches. It highlights the potential of using LPR
data tomine underlying information of vehicles and the study
also reveals the importance of clustering vehicles based on
their characteristics.
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