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Abstract

In this paper, we present a general data clustering algo-
rithm which is based on the asymmetric pairwise mea-
sure of Markov random walk hitting time on directed
graphs. Unlike traditional graph based clustering meth-
ods, we do not explicitly calculate the pairwise similar-
ities between points. Instead, we form a transition ma-
trix of Markov random walk on a directed graph directly
from the data. Our algorithm constructs the probabilis-
tic relations of dependence between local sample pairs
by studying the local distributions of the data. Such
dependence relations are asymmetric, which is a more
general measure of pairwise relations than the similarity
measures in traditional undirected graph based methods
in that it considers both the local density and geome-
try of the data. The probabilistic relations of the data
naturally result in a transition matrix of Markov ran-
dom walk. Based on the random walk viewpoint, we
compute the expected hitting time for all sample pairs,
which explores the global information of the structure
of the underlying directed graph. An asymmetric mea-
sure based clustering algorithm, called K-destinations,
is proposed for partitioning the nodes of the directed
graph into disjoint sets. By utilizing the local distri-
bution information of the data and the global structure
information of the directed graph, our method is able to
conquer some limitations of traditional pairwise simi-
larity based methods. Experimental results are provided
to validate the effectiveness of the proposed approach.

Introduction
Recently, pairwise relation based clustering algorithms at-
tract great attention. A successful example is the spectral
clustering (Meila & Shi 2001; Ng, Jordan, & Weiss 2001;
Shi & Malik 2000; Yu & Shi 2003). These methods have the
advantage that they do not make strong assumptions about
the distribution of the data. Instead, similarities between
sample pairs are first computed to construct an undirected
graph of the data and then a global decision is made to par-
tition all data points into disjoint sets according to some cri-
terions. Therefore, these methods can potentially deal with
data sets whose clusters are of irregular shapes.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Despite the great success of the graph based methods,
there are still open problems: 1) How to construct the pair-
wise similarities between sample points to reflect the under-
lying distribution of the data; 2) How to deal with multi-
scale data; 3) How to handle the data whose clusters are de-
fined by geometry. Moreover, Nadler and Galun recently
pointed out that there are fundamental limitations of these
graph based approaches (Nadler & Galun 2007). According
to their analysis, even with carefully tuned parameters, the
spectral clustering algorithms still cannot successfully clus-
ter the multi-scale data sets. They showed examples that the
clusters, which can be easily captured by human, cannot be
properly identified by the spectral clustering methods.

In this paper, we show that the widely used paramet-
ric Gaussian kernel based similarities are not informative
enough for modeling pairwise relations. As a result, the
undirected graph constructed based on the similarities does
not necessarily capture the intrinsic structure of the under-
lying data distribution. Therefore, the natural clusters of the
data cannot be obtained by partitioning the graph.

From our analysis, we propose a data clustering algorithm
based on a directed graph model. The edge weights of the
graph are the probabilistic dependence relations between lo-
cal sample points, which are constructed by exploring the
local distributions of the data. Such relations are asymmet-
ric and more general than the similarities used in traditional
undirected graph based methods since they consider both the
local density and geometry of the data.

The probabilistic relations between all sample pairs natu-
rally result in a stochastic matrix, which can be considered
as the transition matrix of the Markov random walk process
on a directed graph. Our new clustering algorithm works
on this directed graph, which is based on the random walk
model, more specifically the expected hitting time of random
walk model.

The random walk hitting time has a nice property: it de-
creases when the number of paths connecting two nodes in-
creases and the length of any path decreases. Informally
speaking, the shorter the paths connect two nodes are, the
more related the two nodes are; strongly connected nodes
are more related than weakly connected nodes.

There are some other applications that consider various
measures based on random walk models. For example, the
paper of (Fousset al. 2007) proposes an embedding method
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Figure 1: Clustering results by the NJW algorithm on two
multi-scale data sets. Different clusters are denoted by dif-
ferent colors.

based on the commute time distance on undirected graphs
for collaborative recommendation systems. Another paper
of (Brand 2005) proposes to use an angular based quantity
for semi-supervised learning problems, which can be seen
as a normalized version of the commute time on undirected
graphs.

All these approaches are based on undirected graph mod-
els, with symmetric measures (similarity) between sample
pairs. We will see later that symmetric measures cannot fully
capture the relations between sample points. Sometimes it
may even hinder the performance of the algorithms.

The rest of the paper is organized as follows. In Section 2,
we briefly discuss the limitations of the pairwise similarity
based clustering methods. Section 3 describes the frame-
work of the proposed random walk hitting time based di-
graph clustering algorithm. Section 4 presents our experi-
mental results. Section 5 concludes this paper.

Limitations of Pairwise Similarity Based
Methods

The first step of pairwise relation based algorithms is to con-
struct an undirected graph for the vector data. Sample points
are connected by undirected edges. The edge weights reflect
the similarities between sample pairs. Usually a Gaussian
kernel exp(−‖xi − xj‖2/2σ2) with a manually adjusted pa-
rameterσ is used for setting the weights. A problem of this
step is how to choose the parameterσ. When it is not prop-
erly set, the clustering results can be poor. A more severe
problem is that a singleσ for all sample pairs implies that
if the Euclidean distances between two pairs are the same,
the two similarities are the same too. When the input data
are with different density and geometry, there may not exist
a single value ofσ that works well for the whole data set.
For certain data set, the intrinsic cluster structure essentially
may not be explored by the spectral clustering algorithm, no
matter what value ofσ is chosen.

Figures 1a and 1b are two multi-scale data sets from
(Nadler & Galun 2007), where 1000 sample points are gen-
erated by three Gaussians with variancesσ1 = 2 andσ2 =
σ3 = 0.5. The point numbers of the Gaussians are 1:1:1 for
Figure 1a and 8:1:1 for Figure 1b. The best results that can
be achieved by the spectral clustering are shown with differ-
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Figure 2: The local density and shape affect the relations
between sample pairs.

ent colors denoting the clusters. As indicated in (Nadler &
Galun 2007), these multi-scale problems essentially cannot
be solved by spectral clustering, mainly because it does not
explore the density information inherent in the data. Even
though the parameterσ has been carefully tuned, from the
figure we can see that the spectral clustering algorithm can-
not obtain satisfactory results on these data sets.

When dealing with these kinds of data, exploring the local
data distribution is very important. Consider the data shown
in Figure 2a. The Euclidean distancesd(a, b) andd(a, c) be-
tween the sample pairs(a, b) and(a, c) are the same. Then
the similarities computed by the Gaussian kernel are the
same. However with the context data points around sample
a, apparentlya is more likely to belong to the same cluster
asb than asc. Here the geometric shape of the local data
distribution is important for modeling the relations between
sample pairs. Another example in Figure 2b shows the im-
portance of the density of the local data distribution that af-
fects the relations between sample pairs. Although sample
a lies in the middle ofb andc, a is more likely to have the
same class label asc than asb when considering the density
of the context data. Here the local density of the data distri-
bution is important for modeling the relations between the
sample pairs.

These two intuitive examples suggest that we should ana-
lyze the local data distribution when modeling the pairwise
relations between sample points.

Random Walk Hitting Time Based Digraph
Clustering

Based on the analysis above, we propose to study the local
context of the data to setup the relations between local sam-
ple points. The relations between sample pairs are not nec-
essarily symmetric. We adopt a probabilistic framework to
model the local pairwise relations to form a directed graph,
and then compute the random walk hitting time between all
sample pairs which explores the global information of the
structure of the underlying directed graph. An iterative al-
gorithm called K-destinations is proposed to cluster the data
based on the hitting time measure.
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Local Gaussian based Bayesian inference
Letxi ∈ R

d, i = 1, 2, · · · , n, be points that we wish to as-
sign toK clustersΓ = {Vl}l, l ∈ {1, 2, · · · , K}. The good
performance of a clustering method indicates that the label
of a data point can be well estimated based on its neighbors.

The data of a local neighborhood can be deemed as a sin-
gle Gaussian. DenoteN(i) as the index set ofxi’s neigh-
bors. In this paper, thek nearest neighbors ofxi are used
to compose the neighborhoodN(i). Each samplexj , j ∈
N(i), can be thought to lie in a local Gaussian centered at
xi, i.e.,xj ∼ N (xi, Ci), j ∈ N(i), wherexi andCi are the
mean and covariance of this Gaussian. The covarianceCi of
the Gaussian can be estimated using the data of the neigh-
borhoodN(i) by the maximal likelihood estimation (MLE).
Let Xi = [xj ]j , j ∈ N(i), be a matrix with each column
being a neighbor ofxi. A regularized covariance matrixCi

of the local Gaussian distributionN (xi, Ci) is

Ci =
1

|N(i)|
(Xi − xie

T )(Xi − xie
T )T + αI, (1)

where|N(i)| is the cardinality of the setN(i), α is the reg-
ularization factor,e is a vector with all entries being 1, andI
is the identity matrix (Hastie, Tibshirani, & Friedman 2001).

Let Ĉi = (Xi − xie
T )(Xi − xie

T )T /|N(i)|. In this pa-
per, we use a modified version of the regularized covariance
matrix proposed in (Srivastava & Gupta 2006):

Ci = Ĉi +
tr(Ĉi)

d
I. (2)

We writeNi as the abbreviation ofN (xi, Ci). Then for
a sample pointxj , the multivariate Gaussian density, with
which xj is generated by the GaussianN (xi, Ci), is given
by

p(xj |Ni) =
exp

(
− 1

2 (xj − xi)
T C−1

i (xj − xi)
)

√
(2π)d|Ci|

. (3)

As shown in Figure 3a, given the neighbor Gaussians, the
probability thatxj is generated by the GaussianN (xi, Ci)
can be computed by the Bayesian rule:

P (Ni|xj) =
p(xj |Ni)P (Ni)∑

i∈N(j) p(xj |Ni)P (Ni)
. (4)

For simplicity, the prior probabilities are set equal.
P (Ni|xj) can be thought as the local dependence ofxj

on xi given the context of local data distributions when de-
termining the cluster membership of each sample, as shown
in Figure 3a. It represents the dependence ofxj onxi. Also
denotepji = P (Ni|xj), then

∑
i pji = 1. Notice that the

probabilistic relations between pointsi andj are not asym-
metric, i.e., in general,pji is not necessarily equal topij .
Then all samples and the asymmetric relations between sam-
ple pairs naturally result in a directed graph.

The advantage of using the local Gaussian based Bayesian
inference to model the dependence relations between sample
pairs can be seen from Figure 3. When solely using the Eu-
clidean distances to model the pairwise relations, the clus-
tering boundary may not be reasonable as shown in Figure

ix

jx

(a) (c)(b)

Figure 3: Advantage of using local Gaussian based Bayesian
inference to construct neighbor relations. (a) Local Gaussian
based Bayesian inference. (b) Boundary found by modeling
pairwise relations with the isotropic Gaussian kernel. (c)
Boundary found by modeling pairwise relations with local
Gaussian estimation.

3b. By considering the local distribution, we can obtain a
satisfactory boundary as shown in Figure 3c. Using this ap-
proach, we avoid setting the bandwidth parameterσ of the
Gaussian kernel in the spectral clustering methods. More-
over, this estimation of local relations considers both the lo-
cal density and geometry of the data, thus the constructed
graph reflects the underlying distribution of the data set.

Random walk

For all sample pairs, we have the matrixP = [pij ]ij , which
has the property thatPe = e, i.e.,P is stochastic. After ob-
taining the stochastic matrixP , we can naturally define the
Markov random walk on the directed graph associated with
P . The random walk is defined with the single-step transi-
tion probabilitypij of jumping from any node (state)i to one
of its adjacent nodesj wherepij = P [i → j] is the proba-
bility of one step discrete time random walk transition from
i to j. ThenP can be regarded as the transition probability
matrix of the random walk process.

The transition probabilities depend only on the current
states (first-order Markov chain). If the directed graph asso-
ciated with the matrixP is strongly connected, the Markov
chain is irreducible, that is, every state can be reached from
any other states. If this is not the case, the Markov chain can
be decomposed into closed subsets of states which are in-
dependent (there is no communication between them), each
closed subset is irreducible, and the procedure can be ap-
plied independently to these closed subsets.

The unique stationary distribution of the Markov chain is
guaranteed ifP is irreducible (Aldous & Fill 2001). Let
π = [πi]i, i = 1, · · · , n, be the vector of the stationary dis-
tribution of the Markov random walk. The stationary distri-
bution vector, also called Pagerank vector in the information
retrieval literature, can be obtained by solving a linear sys-
temπT P = πT subject to a normalized equationπT e = 1.
Either the power algorithm or the eigen-decomposition al-
gorithm can be used to compute the stationary distribution
(Langville & Meyer 2005).

The expected hitting timeh(j|i) of the random walk is the
expected number of steps before nodej is visited starting
from nodei. It can be easily verified that the hitting time
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satisfies the following recurrence relations
{

h(i|i) = 0
h(j|i) = 1 +

∑n
k=1 pikh(j|k) i 6= j.

(5)

The recurrence relations can be used in order to iteratively
compute the expected hitting time. The meaning of these
formulae is quite obvious: in order to jump from nodei to
nodej, one has to go to any adjacent statek of nodei and
proceeds from there.

The closed form of the hitting time in terms of transition
matrix exists (Aldous & Fill 2001). By introducing a matrix

Z = (I − (P − eπT ))−1, (6)

the matrixH with its entryHij = h(j|i) can be computed
by

Hij = (Zjj − Zij)/πj , (7)
whereZij is the entry ofZ. More efficient way of comput-
ing the hitting time also can be found in (Brand 2005).

As mentioned before, the hitting time from nodei to node
j has the property of decreasing when the number of paths
from i to j increases and the lengths of the paths decrease
(Doyle & Snell 1984). This is a desirable property for repre-
senting the dependence of the label of one point on another
for the clustering task when the global distribution of the
data is taken into account.

A closely related quantity, the commute timec(i, j), is
defined as the expected number of steps that a random
walker, starting from nodei 6= j, takes to meet nodej
for the first time and goes back toi. That is, c(i, j) =
h(j|i) + h(i|j). The commute time distance is also known
as the resistance distance in the electrical literature (Klein
& Randić 1993). The commute time distance on undirected
graphs is widely used in many applications (Brand 2005;
Fousset al. 2007). However we argue that it is not suitable
for our case. In the case of a directed graph, if the hitting
time from nodei to nodej is small, which means nodei and
nodej are tightly related, but the hitting time from nodej to
nodei is not necessarily small. Such cases often happen on
the points that lie on the boundaries of clusters, which have
short hitting times to the central points in the same clus-
ters, but often have very large hitting times from the central
points to points close to the boundaries. So in this paper, we
use the hitting time instead of commute time as the measure
of pairwise relations.

K-destinations algorithm
After obtaining the asymmetric hitting times between all
sample pairs, we are ready to apply a clustering algorithm
to categorize the data into disjoint classes. Since tradi-
tional pairwise relation based clustering algorithms often
require the pairwise relations be symmetric and the simi-
larity functions be semi-definite, such as the spectral clus-
tering (Ng, Jordan, & Weiss 2001; Shi & Malik 2000;
Yu & Shi 2003), they are not suitable for clustering using
the hitting time measure.

In this work, we develop an iterative clustering algorithm
based on the asymmetric hitting time measure, which is sim-
ilar to the K-means algorithm, called the K-destinations that
directly works on the pairwise hitting time matrixH .

Table 1: Random walk hitting time based digraph clustering
algorithm

Input: The data matrixX , the number of nearest neigh-
borsk, and the number of clustersK.

1. For eachi, i = 1, 2, · · · , n

(a) FormXi = [xj ]j , j ∈ N(i), by thek nearest neigh-
bors ofxi.

(b) Compute the m left singular vectors
ui1 , ui2 , · · · , uim

corresponding to the non-
zero singular values of̂Xi = Xi − xie

T to form
Ûi = [ui1 , ui2 , · · · , uim

].
(c) For thosej with i ∈ N(j), computep(xj |Ni) as in

(12).
2. Compute P = [pij ]ij with each entrypij =

p(Nj |xi)/
∑

j∈N(i) p(xi|Nj).

3. ComputeZ = (I−P −eπT )−1 and computeH where
Hij = (Zjj − Zij)/πj .

4. Perform the hitting time based K-destinations algo-
rithm.

Each clusterVl, l = 1, · · · , K is represented by an ex-
emplarvl, which is called a destination node in our algo-
rithm. The destination node is selected from the samples.
Intuitively, we want to choose the destinations that save the
walkers’ (hitting) time. Therefore, we propose to cluster the
data by minimizing the sum of the hitting times from the
samples to the destination node in each cluster:

J =
K∑

l=1

∑

i∈Vl

h(vl|i). (8)

Finding the global optimum of this criteria is a hard prob-
lem. Instead, we optimize the function in a greedy manner.
Similar to the K-means algorithm, we iteratively minimize
J by two steps:

• First, we fix the destination nodes and assign each sample
to the cluster that has minimal hitting time from it to the
destination node corresponding to the cluster.

• Then, in each cluster, we update the destination node from
the samples that minimize the sum of the hitting times
from all samples in the cluster to the destination node.

The clustering algorithm repeats the two steps until the
cluster membership of each sample does not change. It can
be seen that the algorithm monotonously decreases the value
of J in each iteration, so the convergence of the algorithm is
guaranteed.

Implementation
In typical applications of our algorithm such as image clus-
tering, the dimensiond of the data can be very high. There-
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fore the computation of the Gaussian density in (3) is time
consuming, where the inverse ofd × d matrices is involved.
Usually in the neighborhood, although the covariance ma-
trix C = Ĉ + αI is of rankd, the rank ofĈ is very low1.
Denoting the rank of̂C asm, we havem ≤ k ≪ d, where
k is the number of neighbors in the neighborhood. LetU =
[ui]i, i = 1, · · · , d, andΛ = diag([λi]i), i = 1, · · · , d,
whereui andλi are the eigenvectors and eigenvalues ofĈ
respectively, then

C−1 = U(Λ + αI)−1UT

= U(A +
1

α
I)UT ,

(9)

whereA is a diagonal matrix with entries

Aii = −
λi

α(λi + α)
. (10)

Let Û = [ui]i, i = 1, · · · , m, be a matrix formed by
the eigenvectors corresponding to non-zero eigenvalues of
Ĉ, which can be efficiently computed by applying singular
value decomposition on ad × k matrix (see Table 1). Then
the Mahalanobis term in (3) is

dC(xj , x) =(xj − x)T C−1(xj − x)

=‖Â1/2ÛT (xj − x)‖2 + ‖xj − x‖2/α,
(11)

whereÂ = diag([Aii]i), i = 1, · · · , m, is only am × m
matrix with m << d. Then the density with whichxj is
generated byN (x, C) can be computed as

p(xj |N ) = exp

(
−

1

2

(
dC(xj , x) +

m∑

i=1

ln λi + d ln (2π)
)
)

.

(12)
Thus we avoid storing thed × d matrix C and explicitly
computing the inverse of it, which brings us time/space ef-
ficiency and numerical stability. The complete algorithm is
summarized in Table 1.

Experiments
In this section, we present the clustering results obtained by
the proposed random walk hitting time based digraph clus-
tering (HDC) algorithm on a number of synthetic and real
data sets. We also compare our HDC algorithm with the K-
means and the NJW (Ng, Jordan, & Weiss 2001) algorithms.

Synthetic data
In order to show the advantage of our HDC algorithm, we
apply it to the data sets shown in Figure 1, on which the
NJW algorithm fails. Our clustering results are given in Fig-
ure 4. From the figure we can see that, by exploring both
the local distribution information of the data and the global
structure information of the graph, the HDC algorithm can
work well on the multi-scale data sets. The clustering re-
sults satisfactorily capture the natural cluster structures of
the data.

1Without ambiguity, here we ignore the subscripti in Ci in this
subsection.
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Figure 4: Clustering results by HDC on the two data sets.
Different clusters are denoted by different colors.

Real data
In this section, we conduct experiments on the following real
data sets:

• Iris: The data are from the UCI repository comprising 3
classes of 50 instances each, where each class refers to a
type of iris plant.

• Wine: The data are from the UCI repository comprising 3
different wines. This data set is used for chemical analysis
to determine the origin of wines.

• Satimage: The data are the10% sampling of the UCI
repository Landsat Satellite, which consists of the multi-
spectral values of pixels in 3x3 neighbourhoods in a satel-
lite image.

• Ionosphere: The data are from the UCI repository refer-
ring to the radar returns from the ionosphere that is a bi-
nary clustering to detect “Good” radar.

• Segmentation: The data are from the UCI repository. The
instances are drawn randomly from a database of seven
outdoor images.

• WDBC: The data are from the UCI repository that is used
for diagnostic Wisconsin Breast Cancer.

• UMist-5: The data are from UMist database containing
5 classes, which are randomly selected from all the face
images of 20 different persons in UMist database. The
dimension of the data are reduced by principle component
analysis (PCA) while maintaining99% of the total energy.

More details of the data sets are summarized in Table 2.

Table 2: Descriptions of the data sets used in the experi-
ments.

Dataset K d n

Iris 3 4 150
Wine 3 13 178

Satimage 6 36 644
Ionosphere 2 34 351

Segmentation 7 19 2310
WDBC 2 30 569
UMist-5 5 91 140
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Table 3: Error and NMI comparison results on seven data sets. The best values are bold.

Dataset Error NMI
K-means NJW HDC K-means NJW HDC

Iris 0.1067 0.1000 0.0267 0.7582 0.7661 0.8981
Wine 0.2978 0.2921 0.2865 0.4288 0.4351 0.4544

Satimage 0.3323 0.2888 0.2298 0.6182 0.6693 0.7039
Ionosphere 0.2877 0.1510 0.1266 0.1349 0.4621 0.5609

Segmentation 0.3342 0.2740 0.2521 0.6124 0.6629 0.7039
WDBC 0.1459 0.1090 0.1072 0.4672 0.5358 0.5035
UMist-5 0.2214 0.1214 0.0643 0.7065 0.8655 0.8930

To evaluate the performances of the clustering algorithms,
we compute the following two performance measures from
the clustering results: normalized mutual information (NMI)
and minimal clustering error (Error). The NMI is defined as

NMI(x, y) =
I(x, y)√
H(x)H(y)

, (13)

whereI(x, y) is the mutual information betweenx andy,
andH(x) andH(y) are the entropies ofx andy respectively.
Note that0 ≤ NMI(x, y) ≤ 1 and NMI(x, y) = 1 when
x = y. The larger the value of NMI is, the better a clustering
result is.

The clustering error is defined as the minimal classifica-
tion error among all possible permutation mappings defined
as:

Error = min(1 −
1

n

n∑

i=1

δ(yi, perm(ci))), (14)

whereyi andci are the true class label and the obtained clus-
tering result ofxi, respectively,δ(x, y) is the delta function
that equals 1 ifx = y and 0 otherwise.

The clustering results by the three algorithms, K-means,
NJW, and HDC, are summarized in Table 3. The HDC algo-
rithm obtains the smallest errors in all the cases, and pro-
duces the largest NMI values on all the data sets except
one. These results demonstrate that the HDC can achieve
good performances consistently on various real world appli-
cations.

Conclusions

We have proposed a random walk hitting time based digraph
clustering algorithm for general data clustering. The pair-
wise relations of probabilistic dependence of the data are
obtained by local distribution estimation. A directed graph
is constructed based on the asymmetric relations. Then the
hitting time measure is computed based the Markov random
walk model on the directed graph, which explores the global
graph structure. An iterative algorithm is also proposed to
work with the asymmetric hitting time measure to cluster
the data. Our algorithm is able to conquer some limitations
of traditional pairwise similarity based methods. Extensive
experiments have shown that convincing results are achieved
in both synthetic and real world data by our algorithm.
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