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The problem of assigning m points in the n-dimensional real space 

Rn to k clusters is formulated as that of determining k centers in 

Rn such that the sum of distances of each point to the nearest 

center is minimized. If a polyhedral distance is used, the problem 

can be formulated as that of minimizing a piecewise-linear concave 

function on a polyhedral set which is shown to be equivalent to 

a bilinear program: minimizing a bilinear function on a polyhe

dral set. A fast finite k-Median Algorithm consisting of solving 

few linear programs in closed form leads to a stationary point of 

the bilinear program. Computational testing on a number of real

world databases was carried out. On the Wisconsin Diagnostic 

Breast Cancer (WDBC) database, k-Median training set correct

ness was comparable to that of the k-Mean Algorithm, however its 

testing set correctness was better. Additionally, on the Wisconsin 

Prognostic Breast Cancer (WPBC) database, distinct and clini

cally important survival curves were extracted by the k-Median 

Algorithm, whereas the k-Mean Algorithm failed to obtain such 

distinct survival curves for the same database. 

1 Introduction 

The unsupervised assignment of elements of a given set to groups or clusters of 

like points, is the objective of cluster analysis. There are many approaches to this 

problem, including statistical [9], machine learning [7], integer and mathematical 

programming [18,1]. In this paper we concentrate on a simple concave minimization 

formulation of the problem that leads to a finite and fast algorithm. Our point of 
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departure is the following explicit description of the problem: given m points in the 

n-dimensional real space Rn , and a fixed number k of clusters, determine k centers in 

Rn such that the sum of "distances" of each point to the nearest center is minimized. 

If the I-norm is used, the problem can be formulated as the minimization of a 

piecewise-linear concave function on a polyhedral set. This is a hard problem to 

solve because a local minimum is not necessarily a global minimum. However, by 

converting this problem to a bilinear program, a fast successive-linearization k

Median Algorithm terminates after a few linear programs (each explicitly solvable 

in closed form) at a point satisfying the minimum principle necessary optimality 

condition for the problem. Although there is no guarantee that such a point is a 

global solution to our original problem, numerical tests on five real-world databases 

indicate that the k-Median Algorithm is comparable to or better than the k-Mean 

Algorithm [18, 9, 8]. This may be due to the fact that outliers have less influence 

on the k-Median Algorithm which utilizes the I-norm distance. In contrast the k

Mean Algorithm uses squares of 2-norm distances to generate cluster centers which 

may be inaccurate if outliers are present. We also note that clustering algorithms 

based on statistical assumptions that minimize some function of scatter matrices 

do not appear to have convergence proofs [8, pp. 508-515]' however convergence to 

a partial optimal solution is given in [18] for k-Mean type algorithms. 

We outline now the contents of the paper. In Section 2, we formulate the clustering 

problem for a fixed number of clusters, as that of minimizing the sum of the I-norm 

distances of each point to the nearest cluster center. This piecewise-linear concave 

function minimization on a polyhedral set turns out to be equivalent to a bilinear 

program [3]. We use an effective linearization of the bilinear program proposed in 

[3, Algorithm 2.1] to solve our problem by solving a few linear programs. Because 

of the simple structure, these linear programs can be explicitly solved in closed 

form, thus leading to the finite k-Median Algorithm 2.3 below. In Section 3 we give 

computational results on five real-world databases. Section 4 concludes the paper. 

A word about our notation now. All vectors are column vectors unless otherwise 

specified. For a vector x E Rn, Xi, i = 1, ... ,n, will denote its components. The 

norm II . lip will denote the p norm, 1 ~ p ~ 00, while A E RTnxn will signify a real 

m x n matrix. For such a matrix, AT will denote the transpose, and Ai will denote 

row i. A vector of ones in a real space of arbitrary dimension will be denoted bye. 

2 Clustering as Bilinear Programming 

Given a set A of m points in Rn represented by the matrix A E RTnxn and a number 

k of desired clusters, we formulate the clustering problem as follows. Find cluster 

centers Gl, e = 1, ... , k, in Rn such that the sum of the minima over e E {I, ... , k} 

of the I-norm distance between each point Ai, i = 1, ... , m, and the cluster centers 

Gl , e = 1, ... , k, is minimized. More specifically we need to solve the following 

mathematical program: 

Tn 

minimize L min { e T Dil} 
C ,D i=l l=l , ... ,k (1) 

subject to -Dil ~ AT - Gl ~ Dil' i = 1, ... ,m, e = 1, ... k 

Here Dil E Rn, is a dummy variable that bounds the components of the difference 
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AT - Ct between point AT and center Ct, and e is a vector of ones in Rn. Hence 

eT Dit bounds the I-norm distance between Ai and Ct. We note immediately that 

since the objective function of (1) is the sum of minima of k linear (and hence 

concave) functions, it is a piecewise-linear concave function [13, Corollary 4.1.14]. 

If the 2-norm or p-norm, p oF 1,00, is used, the objective function will be neither 

concave nor convex. Nevertheless, minimizing a piecewise-linear concave function 

on a polyhedral set is NP-hard, because the general linear complementarity prob

lem, which is NP-complete [4], can be reduced to such a problem [11, Lemma 1]. 

Given this fact we try to look for effective methods for processing this problem. We 

propose reformulation of problem (1) as a bilinear program. Such reformulations 

have been very effective in computationally solving NP-complete linear complemen

tarity problems [14] as well as other difficult machine learning [12] and optimization 

problems with equilibrium constraints [12]. In order to carry out this reformulation 

we need the following simple lemma. 

Lemma 2.1 Let a E Rk. Then 

min {at} = min {t altl ttl = 1, tt ~ 0, f = 1, ... , k} (2) 
1<t<k tERk 

- - l=l t=1 

Proof This essentially obvious result follows immediately upon writing the dual of 

the linear program appearing on the right-hand side of (2) which is 

Tl;{hlh:::; at, f = 1, . .. k} (3) 

Obviously, the maximum of this dual problem is h = minl<t<k {at}. By linear 

programming duality theory, this maximum equals the minimum of the primal 

linear program in the right hand side of (2). This establishes the equality of (2). 0 

By defining a~ = eT Dit, i = 1, ... , m, f = 1, ... , k, Lemma 2.1 can be used to 

reformulate the clustering problem (1) as a bilinear program as follows. 

Proposition 2.2 Clustering as a Bilinear Program The clustering problem 

(1) is equivalent to the following bilinear program: 

minimize 
CtERn,DttERn ,TilER 

subject to 

E:'l E;=1 eT DitTit 

- Dil :::; AT - Cl :::; Dil' i = 1 ... ,m, f = 1, ... , k (4) 

E;=l Til = 1 Til ~ 0, i = 1, ... ,m, f = 1, ... , k 

Note that the constraints of (4) are uncoupled in the variables (C, D) and the vari

able T. Hence the Uncoupled Bilinear Program Algorithm UBPA [3, Algorithm 

2.1] is applicable. Simply stated, this algorithm alternates between solving a linear 

program in the variable T and a linear program in the variables (C, D). The al

gorithm terminates in a finite number of iterations at a stationary point satisfying 

the minimum principle necessary optimality condition for problem (4) [3, Theorem 

2.1]. We note however, because of the simple structure the bilinear program (4), 

the two linear programs can be solved explicitly in closed form. This leads to the 

following algorithmic implementation. 

Algorithm 2.3 k-Median Algorithm Given cf, ... ,ct at iteration j, compute 

cf+! , ... ,ct+! by the following two steps: 
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(a) Cluster Assignment: For each AT, i = 1, ... m, determine £( i) such that 

C1(i) is closest to AT in the 1-norm. 

'+1 
(b) Cluster Center Update: For £ = 1, ... ,k choose Cj as a median of 

all AT assigned to CI. 

Stop when cI+ 1 = cl, £ = 1, ... , k. 

Although the k-Median Algorithm is similar to the k-Mean Algorithm wherein the 

2-norm distance is used [18, 8, 9], it differs from it computationally, and theoreti

cally. In fact, the underlying problem (1) of the k-Median Algorithm is a concave 

minimization on a polyhedral set while the corresponding problem for the p-norm, 

p"# 1, is: 

minimize 
C,D 

subject to 

L min IIDillip 
, l=I"",k .=1 (5) 

-Dil ~ AT - Cl ~ Dil' i = 1 ... , m, £ = 1, ... , k. 

This is not a concave minimization on a polyhedral set, because the minimum of 

a set of convex functions is not in general concave. The concave minimization 

problem of [18] is not in the original space of the problem variables, that is, the 

cluster center variables, (C, D), but merely in the space of variables T that assign 
points to clusters. We also note that the k-Mean Algorithm finds a stationary point 

not of problem (5) with p = 2, but of the same problem except that IIDill12 is 

replaced by IIDilll~. Without this squared distance term, the subproblem of the 
k-Mean Algorithm becomes the considerably harder Weber problem [17, 5] which 

locates a center in Rn closest in sum of Euclidean distances (not their squares!) to a 

finite set of given points. The Weber problem has no closed form solution. However, 

using the mean as a cluster center of points assigned to the cluster, minimizes the 

sum of the squares of the distances from the cluster center to the points. It is 

precisely the mean that is used in the k-Mean Algorithm subproblem. 

Because there is no guaranteed way to ensure global optimality of the solution 

obtained by either the k-Median or k-Mean Algorithms, different starting points 

can be used to initiate the algorithm. Random starting cluster centers or some 

other heuristic can be used such as placing k initial centers along the coordinate 

axes at densest, second densest, ... , k densest intervals on the axes. 

3 Computational Results 

An important computational issue is how to measure the correctness of the results 

obtained by the proposed algorithm. We decided on the following three ways. 

Remark 3.1 Training Set Correctness The k-Median algorithm (k = 2) is 

applied to a database with two known classes to obtain centers. Training correctness 

is measured by the ratio of the sum of the number examples of the majority class in 

each cluster to the total number of points in the database. The k-Median training 

set correctness is compared to that of the k-Mean Algorithm as well as the training 

correctness of a supervised learning method, a perceptron trained by robust linear 

programming [2l. Table 1 shows results averaged over ten random starts for the 
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publicly available Wisconsin Diagnostic Breast Cancer (WDBC) database as well as 

three others [15, 16). We note that for two of the databases k-Median outperformed 

k-Mean, and for the other two k-Mean was better. 

Algorithm .J.. Database -t WDBC Cleveland Votes Star / Galaxy-Bright 

Unsupervised k-Median 93.2% 80.6% 84.6% 87.6% 

Unsupervised k-Mean 91.1% 83.1% 85.5% 85.6% 

Supervised Robust LP 100% 86.5% 95.6% 99.7% 

Table 1 Training set correctness using the unsupervised k-Median 

and k-Mean Algorithms and the supervised Robust LP on four databases 

Remark 3.2 Testing Set Correctness 

The idea behind this approach 
T eoIing Set Correctness vo. T eoIing Set Size 
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est center. Testing correctness is determined by the number of points in testing 

subset correctly classified by this assignment. This is compared to the correctness 

of a supervised learning method, a perceptron trained via robust linear programming 

[2}, using the leave-one-out strategy applied to the testing subset only. This com

parison is then carried out for various sizes of the testing subset. Figure 1 shows 

the results averaged over 50 runs for each of 7 testing subset sizes. As expected, 

the performance of the supervised learning algorithm (Robust LP) improved as the 

size of the testing subset increases. The k-Median Algorithm test set correctness re

mained fairly constant in the range of 92.3% to 93.5%, while the k-Mean Algorithm 

test set correctness was lower and more varied in the range 88.0% to 91.3%. 

Remark 3.3 Separability of Survival Curves In mining medical databases, 

survival curves [10} are important prognostic tools. We applied the k-Median and 

k-Mean (k = 3) Algorithms, as knowledge discovery in database (KDD) tools [6}, 
to the Wisconsin Prognostic Breast Cancer Database (WPBC) [15} using only two 

features: tumor size and lymph node status. Survival curves were constructed for 
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Figure 2: Survival curves for the 3 clusters obtained by k-Median and k-Mean 

Algorithms 

each cluster, representing expected percent of surviving patients as a function of 

time, for patients in that cluster. Figure 2( a) depicts the survival curves from 

clusters obtained from the k-Median Algorithm, Figure 2(b) depicts curves for the 

k-Mean Algorithm. The key observation to make here is that curves in Figure 2(a) 

are well separated, and hence the clusters can be used as prognostic indicators. In 

contrast, the curves in Figure 2(b) are poorly separated, and hence are not useful 

for prognosis. 

4 Conclusion 

We have proposed a new approach for assigning points to clusters based on a simple 

concave minimization model. Although a global solution to the problem cannot be 

guaranteed, a finite and simple k-Median Algorithm quickly locates a very useful 

stationary point. Utility of the proposed algorithm lies in its ability to handle large 

databases and hence would be a useful tool for data mining. Comparing it with 

the k-Mean Algorithm, we have exhibited instances where the k-Median Algorithm 

is superior, and hence preferable. Further research is needed to pinpoint types of 

problems for which the k-Median Algorithm is best. 
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