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Clustering with Multi-Layer Graphs: A Spectral

Perspective
Xiaowen Dong, Pascal Frossard, Pierre Vandergheynst and Nikolai Nefedov

Abstract—Observational data usually comes with a multimodal
nature, which means that it can be naturally represented by a
multi-layer graph whose layers share the same set of vertices
(objects) with different edges (pairwise relationships). In this
paper, we address the problem of combining different layers
of the multi-layer graph for an improved clustering of the
vertices compared to using layers independently. We propose
two novel methods, which are based on a joint matrix factor-
ization and a graph regularization framework respectively, to
efficiently combine the spectrum of the multiple graph layers,
namely the eigenvectors of the graph Laplacian matrices. In
each case, the resulting combination, which we call a “joint
spectrum” of multiple layers, is used for clustering the vertices.
We evaluate our approaches by experiments with several real
world social network datasets. Results demonstrate the superior
or competitive performance of the proposed methods compared
to state-of-the-art techniques and common baseline methods,
such as co-regularization and summation of information from
individual graphs.

Index Terms—Multi-layer graphs, spectrum of the graph,
matrix factorization, graph-based regularization, clustering.

I. INTRODUCTION

C
LUSTERING on graphs is a problem that has been stud-

ied extensively for years. In this task we are usually given

a set of objects, as well as an adjacency matrix capturing the

pairwise relationships between these objects. This adjacency

matrix is either represented by an unweighted graph, where

the weight of the edges is always equal to one, or a weighted

graph, where the weight can take any real positive values. The

goal is to find an assignment of the objects into several subsets,

such that the ones in the same subset are similar in some

sense. Due to the wide range of applications for this problem,

numerous approaches have been proposed in the literature,

and we point the readers to the work of Schaeffer [1] for an

extensive survey on this topic.

In contrast to the traditional problem, recent applications

such as mobile and online social network analyses bring in-

teresting new challenges. In these scenarios, it is common that
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observational data contains multiple modalities of information

reflecting different aspects of human interactions. This can

be conveniently represented by a multi-layer graph whose

layers share the same set of vertices representing users, but

have different sets of edges for different modalities. Fig. 1 [2]

illustrates the mobile phone data collected in the MIT Reality

Mining Project [3] as such a multi-layer graph. Specifically,

the multiple layers represent relationships between mobile

phone users in three different aspects: (i) Saturday night

proximity, (ii) physical movement similarity, and (iii) interac-

tion with phone communication. Intuitively, each layer should

contribute to a meaningful clustering result from its own angle;

however, one can expect that a proper combination of the

three layers will possibly lead to improved clustering results

by efficient merging and completion of data in each layer.

In this paper, we seek for such a good combination and

propose two novel clustering methods by studying the spec-

trum of the graph. In particular, we propose two efficient

ways to combine the spectrum of the multiple graph layers,

which results in a “joint spectrum” that is eventually used

for spectral clustering [4]. In more details, we first propose

to generalize the eigen-decomposition process applied on a

single Laplacian matrix to the case of multiple graph Laplacian

matrices. We design a joint matrix factorization framework

in which each graph Laplacian is approximated by a set of

joint eigenvectors shared by all the graph layers, as well as its

specific eigenvalues from the eigen-decomposition. These joint

eigenvectors can then be used to form a joint low dimensional

embedding of the vertices in the graph, based on which we

perform clustering. In the second approach, we propose a

graph regularization method that combines the spectrum of

two graph layers. Specifically, we treat the eigenvectors of the

Laplacian matrix from one graph as functions on the other

graph. By enforcing the “smoothness” of such functions on

the graph through a novel regularization framework, we are

able to capture the characteristics of both graphs and achieve

improved clustering results compared to using any graph

alone. We finally propose an information-theoretic approach

to generalize this second method to multiple graph layers.

We evaluate the performance of the proposed clustering

methods on several real world social network datasets, and

compare them with state-of-the-art techniques as well as

several baseline methods used for graph-based clustering, such

as summation of information from individual graphs. The

results show that, in terms of three evaluation measures, our

algorithms outperform the baseline methods, and are very

competitive with the state-of-the-art technique introduced in

Kumar et al. [5]. Furthermore, it is important to note that the
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Fig. 1. A multi-layer graph in a mobile social network [2]. On the left, two mobile users are connected with an edge if they were proximate to each other
during one Saturday night. In the middle, two are linked to each other if they made the same cell tower transitions at the same time. On the right, we assign
an edge between each pair of users who interacted with phone communication.

Fig. 2. Spy plots of three adjacency matrices from the MIT dataset. The redundant information contained in the layers for cell tower and bluetooth proximities
can compensate the sparse information from the layer for phone call relationship for improved clustering results.

contribution of this paper is not limited to a better clustering

with multiple graph layers. More generally, the concept of

“joint spectrum” is helpful in the analysis of multimodal data

that can be conveniently modeled as a multi-layer graph. As

an example, it can lead to the generalization of the classical

spectral analysis frameworks to multi-dimensional cases.

The rest of the paper is organized as follows. In Section II,

we formally introduce the problem of clustering with multi-

layer graphs and motivate it from a practical example. In

Section III, we review briefly the spectral clustering algorithm,

which is one of the building blocks of the methodologies

proposed in this paper. Next, we describe in details our novel

multi-layer clustering algorithms in Section IV and Section V.

We then provide experiments in Section VI, where we describe

the datasets and present results and comparisons with the

existing methods. Finally, we list the related work in Section

VII and conclude the paper in Section VIII.

II. CLUSTERING WITH MULTI-LAYER GRAPHS

Consider a multi-layer graph G1 that contains M indi-

vidual graph layers G(i), i = 1, . . . ,M , where each layer

G(i) = {V,E(i), ω(i)} is a weighted and undirected graph

consisting of a common vertex set V and a specific edge set

E(i) with associated weights ω(i). Assuming that each layer

reveals certain aspect of the intrinsic relationships between

the vertices, one can expect that a proper combination of

information contained in the multiple graph layers possibly

leads to an improved unified clustering of the vertices in V .

This can be further demonstrated by the following example.

Let us consider a three-layer graph built from the MIT

Reality Mining Dataset [6], where the common vertex set

represents 87 participants of the Reality Mining Project and

edges represent relationships between these mobile phone

users in three different aspects, namely, cell tower proximity,

bluetooth proximity and phone call relationship. From these

graph layers we form three adjacency matrices and depict

them in the spy plots in Fig. 2, where each non-zero entry in

the matrices corresponds to a point in the plots2. Intuitively,

1Throughout the paper, the notation G without upper index still represents
a single graph unless stated differently.

2In these plots, the users are ordered according to six ground truth clusters.
However, one may find that it is not easy to distinguish the clusters from the
observations, which in fact demonstrates the difficulty of this clustering task.
Detailed discussions are in Section VI.
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Fig. 3. Toy example to illustrate the spectral embedding. On the left is a simple unweighted graph with eight vertices, which we want to partition into two
clusters. On the right is the embedding of the original vertices into a 2-dimensional space using the spectrum of the graph, where the coordinates on the
horizontal and vertical axes are determined by the first and second eigenvectors of Lrw. In this case, vertices 1, 2 and 3 are embedded into the same point,
and so are vertices 6, 7 and 8. It is clear to see that such an embedding helps reveal the intrinsic relationships between the vertices, and k-means can easily
find the two clusters.

compared to the first two layers, entries in the phone call

matrix are stronger indicators of friendship between users,

hence the corresponding blue points in the third plot are more

reliable. However, the sparse nature of this matrix makes it

insufficient for achieving a good global clustering result for

all the mobile users. In fact, this graph layer consists of many

disconnected components, which makes it very difficult to

assign cluster memberships to isolated vertices in the graph.

In this case, the first two layers are more informative for

achieving the clustering goal: even though single entries in

those two matrices are less indicative, they provide richer

structural information. This means that, by properly combining

layers of different characteristics, we could expect an improved

unified clustering result.

In this paper, we address the following problem. Given

a multi-layer graph G with M individual layers G(i), i =
1, . . . ,M , we want to compute a joint spectrum that properly

combines the information provided in different layers. In

addition, the joint spectrum shall lead to an effective grouping

of the vertices in V with spectral clustering [4].

We propose two novel methods for the construction of a

joint spectrum in the multi-layer graph.

III. SPECTRAL CLUSTERING

The idea of working with the spectrum of the graph is

inspired by the popular spectral clustering algorithm [4]. In

this section, we give a very brief review of this algorithm

applied on a single graph, which is the main building block of

our novel clustering algorithms. Readers familiar with spectral

clustering could skip this section.

Spectral clustering has become increasingly popular due

to its simple implementation and promising performance in

many graph-based clustering problems. It can be described

as follows. Consider a weighted and undirected graph G.

The spectrum of G is represented by the eigenvalues and

eigenvectors of the graph Laplacian matrix L = D − W
where W is the adjacency matrix and D is the degree matrix

containing degrees of vertices along diagonal. Notice that

L is also called the unnormalized or combinatorial graph

Laplacian matrix. There are two normalized versions of the

graph Laplacian defined as follows:

Lsym = D−
1

2 (D −W )D−
1

2 , (1)

Lrw = D−1(D −W ), (2)

where Lsym keeps the property of symmetry and Lrw has close

connection to the random walk process on graphs [7]. Different

choices of the graph Laplacian correspond to different versions

of the spectral clustering algorithm and detailed discussion on

these choices is given in von Luxburg [7]. In this paper, we

adopt the normalized spectral clustering algorithm that has

been first described in Shi et al. [4]. It essentially corresponds

to dealing with the eigenvalues and eigenvectors of the graph

Laplacian Lrw. In practice, the algorithm computes the spec-

trum of G, and embeds the original vertices in G to a low

dimensional spectral domain formed by the graph spectrum.

Due to the properties of the graph Laplacian matrix, this

transformation enhances the intrinsic relationships between

the original vertices. Consequently, clusters can be eventually

detected in the new low dimensional space by many common

clustering algorithms, such as the k-means algorithm [8]. An

example of such an embedding is illustrated in the toy example

shown in Fig. 3. An overview of the algorithm is given in

Algorithm 1.

Algorithm 1 Normalized spectral clustering [4]

1: Input:

W : The n×n weighted adjacency matrix of graph G with

n vertices

k: Target number of clusters

2: Compute the degree matrix D.

3: Compute the random walk graph Laplacian Lrw =
D−1(D −W ).

4: Compute the first k eigenvectors u1, . . . , uk (which cor-

respond to the k smallest eigenvalues3) of the eigenvalue

problem Lrwu = λu.

5: Let U ∈ R
n×k be the matrix containing u1, . . . , uk as

columns.

6: Let yi ∈ R
k (i = 1, . . . , n) be the i-th row of U to

represent the i-th vertex in the graph.

7: Cluster yi in R
k into C1, . . . , Ck using the k-means

algorithm.

8: Output:

C1, . . . , Ck: The cluster assignment

3Throughout the paper, eigenvalues and eigenvectors are always sorted in an
ascending order, that is, u1 is the eigenvector that corresponds to the smallest
eigenvalue λ1 and un corresponds to the largest eigenvalue λn.
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As we can see in Algorithm 1, the spectral embedding

matrix U consisting of the first k eigenvectors of the graph

Laplacian represents the key idea of spectral clustering. It

gives a new representation yi for each vertex in this low

dimensional space, which makes the clustering task trivial with

the k-means algorithm. Moreover, as theoretical guarantees,

von Luxburg [7] shows that the effectiveness of this approach

can be explained from the viewpoint of several mathematical

problems, such as the normalized graph-cut problem [4],

the random walk process on graphs [9] and problems in

perturbation theory [10], [11]. In the following two sections,

we will generalize this idea to the case of multi-layer graphs,

where we aim at finding a joint spectrum to form the spectral

embedding matrix that represents information from all the

graph layers.

IV. CLUSTERING WITH GENERALIZED

EIGEN-DECOMPOSITION

The first method that we propose for clustering with multi-

layer graphs is built on the construction of an average spec-

tral embedding matrix, based on which spectral clustering

is eventually performed. We compute the average spectral

embedding matrix with a generalized eigen-decomposition

process. As we know, in order to compute the spectrum

of a graph G with n vertices, namely the eigenvalues and

eigenvectors of its Laplacian matrix Lrw, one can compute

an eigen-decomposition of the matrix Lrw as:

Lrw = PΛP−1, (3)

where P is a n × n matrix containing eigenvectors of Lrw

as columns, and Λ is a n× n diagonal matrix containing the

corresponding eigenvalues as the diagonal entries. In case of

a multi-layer graph G with n vertices, we have M Laplacian

matrices L
(i)
rw , i = 1, . . . ,M , one for each graph layer G(i).

As a natural extension, we propose to approximate each graph

Laplacian L
(i)
rw by a set of joint eigenvectors shared by all the

graph layers as well as its specific eigenvalue matrix:

L(i)
rw ≈ PΛ(i)P−1 for i = 1, . . . ,M, (4)

where P is a n × n matrix containing the set of joint

eigenvectors as columns, and Λ(i) is the n × n eigenvalue

matrix of L
(i)
rw . We now have to compute P , that is the set

of eigenvectors that provides a good decomposition of the

Laplacian matrix of all layers in the multi-layer graph. To do

this, we propose to minimize the following objective function

S, written as:

arg min
P,Q∈Rn×n

S =
1

2

M
∑

i=1

||L(i)
rw − PΛ(i)Q||2F

+
α

2
(||P ||2F + ||Q||2F ) +

β

2
||PQ− In||

2
F ,

(5)

where P represents the joint eigenvector matrix, Q is enforced

to be the inverse matrix of P so that it plays the role of P−1 in

Eq. (4), and Λ(i) captures the characteristic of the i-th graph

layer G(i). In addition, In represents the identity matrix of

dimension n and || · ||F denotes the Frobenius norm. Hence,

the first term of the objective function S is a data fidelity term

to measure the overall approximation error when all layers

are decomposed over P ; the second term, the sum of the

squared Frobenius norms of P and Q, is added to improve

numerical stability of the solution; and the third term is a

constraint to enforce Q to be the inverse of P . Notice that the

purpose of introducing the additional variable Q is purely for

the computational convenience of the optimization process.

Finally, the regularization parameters α and β balance the

trade-offs between the three terms in the objective function.

Now we have to solve the problem in Eq. (5) to get P . Since

the objective S is not jointly convex in P and Q, it is difficult

to find the global minimum solution to Eq. (5). Therefore, we

adopt an alternating scheme to find a local minimum of the ob-

jective function. In the outer loop, we first fix Q and optimize

P , and then optimize Q while fixing P . As a consequence, it

is important to give a good initialization to our algorithm. In

practice, we suggest to compute the eigen-decomposition of

L
(1)
rw from the most informative graph layer G(1), and initialize

P as the matrix containing its eigenvectors as columns. Q is

initialized as the inverse of P . The optimization process is

then repeated until the stopping condition is satisfied. In the

inner loop, we solve each variable while the other is being

fixed. Notice that the objective function S is differentiable

with respect to variables P and Q:

∂S

∂P
= −

M
∑

i=1

(L(i)
rw −PΛ(i)Q)QTΛ(i)+αP +β(PQ−In)Q

T ,

(6)

∂S

∂Q
= −

M
∑

i=1

(L(i)
rw −PΛ(i)Q)PΛ(i)+αQ+β(PQ−In)P, (7)

where (·)T denotes the matrix transpose operator. Therefore,

we use an efficient quasi-Newton method (Limited-Memory

BFGS [12]) to solve each variable.

We have now computed P , which is the set of joint

eigenvectors, namely a joint spectrum shared by the multiple

graph layers. The average spectral embedding matrix is then

formed by the first k joint eigenvectors, that is, the first k
columns of P . We then follow the steps 6 and 7 in Algorithm 1

to eventually perform the clustering. The corresponding algo-

rithm is given in Algorithm 2.

Notice that the algorithm proposed in this section is in

a sense similar to the approach in Tang et al. [13], which

introduces a matrix factorization framework to find a low rank

matrix that is shared by all the graph layers. However, the

matrices they try to approximate in their work are not the graph

Laplacian matrices, but the adjacency matrices of all the layers.

Moreover, note that the generalized eigen-decomposition pro-

cess above is essentially based on averaging the information

from the multiple graph layers. It tends to treat each layer

equally and to build a solution that might smooth out the

specificities of each layer. In the next section, we propose

a second method based on a regularization process between

different layers, which is able to preserve the particularities of

each individual layer.



5

Algorithm 2 Clustering with generalized eigen-decomposition

(SC-GED)

1: Input:

W (i) (i = 1, . . . ,M ): M n × n weighted adjacency

matrices of a M -layer graph G with n vertices

k: Target number of clusters

2: For each i, compute the degree matrix D(i).

3: For each i, compute the random walk graph Laplacian

L
(i)
rw = (D(i))

−1
(D(i) −W (i)).

4: Solve the optimization problem in Eq. (5) to get the joint

eigenvector matrix P .

5: Let U ′ ∈ R
n×k be the matrix containing the first k

columns of P .

6: Let yi ∈ R
k (i = 1, . . . , n) be the i-th row of U ′ to

represent the i-th vertex in the graph.

7: Cluster yi in R
k into C1, . . . , Ck using the k-means

algorithm.

8: Output:

C1, . . . , Ck: The cluster assignment

V. CLUSTERING WITH SPECTRAL REGULARIZATION

In this section, we propose the second novel method for

clustering with multi-layer graphs, where we treat all layers

based on their respective importance. As a consequence,

this method helps preserve specificities of each layer in the

clustering process.

A. Intuition

We first examine the behavior of eigenvectors of the graph

Laplacian matrix in more details. Consider a weighted and

connected graph G with vertex set V = {vi, i = 1, . . . , n}.
From spectral graph theory [14], we know that the eigenvectors

u1, . . . , un of the graph Laplacian matrix L have the following

properties:

1) The first eigenvalue λ1 is 0 and the corresponding

eigenvector u1 is the constant one vector 1;

2) For i = 2, . . . , n, ui satisfies: ui ⊥ 1 and ||ui|| = 1
(after normalization).

Now consider the problem of mapping the graph G on a 1-

dimensional line such that connected vertices stay as close

as possible on the line, with the condition that the mapping

vector satisfies the second property above. In other words, we

want to find a 1-dimensional mapping (or a scalar function)

f : V → R that minimizes the following term:

arg min
f∈Rn

{

n
∑

i,j

wi,j(f(vi)− f(vj))
2
}

,

s.t. f ⊥ 1, ||f || = 1,

(8)

where f(vi) and f(vj) represent the mappings of vertices

vi and vj respectively, and wi,j is the weight of the edge

between the two vertices. The constraints on the norm of

f and the orthogonality to the constant one vector 1 are

introduced to make the solution nontrivial and unique, and can

be explained from a graph-cut point of view [7]. Moreover,

since eigenvectors of the Laplacian matrix can be viewed as

scalar functions defined on the vertices of the graph, these

conditions suggest that they can be considered as candidate

solutions to the problem in Eq. (8). In fact, we can rewrite

Eq. (8) in terms of the graph Laplacian matrix L so that an

equivalent problem is:

arg min
f∈Rn

fTLf, s.t. f ⊥ 1, ||f || = 1. (9)

It can be shown by the Rayleigh-Ritz theorem [7] that the

solution to the problem in Eq. (9) is u2, the eigenvector that

corresponds to the second smallest eigenvalue of L, which is

usually called the Fiedler vector of the graph.

Illustrative examples of such a mapping can be found in

Horaud et al. [15]–[17], which shows that the mapping of

u2 indeed keeps the strongly connected vertices as close as

possible on the line. More importantly, it is shown in Zhou et

al. [18] that the quadratic objective in Eq. (9) can be viewed

as a smoothness measure of the scalar function f defined on

the vertices of the graph G, that is, f has similar values on the

vertices that are strongly connected in the graph. Therefore,

the fact that it minimizes this objective implies that the Fiedler

vector u2 is a smooth function on the graph. In fact, since we

have

uT
i Lui = λi, for i = 2, . . . , n, (10)

all the first k eigenvectors tend to be smooth on the graph

G provided that the first k eigenvalues are sufficiently small.

Since these first k eigenvectors are used to form the low

dimensional embedding U in the spectral clustering algorithm,

such smoothness property implies that a special set of smooth

functions on the graph, such as eigenvectors of the graph

Laplacian matrix, can well represent the graph connectivity

and hence help in the clustering process.

This inspires us to combine information from multiple

graph layers, with the help of a set of joint eigenvectors

that are smooth on all the layers, hence capture all their

characteristics. However, instead of treating all the layers

equally, we try to highlight the specificities of different layers.

Therefore, we propose the following methodology. Consider

two graph layers G(1) and G(2) in a 2-layer graph. From the

smoothness analysis above, we observe that the eigenvectors

of the Laplacian matrix from G(1) are smooth functions on

G(1); in the meantime, since they can also be viewed as scalar

functions on G(2), we try to enforce their smoothness on G(2)

as well. This leads to a set of eigenvectors that are smooth on

both layers, namely a jointly smooth spectrum shared by G(1)

and G(2); this spectrum captures the characteristics of both

layers in this 2-layer graph.

B. Jointly smooth spectrum computation

We propose a spectral regularization process to compute a

jointly smooth spectrum of two graph layers G(1) and G(2) by

solving the following optimization problem:

arg min
fi∈Rn

{1

2
||fi−ui||

2
2+λ ·Φfi

}

for i = 2, . . . , n, (11)

where fi : V → R is a scalar function on the graph, ui

is the i-th eigenvector from G(1), and Φfi = fT
i L

(2)
symfi is a

quadratic term4 from G(2) which measures the smoothness of
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fi on G(2). In the problem in Eq. (11), we seek for a scalar

function fi such that it is not only close to the eigenvector ui

that comes from G(1), but also sufficiently smooth on G(2) in

terms of the quadratic smoothness measure. This promotes the

smoothness property of our solution fi on both of the layers,

so that fi can be considered as a joint eigenvector of G(1) and

G(2). The regularization parameter λ is used to balance the

trade-off between the data fidelity term and the regularization

term in the objective function.

It is shown that the problem in Eq. (11) has a closed form

solution [18]:

f∗

i = µ(L(2)
sym + µIn)

−1ui, (12)

where µ = 1
λ

. Furthermore, notice that for each ui there is

an associated optimization problem (except for i = 1 since

the first eigenvector is a constant vector), hence by solving

all these problems we get a set of joint eigenvectors fi,
i = 2, . . . , n. Therefore, they together can be viewed as a

jointly smooth spectrum of G(1) and G(2). The first k joint

eigenvectors can then be used to form a spectral embedding

matrix, based on which we perform clustering. The overall

clustering algorithm is summarized in Algorithm 3.

It is worth noting that G(1) and G(2) play different roles

in our framework. Specifically, G(1) is used for the eigen-

decomposition process to get the eigenvectors, and G(2) is used

as the graph structure for the regularization process. It is nat-

ural to choose the more informative layer as G(1). Moreover,

we can generalize the above framework to multi-layer graphs

with more than two layers. Specifically, we propose to start

with the most informative graph layer G(1), and search for the

next layer G(2) that maximizes the mutual information between

G(1) and G(2). More clearly, the mutual information between

two graph layers is introduced by interpreting clustering from

each individual layer as a discrete distribution of the cluster

memberships of the vertices. Therefore, it can be calculated by

measuring the mutual information between two distributions

using Eq. (20). Next, after having the combination of the

first two layers, we can repeat the process by maximizing the

mutual information between the current combination and the

next selected layer, until we include all the layers in the end.

This provides a greedy approach to compute a jointly smooth

spectrum of all layers in the multi-layer graph.

C. Discussion

In addition to the intuition provided above, we further ex-

plain in this subsection why the spectral regularization process

is considered as a good way of combining the spectrum of two

graph layers.

We first interpret the combination of multiple layers from

the viewpoint of label propagation [19]–[22], which is proven

to be an effective approach for graph-based semi-supervised

learning. In label propagation, one usually has a similarity

graph whose vertices represent objects and edges reflect the

pairwise relationships between them. We let the initial labels

4Since the smoothness analysis in Section V-A can be easily generalized
from L to Lsym, here we follow Zhou et al. [18] to use Lsym instead of L

for a better implementation of the algorithm.

Algorithm 3 Clustering with spectral regularization (SC-SR)

1: Input:

W (i) (i = 1, 2): n × n weighted adjacency matrices of

two graph layers G(1) and G(2)

k: Target number of clusters

2: For G(1), compute the degree matrix D(1).

3: Compute the random walk graph Laplacian L
(1)
rw =

(D(1))
−1

(D(1) −W (1)).

4: Compute the first k eigenvectors u1, . . . , uk of L
(1)
rw .

5: Let U ∈ R
n×k be the matrix containing u1, . . . , uk as

columns.

6: For i = 2, . . . , k, solve the spectral regularization problem

in Eq. (11) for each ui and replace it with the solution fi
in U to form the new low dimensional embedding U ′′.

7: Let yi ∈ R
k (i = 1, . . . , n) be the i-th row of U ′′ to

represent the i-th vertex in the graph.

8: Cluster yi in R
k into C1, . . . , Ck using the k-means

algorithm.

9: Output:

C1, . . . , Ck: The cluster assignment

of the vertices propagate towards their neighboring vertices to

make inference, based on the strength of relationships between

them and their neighbors. This is exactly what the spectral

regularization process in Eq. (11) does. More clearly, the

optimization problem in Eq. (11) can be solved through an

iterative process, where in each iteration we have for every

vertex v ∈ V :

(fi(v))
[t+1] ← α((I − L(2)

sym)f
[t]
i )(v) + (1− α)ui(v), (13)

where ui contains the initial values at the vertices and f
[t]
i

represents fi at iteration t [18]. The parameter α is defined

as α = λ
1+λ

while λ is the regularization parameter in

Eq. (11). In other words, the value at each vertex is updated

by a convex combination of the initial value ui(v) and the

values at its neighboring vertices at the current iteration,

where the parameter α balances the trade-off between the

two portions. Notice that the initial values {ui}
k
i=1 from

G(1) form the continuous-valued solver of a relaxed discrete

graph-cut problem [7]. Therefore, {ui}
k
i=1 can be viewed as

labels indicating the cluster memberships derived from G(1).
Consequently, the spectral regularization process in Eq. (11)

can be interpreted as a label propagation process, where the

cluster labels derived from G(1) are linearly propagated on

G(2). In this way, both of the graph structures have been

taken into account hence making the resulting combination

meaningful.

Another interpretation is based on disagreement minimiza-

tion [5], [23], which has been proposed for the task of learning

with multiple sources of data. The basic idea is to minimize the

disagreement between information from the multiple sources

so that we get a good combination of all the sources. For

example, Kumar et al. [5] suggests a clustering algorithm

that minimizes the disagreement between information from

multiple graphs. Similarly, since we aim at finding a unified

clustering result from multiple graph layers, it is natural to
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enforce the consistency between the clustering result and the

information from all the graph layers, or in other words,

to minimize the disagreement between them. Such a dis-

agreement is again reflected in the objective function of the

optimization problem in Eq. (11). More specifically, the data

fidelity term explicitly measures the disagreement between the

solution fi and the initial vector ui that comes from G(1), while

the regularization term implicitly represents the inconsistency

of the information contained in fi with the structure of G(2).
Indeed, the regularization term Φf can be expressed in the

following form:

Φf =
1

2

n
∑

i,j

wi,j

( f(vi)
√

d(vi)
−

f(vj)
√

d(vj)

)2

, (14)

where d(vi) and d(vj) are the degrees of vi and vj , respec-

tively. This means that Φfi will only be small if the two

end-point vertices of a large-weight edge in G(2) have similar

function values normalized by their degrees. Therefore, min-

imizing the objective function in Eq. (11) can be considered

as minimizing the total disagreement between the solution fi
and the information from multiple graph layers. Notice that in

this formation the disagreement is modeled from two different

viewpoints for the two individual layers, whose respective

importance is controlled by the parameter λ.

VI. EXPERIMENTAL RESULTS

In this section we present the experimental results. We first

describe the datasets and different clustering algorithms used

in the experiments, and then compare their performances in

terms of three evaluation measures for clustering.

A. Datasets

We adopt three real world social network datasets to

compare the clustering performances between our proposed

methods and the existing approaches. Two of them are mobile

phone datasets, and the third one is a bibliographic dataset. In

this section, we give a brief description on each dataset and

explain how we construct multiple graph layers in each case.

The first dataset is a subset of the MIT Reality Mining

Dataset5, which includes mobile phone data of 87 mobile users

on the MIT campus. We select three types of information to

build a multi-layer graph: physical locations, bluetooth scans

and phone calls. More specifically, for physical locations and

bluetooth scans, we measure how many times two users are

under the service of the same cell tower, and how many times

two have scanned the same bluetooth device, within a 30-

minute time window. Aggregating results from such windows

throughout a 10-month period gives us two weighted adja-

cency matrices. In addition, a phone call matrix is generated

by assigning weight of the edge between any two users as

how many times one has established or received calls from the

other. In this dataset, we take the ground truth of the clusters

as the self-reported affiliations of the subjects. The clustering

objective is to partition all the users into six groups with the

3-layer graph and compare them with the six ground truth

clusters.

5Available online at “http://reality.media.mit.edu/download.php”.

The second dataset in our experiments is the mobile phone

dataset that is currently being collected by Nokia Research

Center (NRC) Lausanne [24], which includes data of around

200 mobile users living or working in the area of Lausanne,

Switzerland. We construct a multi-layer graph from the same

information as that in the MIT dataset, with the only difference

being that we measure the physical proximity between every

pair of users directly using their GPS coordinates. In the Nokia

dataset, we take the ground truth of the clusters as eight groups

divided by their email affiliations. The goal is to find the

ground truth clusters with the 3-layer graph constructed.

The third dataset we adopt is the Cora dataset6. Although the

objects in this bibliographic dataset are research papers rather

than people, it still reflects human interactions in research

and publishing activities. In our experiments, we select 292

research papers that roughly come from three different fields:

Natural Language Processing, Data Mining and Robotics.

Each paper has been manually labeled with one of the cate-

gories and we consider this information as the ground truth of

the clusters. To build the first two graph layers, we represent

the title and abstract of each paper as vectors of nontrivial

words, and take the cosine similarity between each pair of

vectors as the corresponding entry in the adjacency matrices.

In addition, we include a citation graph as the third layer that

reflects the citation relationships of these papers. Finally, the

goal is to cluster these papers based on the three graph layers

we create.

It can be noted that the Cora dataset is considered quite

easy to cluster while the MIT and Nokia datasets are much

more difficult. The reason is that it is not straightforward

to define the ground truth clusters for a group of human

users, and observational data does not necessarily correspond

well to the intended clusters. In these two datasets, both the

academic and email affiliations are not fully reflected by the

physical proximity and phone communication between the

mobile users, which makes the tasks difficult. Moreover, as we

can imagine, the Nokia dataset is expected to be even more

difficult to cluster than the MIT dataset as email affiliations

is less trustworthy. Nevertheless, we still choose the ground

truth clusters in these ways as they are the best indicative

information available in the datasets. After all, these two

datasets are representative for analyses of activities of mobile

phone users, and they can serve as challenging tasks in the

experiments compared to the easier one from the Cora dataset.

B. Clustering algorithms

In this section, we explain briefly the clustering algorithms

that are included in the performance comparisons, along with

some implementation details. First of all, we describe some

implementation details of the two proposed methods:

• SC-GED: Spectral clustering with generalized eigen-

decomposition described in Section IV. In SC-GED, there

are two regularization parameters α and β to balance the

trade-off between the approximation error and the stabil-

ity and conditions on the solution. In our experiments, we

6Available online at “http://www.cs.umass.edu/∼mccallum/data.html” un-
der category ”Cora Research Paper Classification”.
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set β to be rather large, for example 100, to enforce the

inverse relationship between P and Q. We choose α to

be 0.5 for the Nokia dataset and around 10 for the other

two datasets.

• SC-SR: Spectral clustering with spectral regularization

described in Section V. Since SC-SR is a recursive

approach, we need to select two graph layers to fit in

the regularization framework at each time. As discussed

in Section V-B, we investigate the mutual information

between different graph layers. As an example, in the

MIT dataset, the “cell tower” and “bluetooth” layers have

the highest mutual information between them. Therefore

we choose to first combine these two layers. We select

the “bluetooth” layer to act as G(1) in the spectral regular-

ization framework, as it is considered more informative

than the “cell tower” layer. After the first combination,

the third layer “phone call” is incorporated to get the final

solution. In addition, at each combination step, there is

a regularization parameter λ in the optimization problem

in Eq. (11) to control the relative importance of the two

graph layers. Intuitively, the choice of this parameter at

each step should loosely reflect the mutual information

between the two layers being considered. We use this as

a rule of thumb to set the parameters in the first and

second combination steps, which are denoted by λ1 and

λ2, respectively. As an example, we set λ1 = 2 and

λ2 = 1 for the MIT dataset.

Next, we introduce five competing schemes as follows. The

first three are common baseline methods for clustering with

multiple graphs, and the last two are representative techniques

in the literature:

• SC-SUM: Spectral clustering applied on the summation

of the adjacency matrices:

M
∑

i=1

W (i). (15)

If the weights of edges are of different scales across the

multiple layers, we use the summation of the normalized

adjacency matrices:

M
∑

i=1

(D(i))
−

1

2W (i)(D(i))
−

1

2 . (16)

• K-Kmeans: Kernel k-means applied on the summation

of the spectral kernels of the adjacency matrices [13]:

M
∑

i=1

K(i) with K(i) =

d
∑

k=1

u
(i)
k (u

(i)
k )

T

, (17)

where d ≪ n (number of vertices) and u
(i)
k represents

the k-th eigenvector of the Laplacian L
(i)
sym from G(i).

• SC-AL: Spectral Clustering applied on the averaged

random walk graph Laplacian matrix:

1

M

M
∑

i=1

L(i)
rw . (18)

• Co-regularization (CoR): The co-regularization approach

proposed in Kumar et al. [5] is the latest state-of-the-art

technique aimed at combing information from multiple

graphs. In this work, the authors have proposed to enforce

the similarity between information from two different

graphs where the similarity is measured by a linear

kernel. In our experiments, we generalize their approach

to multiple graphs and tune the hyperparameter λ in their

work to achieve the best clustering performance.

• Community detection via modularity maximization (CD):

In addition to spectrum-based clustering algorithms, mod-

ularity maximization is a different approach proposed by

Newman et al. [25]–[27] for community detection. We

adopt the algorithm described in Nefedov [28], which

applies modularity maximization [27] using fast greedy

search algorithm [29]. It uses the summation of the

normalized adjacency matrices to combine information

from different graph layers.

C. Evaluation measures and results

To quantitatively evaluate the clustering performance, we

compare the clusters Ω = {ω1, . . . , ωk} we have computed

with the intended ground truth classes C = {c1, . . . , ck}. We

adopt Purity, Normalized Mutual Information (NMI) and Rand

Index (RI) [30] as three measures to evaluate the clustering

performance from different angles. More specifically, Purity

is defined as:

Purity(Ω, C) =
1

n

∑

k

max
j
|ωk ∩ cj |, (19)

where n is the total number of objects, and |ωk ∩ cj | denotes

the number of objects in the intersection of ωk and cj . Next,

NMI is defined as:

NMI(Ω, C) =
I(Ω;C)

[H(Ω) +H(C)]/2
, (20)

where I is the mutual information between clusters Ω and

classes C , and H(Ω) and H(C) represent the entropies of

the clusters and classes, respectively. Finally, when interpreting

clustering as a series of binary decisions on each pair of

objects, RI is defined as:

RI(Ω, C) =
TP + TN

TP + FP + FN + TN
, (21)

where TP, TN,FP,FN represent true positive, true negative,

false positive and false negative decisions, respectively.

Fig. 4 shows the performance of different clustering algo-

rithms applied on the three datasets we adopt. As we can

see, clustering with the Cora dataset is indeed much easier

than the other two datasets as the evaluation scores are much

higher. Regarding the performance of the algorithms, it is

clearly shown that proper combinations of multiple graph

layers indeed lead to improved clustering results compared to

using layers independently. In general, our proposed algorithm

SC-SR achieves superior or competitive performances in all

the evaluation measures, while SC-GED does not perform

as well as SC-SR. Among the competitors, CoR presents

impressive evaluation scores, while CD and the three baseline

combination methods show intermediate results in general. As
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(a) Clustering performance on the MIT dataset

(b) Clustering performance on the Nokia dataset

(c) Clustering performance on the Cora dataset

Fig. 4. Performance evaluation of different clustering algorithms.

we can imagine, this is mainly due to the simple averaging of

the information from different graph layers.

In more details, we can see that the regularized combina-

tions in SC-SR consistently lead to better clustering results as

more layers are combined, particularly in terms of the NMI

scores. This comes from the way we combine the multiple

graph layers in order to maximize the mutual information.

Compared to the state-of-the-art algorithm CoR, SC-SR main-

tains competitive results while the computational complexity is

significantly reduced. Indeed, CoR needs to compute extremal

eigenvectors of the (original and modified) Laplacian matrices

for MN times in total, where M is the number of different

graphs and N is the number of iterations the algorithm needs

to converge. In contrast, SC-SR only needs to implement the

same process once, namely for the most informative layer.

Therefore, with state-of-the-art eigensolvers [31], SC-SR has

a complexity usually lower than O(n3), where n is the number

of vertices. Finally, notice that the NMI score shows difference

from the other two measures in the Nokia dataset, since the

ground truth clusters in this dataset are quite unbalanced.

Compared to SC-SR, the performance of SC-GED is some-

what disappointing, as it only provides limited improvements

on the clustering results achieved by individual layers. This

is mainly due to the nature of the algorithm: unlike SC-SR

which is implemented recursively, it resorts to a joint matrix

factorization framework to find the set of joint eigenvectors all

at once. Therefore, it can be essentially considered as a way

to average the information from the multiple graph layers, but

without paying much attention to the specific characteristics

in each layer. Moreover, the computational complexity of SC-

GED is higher than that of SC-SR, as we need to compute

a complete eigen-decomposition and a matrix inversion (both

with a complexity of O(n3)) for the initialization, as well as

for the evaluations of derivatives in Eq. (6) and Eq. (7) in

the L-BFGS algorithm.

Finally, in addition to the evaluation scores, the confusion

matrices for different clustering methods on the MIT dataset

are shown in Table I as an illustrative example of the clustering
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TABLE I
CONFUSION MATRICES FOR SEVEN COMBINATION METHODS ON THE MIT DATASET.

qualities. The columns of the confusion matrices represent

the predicted clusters while the rows represent the intended

classes. From the diagonal entries of these matrices (which

are the numbers of objects that have been correctly identified

for each class), it is clear that SC-SR best reveals the six

classes in the ground truth data.

VII. RELATED WORK

In this section we give a review of the literature that is

related to our work. We start with techniques in the general

field of graph-based data processing and learning problems.

Next, we move onto spectral methods applied on graphs.

Finally, we discuss several existing works that involve the

framework of combining information from multiple graphs.

Nowadays, graph theory is widely considered as a pow-

erful mathematical tool for data modeling and processing,

especially when the pairwise relationships between objects

are of interest. Over the last two decades, graph-based data

mining and analysis have become extremely popular. In Cook

et al. [32] the authors have described the recent developments

on the theoretical and practical aspects of graph-based data

mining problems together with some practical applications.

Especially, clustering on graphs has attracted a large amount

of interests due to its numerous applications. In Schaeffer

[1] the author has investigated the state-of-the-art techniques

and recent advances in this active field, from hierarchical

clustering to graph cuts, spectral methods and Markov chain

based methods. These are certainly the foundations of our

work. From a methodology point of view, regularization theory

on graphs is of particular interest. In Smola et al. [33], the

authors have developed the regularization theory for learning

on graphs using the canonical family of kernels on graphs.

In Zhou et al. [18], the authors have defined a family of

differential operators on graphs, and used them to study the

“smoothness” measure of functions defined on graphs. They

have then proposed a regularization framework based on the

developed smoothness measure. These works provide the main

inspirations that lead to our second approach.

In addition to general graph-based data processing, we are

especially interested in a unique branch in graph theory that

is devoted to analyzing the spectrum of the graphs, namely,

spectral graph theory. The manuscript of Chung [14] gives

a good introduction to this field. Among various methods

that have been developed, we particularly emphasize the so-

called spectral clustering algorithm, which has become one

of the major graph-based clustering techniques. Due to its

promising performance and close links to other well-studied

mathematical problems, a large number of variants of the

original algorithm has been proposed, such as the constrained

spectral clustering algorithms [34]–[38]. In general, these

works have suggested different ways to incorporate constraints

in the clustering task. Among them, Li et al. [36] has proposed

a regularization framework in the graph spectral domain,

which provides the closest methodology to our work.

Recently, data that can be represented by multiple graphs

has attracted increasing attention. In the literature of the

learning community this is sometimes referred to as “multiple

views” or “multiple kernels”, which intuitively means we

investigate data from different viewpoints. In this setting, the

general problem is how to efficiently combine information

from multiple graphs for the learning objectives. In this sense,

the following research efforts have the closest ideas to our

presented work. In Argyriou et al. [39], the authors have

proposed a method to compute an “optimal combined kernel”

for combining graphs. Their idea is essentially based on

averaging the graph Laplacian matrices. In Zhou et al. [40],

the authors have modeled spectral clustering on a single graph

as a random walk process, and then proposed a mixed random

walk when two graphs are given. However, the way they make

the combination is still based on a convex combination of the

two graphs. In Muthukrishnan et al. [41], the authors have

presented a novel way to exploit the relationships between

different graph layers, which permits efficient combination of

multiple graphs by a regularization framework in the signal

domain. In Cheng et al. [42], the authors have proposed to

achieve the final clustering result by post-processing the results

from individual graph layers. In Savas et al. [43] and Vasuki

et al. [44], the authors have worked with very similar settings

to our work, however the problems they have tackled there

are not clustering. Finally, the work of Tang et al. [13] is the

closest to our first algorithm SC-GED in the sense that they

have also proposed a unified matrix factorization framework
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to find a joint low dimensional representation shared by

the multiple graphs, which inspired us to develop our first

approach. Very recently, Kumar et al. [5] has proposed the

co-regularization framework which is conceptually similar to

our second algorithm SC-SR, and is adopted as a competing

method in our experiments.

To summarize, although some of the works mentioned above

are closely related to what we have presented in this paper,

there are still noticeable differences that can be summarized as

follows. First, despite the nature of the spectral clustering algo-

rithm, most of the existing efforts to combine information from

multiple graph layers are done in the signal domain, while the

well-developed spectral techniques are mostly applied on a

single graph. In contrast, our proposed methods provide novel

ways for the same task in the graph spectral domain. Second,

to the best of our knowledge, in almost all the state-of-the-art

algorithms for combining multiple graphs, different graph lay-

ers are either treated equally or combined through a weighted

summation. However, we propose SC-SR based on a spectral

regularization process, in which individual graph layers play

different roles in the combination process. In addition, we

suggest to quantitatively measure the respective importance of

different graph layers from an information-theoretic point of

view, which could be beneficial for processing multiple graphs

in general. Third, there are only a few works that address the

problem of clustering with multiple graph layers, especially in

the context of mobile social network analysis. We believe that

our efforts to work with rich mobile phone datasets are good

attempts in this emerging field.

VIII. CONCLUSION

In this paper we study the problem of clustering with data

that can be represented by multi-layer graphs. We have shown

that generalizations of the well-developed spectral techniques

applied on a single graph are of great potential in such

emerging tasks. In particular, we have proposed two novel

methodologies to find a joint spectrum that is shared by

all the graph layers: a joint matrix factorization approach

and a graph-based spectral regularization framework. In the

second approach, we suggest to treat individual graph layers

based on their respective importance, which is measured from

an information-theoretic point of view. In addition to the

improvements we get in the evaluation scores with three

social network datasets, we believe that the concept of a joint

spectrum shared by multiple graphs is of broad interest in

graph-based data processing tasks, as it suggests one way to

generalize the classical spectral analysis to multi-dimensional

cases. This is certainly one of the focuses in our future work.
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