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ABSTRACT

Similarity join is the problem of finding pairs of records with simi-

larity score greater than some threshold. In this paper we study the

problem of scaling up similarity join for different metric distance

functions using MapReduce. We propose a ClusterJoin framework

that partitions the data space based on the underlying data distri-

bution, and distributes each record to partitions in which they may

produce join results based on the distance threshold. We design a

set of strong candidate filters specific to different distance functions

using a novel bisector-based framework, so that each record only

needs to be distributed to a small number of partitions while still

guaranteeing correctness. To address data skewness, which is com-

mon for high dimensional data, we further develop a dynamic load

balancing scheme using sampling, which provides strong proba-

bilistic guarantees on the size of partitions, and greatly improves

scalability. Experimental evaluation using real data sets shows that

our approach is considerably more scalable compared to state-of-

the-art algorithms, especially for high dimensional data with low

distance thresholds.

1. INTRODUCTION
Similarity join is the well known problem of finding all pairs

of records from a given set that have similarity scores greater than

a predefined similarity threshold under a given similarity function

(or distance values less than a distance threshold). It is an essential

operation in a variety of applications, including data cleaning [11],

web page deduplication [16], document clustering [8], plagiarism

detection [17], click fraud detection [18], entity resolution [26],

data integration [14], etc. As these applications need to handle in-

creasingly vast amounts of data, the problem of scaling up similar-

ity joins is getting ever more important.

Performing similarity joins on massive amounts of data presents

two key challenges. First, the data can no longer fit in the mem-

ory of one machine, which calls for workload partitioning. Given

the pairwise-comparison nature of the problem, partitioning data to

ensure load balancing while minimizing communication cost and

redundancy is difficult. The difficulty of load balancing is further
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compounded by the need to handle diverse data sets with skewed

distributions and high dimensionality. Second, since the number

of comparisons needed grows quadratically as data increases, tech-

niques that require comparing all pairs of records do not scale well.

So, another challenge is to design candidate filters that can prune

away a large fraction of candidate pairs without actually computing

their similarity. Designing filters to support a large class of useful

similarity functions is of great practical importance.

In this work we propose a general framework to compute simi-

larity joins in MapReduce on metric distance functions. While sim-

ilarity join in MapReduce has been studied [13, 18, 24, 25], most

existing approaches focus on set-based or string-based similarity

metrics (Jaccard similarity, set-based Cosine similarity, and edit

distances). In this work we focus on general metric distance, which

represent a much larger class of similarity/distance functions, in-

cluding Euclidean distance, (vector-based) Cosine similarity, Ham-

ming distance, and a variety of statistical distance functions on data

distributions such as Jensen-Shannon distance, Total Variation dis-

tance and Earth Mover distance.

Furthermore, we make two key contributions to address the chal-

lenges mentioned above. First, we design a general filter that can

prune away candidate pairs that are impossible to join given the

similarity threshold, without performing the actual comparisons.

This general filter works for any metric distance functions. We

also develop a set of bisector-based filters specific to a number of

important distance functions, including Euclidean, Hamming, To-

tal Variation, and other distance functions, that are strictly stronger

than the generic filter. Our filters are derived using a bisector-based

reasoning, which is a significant departure from the prefix/partition

based filters previously developed for set similarity.

Second, we propose a dynamic load balancing scheme that is

adaptive to data distribution and skewness, with strong probabilis-

tic load balancing guarantees. Our scheme ensures that the size of

each partition does not exceed a small factor of the desired thresh-

old with high probability. By ensuring that no worker is overloaded

with out-sized data partitions, we avoid “the curse of the last re-

ducer”, which greatly improves scalability.

At a very high level, our ClusterJoin framework works in three

phases. In the first, sampling phase, we randomly sample data

points that we call “anchor points” from the data set, These form

centers around which records can be clustered to form partitions.

Note that since the sampled data points represent the underlying

data distribution by sampling more points in dense regions and less

in sparse regions, the space partitioning induced by the set of an-

chor points tends to partition data evenly. We also sample a separate

set of “query point” from the data set and apply our candidate fil-

ters to decide whether each query point needs to be mapped to any

given anchor partition. This allows us to estimate on the size of



each anchor partition when the full data set is mapped. For parti-

tions that are estimated to be larger than a predetermined threshold,

we use 2-dimensional hashing to ensure that with high probability

the partition size does not exceed the desired threshold.

In the second phase, we use previously computed anchor parti-

tion centers and apply a set of novel candidate filter rules to process

the full data set in parallel. In this step we decide which anchor par-

titions each record needs to be mapped to in order to ensure that all

similarity pairs are discovered.

In the last phase, each machine will work on a separate anchor

partition, to perform the pairwise verification of records in the same

partition. The union of the results (matching pairs) from all parti-

tions is the output for the similarity join.

We have conducted extensive experiments for a variety of dis-

tance functions using real world data sets. Our approach is shown

to be especially effective for high dimensional data with high sim-

ilarity (low distance) thresholds, where it outperforms state-of-the-

art approaches by up to an order of magnitude, in terms of both

pruning effectiveness of filters and end-to-end runtime. Our algo-

rithm is promising not only because it is effective for a large class of

similarity functions, but also it represents an extensible framework

that can be tailored to additional metric distance functions. Over-

all, we believe ClusterJoin is a competitive approach in the complex

landscape of performing similarity join using Map Reduce.

2. RELATED WORK
The problem of performing efficient similarity joins has a wide

variety of applications. Numerous techniques have been proposed,

including prefix-based filters [11], All-pairs [6],PP-Join [27], and

many others. This long and fruitful line of work has lead to a sig-

nificant improvement in the scalability of similarity joins.

More recently, similarity join using MapReduce have attracted

significant attention, where the goal is to scale to even larger data

sets. Vernica et al. [24] are among the first to use ideas from pre-

fix filters and PP join in a MapReduce setting. Their approach is

applicable to set-based similarity metrics like Jaccard similarity.

Metwally and Faloutsos [18] propose a V-SMART-Join approach

that aggregates the contribution of similarity scores at a token level

to compute pairwise similarity. They show that their approach

works well for sparse data sets with a large alphabet. Their ap-

proach does not prune away any candidate pairs.

Afrati et al. [4] study techniques such as ball hashing and anchor

points analytically. Our Cluster-Join algorithm draws inspiration

from their anchor points approach. However, their approach can

be viewed as uniform space-partitioning, which is likely to lead to

imbalanced partition with skewed data distributions.

Okcan and Riedewald [21] design a Theta-Join framework that

can handle joins for arbitrary predicates. Their approach is very

general and is capable of handling any joins. However this ap-

proach cannot prune away candidate pairs.

Very recently, Wang et al. [25] develop MAPSS using a distance-

based filter that is applicable to any metric distance functions. In

comparison, we develop an extensible framework that uses bisec-

tors to design an array of distance specific filters. Combining the

more powerful filters with our dynamic load balancing scheme, our

approach is experimentally shown to be up to an order of magnitude

more efficient than MAPSS.

Approximate similarity join (e.g., [22]) is the related problem of

discovering similar pairs with a small false negative probability. In

this paper, we focus on the exact similarity join problem, where all

matching pairs are to be found, with no false negatives.

3. PRELIMINARIES

3.1 Metric distance
In this paper, we focus on metric distance functions. Many widely

used distance functions are metric distances, such as Euclidean dis-

tance, Angular distance (Cosine similarity), and distribution based

distances like Jensen Shannon distance, Total Variation distance

and Earth Mover distance, etc. Metric distances have a number

of nice properties that we use to design candidate pruning filters.

DEFINITION 3.1 (METRIC DISTANCE [9]). Let D be the do-

main of all records. A metric distance on D is any function d :
D×D → R satisfying the following properties ∀x, y, z ∈ D:

• Non-negativity: d(x, y) ≥ 0
• Coincidence Axiom: d(x, y) = 0 iff x = y
• Symmetry: d(x, y) = d(y, x)
• Triangle Inequality: d(x, z) ≤ d(x, y) + d(y, z)

The framework we propose in this work is generic and can han-

dle any metric distance function, including those mentioned above.

3.2 MapReduce
MapReduce [12] is a popular framework for parallel computa-

tion. In the MapReduce programming model, data is expressed

through (key, value) pairs, and computation is represented by a Map

function and a Reduce function.

Map: (k1, v1) → list(k2, v2);
Reduce: (k2, list(v2)) → list(k3, v3);
More details on this computation framework can be found in [12].

4. PROBLEM DEFINITION
The problem of similarity join can be formally stated as follows.

DEFINITION 4.1 (SIMILARITY JOIN). Let D be the domain

of all data records, we are given a set of records R ∈ 2D, a met-

ric distance function d : D × D → R, and a distance threshold

dthresh. Our problem is to find all pairs of records (R1, R2) ∈
R×R that satisfy d(R1, R2) ≤ dthresh. We call this the Similarity-

Join(R, d(·), dthresh) problem.

Note that although we use distance functions and distance thresh-

olds to leverage results established for metric distances, we still

refer to this problem as similarity join to be consistent with exist-

ing literature. Many distance functions actually have direct coun-

terparts in similarity functions (e.g., Angular distance and Cosine

similarity), and in such cases the problem above can be alterna-

tively stated as finding all pairs of records with similarity scores

above a given threshold. We use similarity functions and distance

functions interchangeably in this paper when the meaning is clear

from the context.

Similarity join has been used in a variety of applications with

diverse data sets and different distance functions. We use a simple

running example with Euclidean distance in two dimensional space

to illustrate the similarity join problem and our approach – in prac-

tice, data records are often of much higher dimensionality and are

compared using more complex distance functions.

EXAMPLE 4.1 (SIMILARITY JOIN). Figure 1 shows a 10-record

data set, R = {R1, . . . , R10} with R1 = (0, 0), R2 = (1, 5), R3 =
(1, 6), R4 = (1, 11), R5 = (4.5, 5), R6 = (5, 5.5), R7 = (7, 11),
R8 = (10, 2), R9 = (10, 10), R10 = (12, 0). Suppose Euclidean

distance function (written below as dE(·)) is used, and the distance

threshold is dthresh = 1.

The output of the problem SimilarityJoin(R, dE , 1) is the two

pairs {(R2, R3), (R5, R6)} where the distance between each pair

of records is less than 1.
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Figure 1: Running example using Euclidean

5. DATA PARTITIONING SCHEME
Recall that in order to allow parallel computation, our approach

needs to partition the domain of records into regions, in which sim-

ilar records can be clustered and verified by different machines. In-

tuitively, we want to produce partitions such that our data is evenly

distributed for load balancing purposes.

Given that different data sets have different distributions and are

often very skewed in high dimensional space, uniform space parti-

tioning is unlikely to balance data well. For example, uniform rec-

tilinear partition based on value domains is likely to lead to skewed

sub-partitions and overloaded workers. Instead, we use a non-

uniform space partitioning based approach by sampling the data

and allowing the sampled set to determine our space partitioning.

By doing so, our partitions capture the underlying data distribution,

and lead to a more balanced partitioning scheme.

We randomly sample a set of records A as what we call “anchor

points”. These are essentially used as partition centers. We use

the set of anchors A to induce a space partitioning of the domain

of data records, by assigning all records to the partition with the

closest anchor point.

DEFINITION 5.1 (HOME PARTITION). Let C ∈ A be an an-

chor record, D be the domain of records, and d be the distance

function. The home partition of C, denoted by HA(C), is defined

as {R|R ∈ D, d(R,C) ≤ d(R,A′)∀A′ ∈ A}.

Note that the choice of anchors A determines the home partition

space. For ease of notation, we drop the subscript from HA(C) and

write H(C) to denote the home partition of C when the underlying

set of anchor records is clear from the context.

Intuitively, all records are clustered to the closest anchor point

to form partitions. This distance based partitioning scheme can

be thought of as similar to Voronoi diagrams, but generalized to

arbitrary distance metrics. Also note that each record R can be as-

signed to a unique home partition by choosing some hash function

h(·) and picking the anchor A with the smallest h(A + R) hash

value in the case of ties in distance.

EXAMPLE 5.1 (HOME PARTITION). In our example in Fig-

ure 1, suppose A = {R1, R9, R10}, it is easy to verify that {R1, R2,
R3, R5}⊆ H(R1), {R4, R6, R7, R9} ⊆ H(R9) and {R8, R10 ⊆
H(R10)}.

Note that although home partitions group similar records to-

gether, it is not sufficient to just join records within the same parti-

tion. Records that are outside the partition, but close to the bound-

ary can still join with a record within the partition. We use the

notion of outer partitions to capture this idea.

DEFINITION 5.2 (OUTER PARTITION). Let C ∈ A be an

anchor record, d some distance function, and dthresh the given

threshold. The outer partition of C, denoted by OA(C), is defined

as {R|R ∈ D, ∃R′ ∈ HA(C), d(R,R′) ≤ dthresh}.

Note that we drop the subscript from OA(C) and just write O(C)
to denote the home partition of C when the underlying set of anchor

records is clear from the context.

Intuitively, an outer partition represents the corresponding home

partition plus the set of points close to the home partition boundary

that can potentially be similar to the points within the home parti-

tion. That is, given a threshold dthresh, the outer partition of an

anchor point is the set of all points within distance dthresh of any

point in the corresponding home partition.

Note that while home partitions are disjoint, outer partitions are

overlapping, such that each record can belong to several outer par-

titions. Furthermore, for metric distances, an outer partition is a

superset of the corresponding home partition, because d(R,R) =
0 < dthreshold by the coincidence axiom.

EXAMPLE 5.2 (OUTER PARTITION). In our example, we have

R5 ∈ H(R1), O(R1) R6 ∈ H(R9), O(R9). Furthermore R5 ∈
O(R9). By considering the outer partition for R9, the pair (R5,

R6) that has a distance dE(R5, R6) ≤ dthresh will be compared

and produced as output. However, if we only consider home par-

titions separately, because R5 6∈ H(R9), R6 6∈ H(R1), the pair

(R5, R6) will be missed.

In general, it is sufficient to consider each outer partition sepa-

rately from other outer partitions when comparing pairs of records.

This guarantees that no pairs of records satisfying the distance thresh-

old will be missed.

LEMMA 5.1. Let A be the set of anchors and R the set of

records. Comparing all pairs of records in the set R∩O(A) sepa-

rately for each A ∈ A guarantees that no similar record pairs will

be missed.
PROOF. Consider any pair of records R1, R2 with d(R1, R2) ≤

dthresh. Let A be the home anchor for R2, that is, R2 ∈ H(A).
Then by definition R2 ∈ O(A). Also, ∃R2 ∈ H(A)s.t. d(R1, R2) ≤
dthresh ⇒ R1 ∈ O(A). Since R1, R2 ∈ O(A), they will be com-

pared and produced in our output. This eliminates the possiblity of

false negatives.

6. CANDIDATE FILTERS
While the idea of using home partition and outer partition mem-

bership to partition a large data set for similarity join is conceptu-

ally clear, deciding the exact outer partition membership remains

to be a key technical challenge. Specifically, given a set of anchor

points A, and a query point Q, our problem is to find the subset of

anchors for which Q is an outer partition member. We write this as

M(Q,A) = {A|A ∈ A, Q ∈ O(A)}.

This is generally very difficult. For example, for Euclidean dis-

tance, this is related to computing a generalized Voronoi diagram

for A in high dimensions. Yet even for the well-behaved Euclidean

distance function, computing Voronoi diagram is nontrivial and a

discipline by itself [20]. Generalizing this to other distance func-

tions that are considerably more complex, such as distributional

distances like Jensen Shannon [15] is a daunting task.

Instead of solving the hard problem of finding the exact outer

partition membership M(Q,A) above, we choose to solve it ap-

proximately. Specifically, we find a superset S(Q,A) ⊇ M(Q,A)
that is as close to M(Q,A) as possible. By mapping Q to every

anchor in S(Q,A), we will still map Q to all the outer partition it

needs to be mapped to in the exact solution M(Q,A). Thus we

guarantee correctness by not missing any joining pair.



Using this approximate solution results in higher computational

and communication costs. The more outer partitions we send our

query record to, the higher our cost. For instance, one extreme and

trivial approximate solution is to send Q to all anchors such that

S(Q,A) = A. This still guarantees correctness but is apparently

inefficient. Our goal is to design filters that can eliminate a large

fraction of anchors A /∈ M(Q,A) so that the set of remaining

anchors S(Q,A) is not much larger than M(Q,A).

6.1 Intuition: two anchors at a time
All of our filters discussed in this section are derived using the

following intuitive idea. We simplify the problem by only looking

at two anchor records at a time. Given the query record Q, we

first find the anchor record closest to it, denoted by X . Given any

test anchor record C, we want to decide whether Q may be in C’s

outer partition. Note that to make the problem tractable, we ignore

all other anchor records as if X and C are the only anchors present.

This greatly simplifies the problem, because the partition boundary

when there are only two anchors is simply the bisector plane of the

two anchors.

Further, we guarantee correctness by observing that if Q does

not need to be mapped to C if there are only two anchors C and X ,

then Q does not need to be mapped to C if there are more anchors.

The intuition for this is that every additional anchor added to the

system can only remove records from the set forming C’s outer

partition. Therefore, if Q did not lie in C’s outer partition when X
was the only other anchor record, then Q will not lie in C’s true

(smaller) outer partition under the actual set of anchor records.

We formalize the intuition in the lemma below.

LEMMA 6.1 (TWO ANCHOR MEMBERSHIP). Let A be a set

of anchor records, and Q be any query record. Let X,C ∈ A be

two anchor records. Let A′ = {X,C}. Then, Q 6∈ OA′(C) ⇒
Q 6∈ OA(C).

PROOF. Recall that Q ∈ OA(C) denotes that record Q lies in

the outer partition of anchor C under the set of anchors A. From

the definition of home partitions and outer partitions, we have Q 6∈
OA′(C) ⇒ d(Q, J) > dthresh∀J ∈ HA′(C). Now, consider

any record, J 6∈ HA′(C). Then, J ∈ HA′(X) (because J has to

lie in the home partition of either C or X when they are the only

two anchor records). By definition of home partition, d(X, J) <
d(C, J).

Since our distance function is invariant of the choice of anchor

records, for any J , J 6∈ HA′(C) ⇒ d(X, J) < d(C, J) ⇒ J 6∈
HA(C). That is, J 6∈ HA(C)∀J 6∈ HA′(C). Taking the con-

trapositive of the previous statement, we have, J ∈ HA′(C)∀J ∈
HA(C). Therefore, d(Q, J) > dthresh∀J ∈ HA′(C)⇒ d(Q, J) >
dthresh∀J ∈ HA(C) ⇒ Q 6∈ OA(C) (again by invariance of dis-

tance with respect to anchor set). Hence, Q 6∈ OA′(C) ⇒ Q 6∈
OA(C). This completes our proof.

Using this idea, we derive filter rules which, given the input

query record Q and its nearest anchor record X , test each anchor

point C in the absence of all other anchor points for Q’s member-

ship. We eliminate all anchor records satisfying our filter rules and

map Q to the remaining anchor points, which is guaranteed to be a

superset of M(Q,A).

6.2 General filter for any metric distance
We now give a generic filter rule that holds true for all metric dis-

tance functions. As discussed previously, we simplify the problem

without losing correctness by considering two anchors at a time.

THEOREM 6.1 (GENERIC FILTER RULE). Let Q be an input

query record, X be its nearest anchor, and C be any test anchor as

Anchor C 

(Home Partition of C) 

Anchor X 

(Home Partition of X) 

Bisector(X,C) 

Query Q 

δ δ 

𝑥 𝑐 

𝑑𝑚𝑖𝑛 

N 

𝑦 𝑦 

Figure 2: Generic Filter

in Figure 2. Let x = d(X,Q), c = d(C,Q). If c > x+ 2dthresh,

then Q 6∈ O(C).
PROOF. Let N be the nearest point to Q that is equidistant from

points X and C, that is, d(X,N) = d(C,N) and d(Q,N) ≥
d(Q,N ′)∀N ′s.t. d(X,N ′) = d(C,N ′). Let d(Q,N) = dmin.

Since N is the closest point to Q on the bisector plane of X,C,

we have dmin ≤ d(Q, I)∀I ∈ H(C) (because if QI intersects the

bisector plane at J , we have dmin ≤ d(Q, J) ≤ d(Q, I)).
Let d(X,N) = d(C,N) = y (N lies on bisector plane of X,C).

By triangle inequality on triangles XQN and CQN respectively,

y ≤ x + dmin and y ≥ c − dmin. Combining these, we have

c ≤ x+2dmin. So, if c > x+2dthresh, we have x+2dmin > x+
2dthresh ⇒ dmin > dthresh. Therefore, if c > x+2dthresh, then

d(Q, I) ≥ dmin > dthresh∀I ∈ H(C). Thus Q 6∈ O{X,C}(C).
Using Lemma 6.1, c > x+ 2dthresh ⇒ Q 6∈ O(C).

We note that although we describe X as the nearest anchor to

Q, our filter rule holds true even if X is an approximate nearest

neighbor. We omit the full argument but note that this property

can be used to improve efficiency when used in conjunction with

Min-Hash like schemes.

6.3 Distance function specific filters
In this section, we look at individual distance functions and con-

struct distance-specific filters. In particular, we have designed fil-

ters for Euclidean distance, Total Variation distance, 1-norm dis-

tance, Hamming distance, which we will describe in this section.

We have also designed filters for Earth Mover distance, and Lp dis-

tance in certain scenarios, which we will present in the full version

of this paper in the interest of space. All these specific filters have

strictly stronger pruning powers than the generic filter. Note that

all the distance functions we will discuss are metric distances [9].

Like the general filter, our special filters also rely on Lemma 6.1

to consider only two anchors X,C at a time to make the problem

tractable. Let B(X,C) = {P |P ∈ D, d(P,X) = d(P,C)} be

the bisector of X,C. The key insight for stronger filters is that

when given a specific distance function, we can compute tighter

lower bounds for the minimum distance from Q to B(X,C), de-

noted as dmin(Q) = min{d(P,Q)|P ∈ B(X,C)}. We also write

this as just dmin when the context is clear.

6.3.1 Euclidean Distance

DEFINITION 6.1 (EUCLIDEAN DISTANCE). The Euclidean dis-

tance between two points A = (a1, a2, . . . , an) and B = (b1, b2,
. . . , bn) is dE(A,B) =

√
∑

i(ai − bi)2.
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Figure 3: Filter for Euclidean Distance

Euclidean distance is a metric distance and therefore the generic

filter rule applies. Here, we rely on characteristics of Euclidean

distance to compute the exact minimum distance to bisector, which

gives us a stronger filter rule.

THEOREM 6.2 (EUCLIDEAN FILTER). Let Q be an input query

record, X be its nearest anchor, and C be any test anchor as in

Figure 3. Let δ = dE(X,C)
2

, x = dE(X,Q), c = dE(C,Q). If

c2 > x2 + 4δdthresh, then Q 6∈ O(C).
PROOF. As before, let N be the nearest point to Q that is equidis-

tant from points X and C, that is, dE(X,N) = dE(C,N) and

dE(Q,N) ≥ dE(Q,N ′)∀N ′s.t. dE(X,N ′) = dE(C,N
′). Let

dE(Q,N) = dmin. By triangle inequality, dmin ≤ dE(Q, I)∀I ∈
H(C). Observe that dmin = δ − xcosθ. Note that dmin is the

shortest distance from Q to the bisector plane of X and C, which

is equivalent to their partition boundary in the absence of other an-

chor records. From triangle XQC, we have c2 = x2 + (2δ)2 −
2x(2δ)cosθ. Simplifying, we obtain cosθ = x2+(2δ)2−c2

2(2δ)x
. Now,

dmin = δ − xcosθ = c2−x2

4δ
⇒ c2 − x2 = 4δ(δ − xcosθ).

Therefore, if c2 > x2 + 4δdthresh ⇒ δ − xcosθ > dthresh ⇒
dmin > dthresh. Using dmin ≤ dE(Q, I)∀I ∈ H(C), we have

dE(Q, I) > dthresh∀I ∈ H(C) ⇒ Q 6∈ O{X,C}(C). Us-

ing Lemma 6.1, Q 6∈ O{X,C}(C) ⇒ Q 6∈ O(C). Therefore,

c2 > x2 + 4δdthresh ⇒ Q 6∈ O(C).

6.3.2 Total Variation Distance (TVD)

DEFINITION 6.2 (TOTAL VARIATION DISTANCE). Let A =
(a1, a2, . . . , an) and B = (b1, b2, . . . , bn) be two discrete proba-

bility distributions (
∑n

i=1 ai = 1,
∑n

i=1 bi = 1). The Total Varia-

tion Distance between A,B is dTV D(A,B) = 1
2

∑n

i=1 |ai − bi|.

The Total Variation Distance (TVD) between two probability

distributions can be thought of as the largest possible difference

between probabilities that the distributions can assign to any given

event. Total Variation Distance is a metric distance function.

For the TVD function, we describe how to efficiently compute a

lower bound for the distance of any record Q = (q1, q2, . . . , qn) to

the bisector plane of any two other records A = (a1, a2, . . . , an),
B = (b1, b2, . . . , bn). The intuition behind our approach is as fol-

lows. Given the three distributions (points) Q,A,B, where Q is

closer to A than B, we wish to compute the distance from Q to the

bisector of A,B. That is, we wish to find the shortest path from Q
to any point N such that dTV D(A,N) = dTV D(B,N). Initially

we have dA = dTV D(A,Q) < dTV D(B,Q) = dB . We change

the probability values in Q to take Q closer to B and farther away

from A, thereby reducing dB and increasing dA. Note that dur-

ing this process, we have to be careful to maintain the constraints
∑n

i=1 qi = 1 and 0 ≤ qi ≤ 1, therefore every increase in one

qi requires a corresponding decrease in another qj . Repeating this

process, we eventually reach a point when dA = dB . This means

that we have reached a point on the bisector of A,B. The total dis-

tance moved in the transformation from Qold to Qnew, which can

be measured by the sum of the changes made to different qi, is the

length of this particular path from Q to the bisector.

Our approach involves varying qi to take Q closer to B and fur-

ther away from A with minimum total changes to different qis. This

gives us the shortest path to the bisector. We make use of a few key

observations to lower bound the length of the shortest such path.

OBSERVATION 6.1 (INDEPENDENCE OF DIMENSIONS). Let

Q = (q1, q2, . . . , qn), A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn).
Changing qi only affects the contribution of the ith coordinate to

the distances dA and dB , and is independent of other coordinates.

This follows trivially from the definition of TVD that dTV D(A,B) =
1
2

∑n

i=1 |ai − bi|.
OBSERVATION 6.2 (VARYING IN A SINGLE DIRECTION). The

shortest path to the bisector of A,B from Q will only include changes

of qi in a singe direction for any i.

This can be easily proven by contradiction. Suppose the shortest

path to the bisector from Q involved both an increase and a de-

crease of qi for some i. Then, consider two steps where qi was

respectively increased and decreased by δ. By not changing qi in

either of these steps, we reduce the distance of our path by 2δ, while

still reaching the same point, thereby giving a shorter path.

OBSERVATION 6.3 (PARTITIONING DIMENSIONS).

Let Q = (q1, q2, . . . , qn), A = (a1, a2, . . . , an) and B = (b1,
b2, . . . , bn). Consider the following partitioning or classification

on the dimensions i ∈ [1, n]:
1(a): qi > ai > bi, 1(b): qi < ai < bi
2(a): ai ≥ qi ≥ bi, 2(b): ai ≤ qi ≤ bi
3(a): qi > bi ≥ ai, 3(b): qi < bi ≤ ai

As before, let dA = dTV D(A,Q) and dB = dTV D(B,Q).
Observe that the change in dB − dA when varying qi only depends

on which of the above classes i belongs to. This follows from our

previous observation about the independence of dimensions, and

the fact that dB − dA = 1
2

∑

i(|bi − qi| − |ai − qi|).
First observe that increasing qi in class 3(a) has no effect on

dB − dA, while decreasing qi for this class initially has no effect,

and then only increases dB − dA. Similarly, decreasing qi in class

3(b) has no effect on dB − dA, while increasing qi will potentially

increase dB − dA. Therefore, the shortest path to the bisector will

not include any changes to qi where i belongs to class 3.

Now, consider varying qi for i in class 2. If i is of type 2(a), then

every δ decrease in qi until it reaches bi results in a corresponding

decrease in dB −dA by δ (because
∑

i |bi− qi| decreases by δ and
∑

i |ai−qi| increases by δ). Decreasing qi any further will result in

no change in dB −dA. Let mi = qi− bi be the maximum possible

change of this nature. Increasing qi for this case is unfavourable

and will not be a part of the shortest path as it increases dB − dA,

thereby moving away from the bisector.

Similarly, if i is of type 2(b), then every δ increase in qi until it

reaches bi results in a corresponding δ decrease in dB − dA, and

mi = bi − qi is the maximum possible change of this type.

Finally, consider varying qi where i is in class 1. In class 1(a),

increasing qi has no effect on dB − dA. Decreasing qi until it

reaches ai does not change dB − dA either, but it is still a potential



move to consider, because any further δ decrease qi now results

in a corresponding δ decrease in dB − dA similar to case 2(a).

Let ci = qi − ai be the amount of distance required to reach the

favorable moves, and mi = ai − bi be the maximum subsequent

favorable change possible.

Similarly, in class 1(b), increasing qi by ci = ai − qi has no

immediate effect on dB − dA, but every subsequent change in qi
up to a maximum of mi = bi − ai results in a corresponding and

equal change in dB − dA.

Using our above observations, we now construct an optimization

problem whose solution is the length of the shortest path from Q to

the bisector of A,B. We refer to a change that decreases dB − dA
as a favorable change. Let P+ = {i|i ∈ Class 1(a)∪Class 2(b)} be

the set of coordinates i where it is favourable to increase qi. Simi-

larly, P− = {i|i ∈ Class 1(b)∪Class 2(a)} is the set of coordinates

i where it is favourable to decrease qi. The idea here (following

from Observation 6.3) is that the shortest path will only consist of

simultaneous increases of magnitude δ in qi for some i ∈ P+ and

decreases of magnitude δ for some j ∈ P− respectively.

Let ci be the cost to reach a favorable position, and mi be the

maximum possible favorable change for classes 1 and 2. For i ∈
Class 1, we have ci = |qi−ai| and mi = |ai−bi|. For i ∈ Class 2,

mi = |bi − qi|. Note that Class 2 positions only have favorable

moves right from the start, and so ci = 0. Class 3 positions are

not considered since they do not bring any favorable changes. Let

t = 1
2

∑n

i=1 (|bi − qi| − |ai − qi|) be the total change required in

dB−dA as we move Q to reach the bisector. Using these, we define

the following optimization problem that minimizes the distance to

the bisector.

(TVD) min
∑

i∈P+

uici +
∑

j∈P−

vjcj +
∑

i∈P+

xi +
∑

j∈P−

yj

(1)

s.t.
∑

i∈P+

xi +
∑

j∈P−

yj ≥ t (2)

∑

i∈P+

xi =
∑

j∈P−

yj (3)

0 ≤ xi ≤ mi, ∀i ∈ P+
(4)

0 ≤ yj ≤ mj , ∀j ∈ P−
(5)

ui ≥ xi, ∀i ∈ P+
(6)

vj ≥ yj , ∀j ∈ P−
(7)

ui, vj ∈ {0, 1}, ∀i, j (8)

In the above optimization problem, xi denotes the number of

favorable moves for each position i ∈ P+ (possibly after moves

with no effect), similarly yj denotes the number of favorable moves

for each position j ∈ P−. Let ui, vj be integral variables, denoting

whether the cost of moves with no effect has occurred at position

i ∈ P+ or j ∈ P−, respectively, just so that the corresponding

favorable moves can happen. The objective function is the sum

of the total costs of favorable moves xi, yj , and no-effect moves

where ui, vj are weighted by ci and cj which are the costs of no-

effect moves at position i and j respectively.

The constraint in Equation (2) makes sure that the total favorable

moves is sufficient for the reduction of difference of distance to A
and B is at least t (reaching the bisector). Equation (3) ensures

that the total move in P+ and P− is balanced such that Q is still

a valid probability distribution. Equation (4) (5) indicates that fa-

vorable moves cannot exceed the maximally allowed mi and mj .

Equation (6) (7) (8) ensures that if either xi or yj is greater than 0,

then the initial cost of no-effect moves is added, by forcing ui, vj
respectively to 1.

This LP gives the exact minimum distance to the bisector. How-

ever, it is a mixed integer program that is in general intractable. So,

we present an alternative linear program TVD-F, whose solution

gives us a lower bound to the solution of the original optimization

problem, and therefore, a lower bound to the distance to the bisec-

tor. Using the same variables as before, we define the following

fractional LP TVD-F, which is easy to solve.

(TVD-F) min
∑

i∈P+

xi(
ci +mi

mi

) +
∑

j∈P−

yj(
cj +mj

mj

) (9)

s.t.
∑

i∈P+

xi +
∑

j∈P−

yj ≥ t (10)

∑

i∈P+

xi =
∑

j∈P−

yj (11)

0 ≤ xi ≤ mi, ∀i ∈ P+
(12)

0 ≤ yj ≤ mj , ∀j ∈ P−
(13)

Intuitively, this linear program assumes that the initial set-up cost

of the no-effect moves, ci is distributed evenly across the favorable

moves. So now each favorable move of magnitude δ at position

i incurs a cost of
ci+mi

mi
δ, and similarly for position j. It can be

shown that the optimal value of TVD-F is at least as good as (no

greater than) that of TVD.

LEMMA 6.2 (LP LOWER BOUND). Let OPT be the optimal

value of LP TVD, and OPT f be the optimal value of TVD-F. We

have OPT f ≤ OPT .
PROOF. Let u∗

i , v
∗
j , x

∗
i , y

∗
j be the values of variables when the

optimal value OPT is achieved for TVD.

First, it can be verified that the same x∗
i , y

∗
j is also a feasible

solution to TVD-F because the constraints in TVD-F is a subset of

those in TVD. So we only need to show u∗
i ci + x∗

i ≥ ci+mi

mi
x∗
i

and similarly v∗j cj + y∗
i ≥ cj+mj

mj
y∗
j , since the summation of the

left side and the right side are the optimal value of TVD and one

objective value of TVD-F, respectively. Note that these equations

can be rewritten as u∗
i ci ≥ ci

xi∗
mi

and v∗j cj ≥ cj
xj∗

mj
, both of which

are true given our constraints. Thus OPT = u∗
i ci + x∗

i + v∗j cj +

y∗
i ≥ ci+mi

mi
x∗
i +

cj+mj

mj
y∗
j ≥ OPT f .

Note that not only is the TVD-F easy to solve, but it can also be

greedily solved without using an LP-solver, by sorting
ci+mi

mi
for

i ∈ P+ and
cj+mj

mj
for j ∈ P− ascendingly, then picking position

i and j simultaneously to maintain balance (Equation (11)), while

gaining in Equation (10), until Equation (10) is satisfied.

Using this we derive a filter for TVD.

THEOREM 6.3 (TVD FILTER). Let Q be an input query record,

X be its nearest anchor, and C be any test anchor. Use X as A or

the point closer to Q, and C as B or the point further away from

Q to formulate TVD-F. Let OPT f be the solution to our fractional

linear program TVD-F. Then, OPT f > dthresh ⇒ Q 6∈ O(C).
PROOF. First we know OPT f ≤ OPT = dbisector by Lemma 6.2.

Using Lemma 6.1, similar to our previous specific filters, we know

that if dbisector > dthresh ⇒ Q 6∈ O(C). Combining, we get

OPT f > dthresh ⇒ dbisector > dthresh ⇒ Q 6∈ O(C).

6.3.3 1Norm Distance
DEFINITION 6.3 (1-NORM DISTANCE). The 1-norm distance

between two points A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn)
is given by d1(A,B) = ||A−B||1 =

∑n

i=1 |ai − bi|.



Observe that 1-norm distance appears to be very similar in struc-

ture to Total Variation Distance. In particular, the Observation 6.1

and 6.2 for TVD still hold. However the lower bound of distance

to bisector for 1-norm distance is different. The difference arises

from the fact that for TVD, data points A = (a1, a2, . . . , an) and

B = (b1, b2, . . . , bn) are probability distributions that constrained

by
∑

i ai =
∑

i bi = 1, whereas for 1-norm distance the points

are unconstrained.

To solve the problem of finding the distance to the bisector of

two points A = (a1, a2, . . . , an), B = (b1, b2, . . . , bn) from a

third given point, Q = (q1, q2, . . . , qn), we again partition the co-

ordinates [n] in three classes as we did in Observation 6.3 for TVD.

Overall, we define for i ∈ Class (1) ci = |qi − ai| and mi =
|bi − ai|. For i ∈ Class (2), ci = 0 and mi = |bi − qi|. Let

t =
∑n

i=1 (|bi − qi| − |ai − qi|) be the total change of distance

required in dB − dA as we move Q to reach the bisector. Using

these, we define the following optimization problem that minimizes

the distance to the bisector.

(1Norm-F) min
∑

i∈P

xi(
ci +mi

mi

) (14)

s.t.
∑

i∈P

xi ≥
t

2
(15)

0 ≤ xi ≤ mi, ∀i ∈ P (16)

THEOREM 6.4 (1-NORM FILTER). Let Q be an input

query record, X be its nearest anchor, and C be any test anchor.

Use X as A or the point closer to Q, and C as B or the point fur-

ther away from Q to formulate 1Norm-F. Let dmin be the solution

to 1Norm-F. Then, dmin > dthresh ⇒ Q 6∈ O(C).

A proof of this theorem can be derived similar to TVD.

6.3.4 Hamming Distance

DEFINITION 6.4 (HAMMING DISTANCE). The Hamming dis-

tance between two points A = (a1, a2, . . . , an) and B = (b1, b2,
. . . , bn) is the number of positions that A and B differ on. It is

given by dH(A,B) = |{i|i ∈ [n], ai 6= bi}|.
We note that the Independence of Dimensions in Observation 6.1,

and Varying in a Single Direction in Observation 6.2 still hold for

Hamming distance. However, dimensions need to be partitioned

differently.

OBSERVATION 6.4 (PARTITIONING DIMENSIONS). Let Q =
(q1, q2, . . . , qn), A = (a1, a2, . . . , an) and B = (b1, b2, . . . , bn).
Consider the following partitioning or classification on the dimen-

sions i ∈ [1, n] such that:

1: ai = bi
2: qi = ai 6= bi
3: qi = bi 6= ai

4: qi, ai, bi are pairwise distinct
Very briefly, the idea here is that changing qi in Class 2 will bring

Q fastest toward B(X,C), while changing qi in Class 4 also helps

but at a slower rate. Using ideas similar to the TVD filter, we get

the following filter.

THEOREM 6.5 (HAMMING FILTER). Let Q be an input query

record, X be its nearest anchor, and C be any test anchor. Let

t = dH(C,Q) − dH(X,Q), and let P2 = {i|qi = xi 6= ci}.

Then, max{⌈ t
2
⌉, t− |P2|} > dthresh ⇒ Q 6∈ O(C).

Using similar ideas, we have also designed filters for other dis-

tance functions such as Earth Mover Distance, Lp distance in cer-

tain scenarios, and Euclidean distance in generalized high dimen-

sional space. Details of these additional filters can be found in the

full version of this paper.

6.4 Filter Strength
Before we conclude this filter section, we note that the strength

of specific filters for Euclidean, TVD, 1-norm and Hamming dis-

cussed earlier is strictly stronger than the generic filter. We omit

details of the proof in the interest of space.

THEOREM 6.6 (FILTER STRENGTH). Given query point Q,

its closest anchor X , and the test anchor C. Let GEN (X,Q,C)
denote whether we can use the generic filter to prune away C as in

Theorem 6.1. Let BISECTOR FILTERd(X,Q,C) denote whether

we can use specific filters for distance d to prune away C, where

d ∈ {Euclidean, TVD, 1-norm, EMD, Hamming}. Then, we have

GEN(X,Q,C) ⇒ BISECTOR FILTERd(X,Q,C).

7. OUR APPROACH: CLUSTERJOIN
After describing the partitioning scheme in Section 5 and candi-

date filters in Section 6, we are now in a position to introduce the

ClusterJoin algorithm.

Our algorithm consists of three main phases: (1) Sampling phase.

In this step, we randomly sample records as anchor points. We fur-

ther sample query points to estimate the expected size of anchor

partitions to decide if an overloaded partition needs to be split. (2)

Mapping phase. We apply the appropriate filter rule to map each

data point to an appropriate subset of anchor partitions. (3) Verifi-

cation. Here, we verify records in each outer partition by perform-

ing pairwise comparisons, to compute the final output.

We describe each phase of our algorithm in turn.

7.1 The sampling phase
In this step, we randomly sample anchor points, A, from the

data set R with probability pA. Note that using data samples to

partition the data space tends to distribute data evenly across home

partitions, because the sampled anchors represent the underlying

data distribution with more anchors in dense regions and fewer in

sparse regions. We also simultaneously sample a separate set of

query points, Q, from R with probability pQ, which is used to

estimate the expected size of each anchor partition when using the

full data set.

The samples A and Q are sent to a common reducer, where we

use candidate filters to decide which anchor partitions each query

point needs to be sent to. Let query points distributed to anchor

A be S(A,Q) = {Q|Q ∈ Q, F ilter(Q, A) = false}. Then

eA = |S(A,Q)|
pQ

gives us an estimate of the size of each anchor

partition when the full data set is mapped.

Note that for large A and Q, this estimation can be easily paral-

lelized, by broadcasting A to all reducers, and hash partitioning Q

to all reducers, so that each reducer only produces estimates for a

chunk of Q. The estimates for each anchor can then be aggregated

using another MapReduce round.

Based on the available computation resource of each machine

and the cost of computing similarity between records, we can pre-

determine a threshold T , say 1000 records, that the estimated size

of each anchor partition eA should not exceed. We split partitions

that are estimated to be larger than T , to ensure load balancing,

using the 2-dimensional hash partitioning idea in [21] that is remi-

niscent of Blocked Nested Loop Join.

2D hashing. The idea of 2D hashing can be illustrated pictori-

ally. Figure 4a demonstrates the case of an R-S join. In this case

we can created k2 cells in a 2D matrix. For each r ∈ R we produce

an integral hash value h(r) ∈ [k], and map r into all cells in row

number h(r). We produce hash values similarly for each s ∈ S
and map s into all cells in column number h(s). Each pair of (r, s)
will be hashed to the same cell exactly once regardless of their hash

values.
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(a) R-S Join

h(r2)
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h(r1)
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Figure 4: 2D hashing illustration

Figure 4b shows a similar hashing scheme adapted for self-join,

where we essentially only consider the upper right half of the ma-

trix by reflecting it along its diagonal. Let C(r) be the set of cells

that r needs to be mapped to as indexed by (row, col) in this hash-

ing scheme. Then, we have C(r) = {(i, h(r))| 0 < i ≤ h(r)}
⋃

{(h(r), j)| h(r) < j ≤ k}. Note that in the self-join case, pairs

with the same hash value will only be compared in diagonal cells.

It can be seen that when using 2D hashing for a data set of size

|R|, each sub-partition (cell) has an expected size of
2|R|
k

.

Partition splitting. Given that the estimated size of each parti-

tion is eA = |S(A,Q)|
pQ

, if eA > T , we can use 2D hash partition

to further sub-partition each over-sized anchor partition. The 2D

hashing factor k required to meet the threshold is k = ⌈ 2eA
T

⌉.

EXAMPLE 7.1 (SAMPLING). Recall our example in Figure 1

with 10 records and Euclidean distance. Suppose the anchor sam-

pling rate pA = 0.3 and are R1, R9 and R10 are selected as an-

chors, or A = {R1, R9, R10}. Suppose the query sampling rate

pQ is also 0.3, such that the query set is Q = {R2, R6, R8}.

By applying the Euclidean filter rule on Q, we know that O(R1)
receive two records {R2, R6}, whereas the other two partitions

O(R9) and O(R10) receive one record each (R6 and R8 respec-

tively).

Suppose the size threshold of each partition is T = 5. The es-

timated size of O(R1) is 2
0.3

> 5, whereas the estimated size of

O(R9) and O(R10) is 1
0.3

< 5. Thus, O(R1) will be the only

partition that needs a 2D hashing split.

Using the partition size estimate eA and 2D hashing on parti-

tions whose estimate exceeds the set threshold, we can guarantee

that each real partition will not exceed the threshold with high prob-

ability.

THEOREM 7.1. Let the sampling rate of query points be p =
c
T

, and n be the partition size of any anchor partition after the

complete data set is mapped. By using the partition splitting proce-

dure described above, we can guarantee P (n ≥ 4T ) ≤ e−c. That

is, the probability that the real partition size is 4 times larger than

threshold T is exponentially small as c increases.

PROOF. Given any (outer) anchor partition A, n is the true size

of A when the full data set is mapped. p is the query point sampling

rate. Let Xi be the binary random variable used to denote whether

data record Ri ∈ A is sampled in the query point set Q or not.

That is, Xi = 1 if Ri ∈ Q and Xi = 0 if Ri 6∈ Q

First consider the case where A does not need to be split using

2D hashing, that is, the estimated partition size eA ≤ T . Let S =
∑n

i=1 Xi and µ = np be the expected value of S. Using Chernoff

bound we have the following

P (S ≤ (1− δ)µ) ≤ exp(
−µδ2

2
), ∀1 > δ > 0

Putting δ = 3/4 and µ = np, we get

P (S ≤ 1

4
np) ≤ exp(

−9np

32
)

P (n ≥ 4S

p
) ≤ exp(

−9np

32
)

Since no 2D hashing split is necessary, we know T ≥ eA = S
p

.

Thus P (n ≥ 4T ) ≤ exp(−9np

32
) ≤exp(−9Tp

8
). Let p = c

T
, we

then have P (n ≥ 4T ) ≤exp(−9c
8

) ≤ exp(−c)).
The same inequality can be produced for the case where the esti-

mated partition size eA > T such that 2D hashing is employed. We

derive this result by repeating the previous argument using binary

random variables Xij to denote that Ri is both, sampled in Q, and

hashed to a sub-partition in the 2D matrix cell j.

Overall, the probability that the real partition size is a constant

factor larger than threshold T is exponentially small as the sam-

pling rate grows.

To make this guarantee more concrete, consider the following

example. Let our partition size T be fixed at 1000. Suppose we set

c = 10, which makes the sampling probability p = 10
1000

= 1%.

At this modest sampling rate, we can guarantee that the real size

of any anchor partition using the full data set is no greater than

4T = 4000 with probability 1− e−10 > 0.99%.

One might wonder why 2D hashing is not applied on the en-

tire data set for partitioning and load balancing. We note that this

strategy would be very similar to the Theta-Join [21], which uses

2D hashing to handle general joins on MapReduce. There are two

main reasons why using 2D hashing on the entire data set for sim-

ilarity join is not efficient. First, it does not prune out any record

pairs and performs a lot of unnecessary computation in the form of

pairwise comparisons. We on the other hand take advantage of the

characteristics of similarity join to perform both partitioning and

candidate pruning simultaneously. Second, 2D hashing is known to

be inefficient in handling large data sets due to the communication

cost of broadcasting to
√
m nodes, where m is the total number

of machines. In comparison, we only use 2D hashing on a small

set of records that have already been mapped to a common anchor

partition. Here, the cost of broadcasting is insignificant, while the

benefit of balancing load is quite significant.

We also note that although splitting skewed partitions has been

used for similarity join [23, 25], previous approaches split parti-

tions in ad-hoc manners that cannot provide an upper bound for

the size of each partition. In fact, when more than T records are

mapped to the same partition, they sometimes represent a dense

cluster of records in a small region. Previous approaches may not

be able to reduce the size of such partitions, because all records are

so close, that they have to be hashed to all sub-partitions in order to

ensure correctness.

Partition merging. We also observe that for high dimensional

data where records are sparsely distributed across the data space, it

is possible that there exist many small partitions that have only a

handful of records mapped to them. As a result we also considered

the possibility of merging anchor partitions at the sampling stage

using the partition size estimates. The benefit here is that outer

partition records now only need to be mapped to one merged parti-

tion, instead of many smaller ones, which saves on communication

and job startup costs. However, the problem of partition merging

is related to Set Union Bin Packing, which is NP hard [19]. We

implement a greedy approach of merging partitions with significant

overlap as we scan anchor partitions. We observe that the empirical

performance gain from merging is not significant, and the overhead

of merging sometimes outweighs the cost savings. Accordingly, we

will not discuss partition merging in the rest of this paper.



7.2 The mapping phase
In this step, the set of anchors and their respective 2D hashing

factors from the previous step are available at all machines. Map-

pers read data records in parallel and decide for each record its

home anchor partition (by comparing the distance to all anchors),

as well as the outer partitions to which it belongs (using the filer

rules discussed in Section 6). If a record is mapped to an anchor

partition that requires 2D hashing (because the estimated size of

the partition is larger than T ), sub-partitions-ids will be produced

in place of the anchor partition id using the 2D hashing scheme

discussed in Section 7.1.

Note that a pair of records belonging to different home partitions

may be members of both corresponding outer partitions. That is,

consider a pair of records R1, R2 such that R1 ∈ H(A1), R2 ∈
H(A2), and R1 ∈ O(A1), O(A2), R2 ∈ O(A1), O(A2). Pairs

like this, where R1 ∈ H(A1)∩O(A2) and R2 ∈ H(A2)∩O(A1)
introduce unnecessary communication and computation costs since

both R1 and R2 will be sent to partitions A1 and A2 respectively.

To remove this redundancy, we map either all records in H(A1) ∩
O(A2) to partition A2, or all records in H(A2)∩O(A1) to partition

A1, but not both. We use an approach similar to that in [25] to

decide the direction of this mapping, and send H(A1) ∩O(A2) to

partition A2 if A1.id < A2.id and h(A1.id + A2.id)%2 = 0 for

some chosen hash function h(·).
A home partition flag that indicates whether the record is in the

target anchor’s home partition is also sent along with the record to

the verification phase. This is used so that we can avoid comparing

two records both of which belong to an anchor’s outer partition but

neither of which belongs to the home partition of the same anchor.

7.3 The verification phase
Each machine will work on a separate, possibly hash-split anchor

partition, to perform the verification record pairs. All records will

be pre-sorted using the home partition / outer partition flags in a

shuffle stage, to make sure that home partition records will be read

first into the reducers. Each home partition record will be compared

with existing home partition records already read, and added to the

list of home partition records in memory. Outer partition records

will be read after all home partition records are read. They will be

compared with all home partition records and discarded. The union

of the output of all reducers is the result of the similarity join.

In parallel to our work, authors in [25] also developed an al-

gorithm with similar mapping/verification phases. However, our

sampling and candidate filtering techniques are significantly differ-

ent, and are experimentally shown in the next section to be more

efficient, especially for high dimensional data with low distance

thresholds.

8. EXPERIMENTAL RESULTS
We present an experimental evaluation of the proposed algo-

rithm. The goals of our experimental study are:

• To evaluate the effectiveness of the filters designed in this paper

and compare against previous work for metric space.

• To compare the scalability of different algorithms discussed in

this paper using end-to-end execution time.

• To evaluate the sensitivity of the proposed ClusterJoin algorithm

to different parameter settings.

8.1 Experimental Setup

8.1.1 Data set

The first data set used in our experiments is from LinkedGeo-

Data [1], which curates geo-spatial data used in OpenStreetMap [2].

We use the “Place” data set, which contains location information

of 2.5 million of Points-Of-Interest and is processed into two di-

mensional coordinates. Since this is already one of the largest real

world spatial data sets that we can find, in order to test algorithms

using even larger data sets, we synthetically generate a larger data

set based on this. Specifically, for each data record we add 9 syn-

thetic records by perturbing both coordinates of the original record

using Gaussian distributions (µ = 0, σ = 10 miles), which pro-

duces a total of 25 million records. We perform similarity join

using Euclidean distance on this data set, which can be useful for

finding, for instance, all pairs of POIs that are within 1 miles of

each other.

Our second data set consists of 430K news articles extracted

from a recent index snapshot of Microsoft Bing search engine in

the English domain. The average document size is 7KB. We model

each news document using the Vector Space Model, and compute

similarity joins for different distance functions. This can be used

in a variety of applications such as identifying near duplicate news

articles, or clustering related stories. Note that the News data set

has a much higher dimensionality (each distinct word is seen as a

dimension) than the 2 dimensional spatial data set.

We experiment with four metric distance functions: we use Eu-

clidean distance on the first spatial data set, and Total Variation

distance (TVD), Angular distance (Cosine similarity), and Jensen

Shannon distance (JSD) [15] on the second document data set.

We have defined and developed specific filters for the first two

distance functions in Section 6. We use our generic filter for An-

gular distance, and also Jensen Shannon distance (JSD), which is a

statistical metric distance defined as follows [15].

DEFINITION 8.1. Let P , Q be two probability distributions,

JSD(P |Q) =
1

2
KLD(P |M) +

1

2
KLD(Q|M)

where KLD(X|Y ) =
∑

i X(i) ln
(

X(i)
Y (i)

)

is the KL divergence,

and M = 1
2
(P +Q).

8.1.2 Compared Methods
In order to evaluate the performance of different algorithms, we

compare the end-to-end runtime of the following methods.

• MAPSS [25]. This recently published approach handles joins

with arbitrary metric distances, and is most similar to our method.

We compare both filter pruning effectiveness across different dis-

tance functions, and end-to-end runtime with this approach.

• V-Smart-Join [18]. V-Smart-Join first maps the record-id of each

record to all tokens in the record. Each token will then be handled

by a separate reducer that emits all pairs of records that share the

same token. The score contribution for the same pair of records are

then aggregated across tokens to obtain the similarity value. This

approach can also handle a large class of similarity functions, and

is shown to work well for data sets with a large alphabet and sparse

records.

• Theta-Join [21]. The Theta-Join approach splits work across

reducers using two-dimensional hash partitioning (outlined in Fig-

ure 4 and Section 7.1). The two-dimensional hashing ensures that

each pair of records meets at least once, and at the same time avoids

broadcasting the full data set to all machines. This approach can

handle arbitrary complex join conditions, including similarity join

for metric distances, and can balance load well.

• Prefix-Join [24]. We also implement the Prefix-Join in [24],

which uses prefix-filter and PP-Join. Note that this approach is

designed for set similarity joins, including Jaccard similarity and

the set-based Cosine similarity. Since their set-based Cosine sim-

ilarity and the unmodified vector-based Cosine similarity used in

our experiments have different semantics (the scores they compute
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Figure 5: Filter effectiveness comparison, using LinkedGeoData in (a) and News Data in (b), (c), (d)
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Figure 6: Time comparison: vary data size, using LinkedGeoData in (a) and News Data in (b), (c), (d)

are also different), we do not compare with Prefix-Join in our main

results. We did try set-based Jaccard similarity and discuss our

findings in Section 8.2.4.

• ClusterJoin. This is our method discussed in Section 7.

There is also a very recent work MASS-Join [13] that handles

set-based and string-based similarities, which are not the focus of

this work.

We implement all algorithms described above and conduct ex-

periments in a production MapReduce system [10]. All algorithms

were executed concurrently with other production jobs, at the nor-

mal cluster workload, using a fixed amount of virtual resources.

8.2 Experimental evaluation

8.2.1 Filter effectiveness

Since like our ClusterJoin method, the MAPSS [25] approach

also uses the idea of filtering candidate pairs that are impossible to

meet the distance threshold, before we evaluate end-to-end runtime

it is interesting to directly compare the effectiveness of the filters

proposed in our work and the one generic filter studied in [25].

Filter effectiveness apparently has a direct impact on the runtime,

because the more effective filters are, the less time is needed for

verification, which typically is the most expensive part of the job.

Figure 5 compares the MAPSS filter and the set of filters pro-

posed in this work across four distance functions. Here the x-axis

is the distance threshold, and y-axis is the average percentage of

partitions that a record needs to be sent to after applying filters,

where lower numbers are better (recall that without filters, each

record needs to be sent to all partitions to guarantee correctness).

Figure 5a shows the effect of filtering for Euclidean distance on

the 2-dimensional spatial data. Notice that since this is a low di-

mensional data set, filtering candidate pairs that cannot join is rel-

atively easy. In fact both MAPSS filter and ClusterJoin filter can

prune away a vast majority of candidate pairs for this low dimen-

sional data. Still, we observe that with reasonably small distance

thresholds, the ClusterJoin filter produces up to an order of magni-

tude fewer number of pairs for verification than the MAPSS filter.

Figures 5b, 5c and 5d respectively plot the filtering effectiveness

for Angular distance (Cosine), Total Variation distance (TVD) and

Jensen Shannon distance (JSD), using the high dimensional doc-

ument data set. Recall that we have developed and use distance-

specific filters for TVD, while for Cosine and JSD we use our gen-

eral filter. Notice that for all three cases our filter outperforms the

MAPSS filter. However the relative difference between these two

methods decreases as the distance threshold increases.

We observe that in all these three cases the filters are generally

less effective when compared to the 2-dimensional Euclidean fil-

ter in Figure 5a, and produce good pruning only with low distance

(high similarity) thresholds. This is partly attributable to the curse

of dimensionality [7] – high dimensional data may just be inher-

ently hard to prune away. However, we argue that this is still very

useful, because in many real applications people are more inter-

ested in finding pairs of records with high similarity (low distance

threshold), or alternatively those pairs that are most similar to each

other. Applications using a low similarity (high distance) threshold,

such as finding all POI pairs within 100 miles, or document pairs

with only insignificant tokens overlapping, are possibly less natu-

ral, because the large number of matching pairs makes subsequent

human consumption difficult.

8.2.2 Scalability test

In this section, we vary the size of the data set and evaluate the

end-to-end execution time to understand the scalability of each al-

gorithm, which is one of the most important aspects of similarity

join algorithms.

In Figure 6 we vary the size of the data set by sampling 1%, 5%,
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Figure 7: Sensitivity Analysis

10%, and 50% of the original data set, for Euclidean distance, An-

gular (Cosine) distance, TVD and JSD, respectively. We report run-

time in seconds on a log-scale. Furthermore we limit the runtime

of each job at 10 hours, after which we simply abort the job. We

conservatively report the corresponding job time as 36000 seconds

and place a timeout label next to the data point.

Figure 6a shows that for Euclidean distance, although both Clus-

terJoin and MAPSS are efficient and scalable as data size grows,

ClusterJoin is 30% to 50% more efficient than MAPSS. The run-

time gap is not as significant as the pruning effectiveness suggested

in Figure 5a. This is because the 2-dimensional spatial data is rel-

atively easy, and both approaches are already effective in pruning

candidates such that verification does not dominate the job runtime.

Also, the verification for pairs not pruned away is relatively cheap,

since each record only has two coordinates, making distance com-

putations inexpensive.

Also in Figure 6a, we note that V-SMART-Join is the least scal-

able approach for Euclidean distance, as it times-out for even the

smallest data set. This is not surprising, as V-SMART-Join maps

each record to constituent tokens in order to aggregate score con-

tribution by tokens, and relies on sparse token occurrence in a large

alphabet to be efficient. While this approach works well for the

IP/cookie data set experimented in [18] which has a sparse alpha-

bet (cookies), in our particular data set with only two tokens (x and

y coordinates), this approach is expected to be the least efficient.

Theta-Join also times-out with all but the smallest data set.

Figures 6b, 6c, 6d show scalability for Angular, TVD, and JSD,

respectively. With the exception of the smallest, 1% data, Cluster-

Join is consistently the most efficient approach. And as the data

grows to 50% all algorithms except ClusterJoin time out at the 10-

hour mark. This underscores the efficiency of our proposed ap-

proach that combines powerful filters and dynamic load balancing.

8.2.3 Sensitivity analysis

Our ClusterJoin algorithm has two parameters: the number of

anchors, and the expected number of tuples beyond which a parti-

tion needs to be split. In this section we analyze the impact of these

two parameters on performance and show our results in Figure 7.

We pick two distance functions on the two different data sets: Eu-

clidean on the spatial data and Cosine on the document data. In

both cases we use 10% of the original data sets for efficiency con-

siderations. Results for TVD/JSD are similar to Cosine and are

omitted.

Figure 7a shows the performance of ClusterJoin for Euclidean

and Cosine distance functions using different numbers of anchors.

Execution time for Euclidean distance is relatively insensitive, and

goes down slightly as we increase the number of anchors. This is

because for low dimension spatial data, having a larger number of

anchors will likely make the “closest” anchor even closer, thus im-
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Figure 8: Jaccard similarity

proving the effectiveness of our filtering procedure. We observe the

same trend for Cosine distance up to 1000 anchors, beyond which

the total runtime increases as more anchors are added. There may

be two reasons for this increase. First, in high dimensional space,

adding more anchors does not significantly reduce the average dis-

tance to the “closest” anchor. As a result the benefit in pruning is

not as pronounced. Second, as more anchors are introduced, the

amount of time spent on partition size estimation also increases.

The effect is more apparent for Cosine perhaps because for the doc-

ument data set pairwise distance computation is expensive. Over-

all, picking 0.1%− 1% of the original data set seems to be a good

empirical setting for anchors.

Figure 7b illustrates the runtime with different split conditions

that impact partition size. For Euclidean distance the runtime is

again insensitive to partition size, because pairwise distance com-

putation is inexpensive. For Cosine distance the runtime grows

with more than 1000 anchors. This is as expected because of the ex-

pensive computation for documents similarity, which perhaps mag-

nifies the straggler effect. While this parameter depends on factors

such as the available computation resource on worker machines, a

partition size of 1000 seems to be a good empirical number to use.

8.2.4 Discussions: other distances and data sets

Although the focus of this work is to support general metric dis-

tance including distribution- and vector-based distances, we notice

that some set-based similarity functions have direct metric distance

counterparts. For instance Jaccard similarity has a metric distance

equivalent. Given that Jaccard similarity is heavily studied in the

literature [5, 6, 24, 27], and we don’t have a special filter for Jac-

card yet, it would be interesting to see how our approach performs

using the general filter. Our results using the news data set and

Jaccard similarity of 0.9 are reported in Figure 8.

In addition to the techniques compared previously, we also com-

pare with PrefixJoin [24] which is one of the pioneering works

on similarity joins in MapReduce and is shown to be scalable for

set-similarity metrics like Jaccard similarity. To our surprise, Pre-

fixJoin turns out to be less scalable than expected. We believe

this is because of the characteristics of the data used in our ex-

periments. Each record in our news document data is considerably

longer (7KB in size) than the data previously used in [24], includ-

ing DBLP records and paper titles/abstracts. This news data set

is unfavorable to a prefix-based approach for two reasons. First,

since each record is much longer, the size of prefixes grows con-

siderably, requiring the same record to be mapped to many more

reducers. Second, unlike DBLP records, which have very distinct,

unique tokens (like authors’ last name) and when used as a prefix

can be very selective, the news documents does not have as many

unique tokens proportionate to the size of the record, thus reducing



the effectiveness of PrefixJoin and overwhelming reducers respon-

sible for common tokens.

We notice that compared to the previously used data sets, the

news data set is more heterogeneous with great variability in doc-

ument sizes. This inspires us to develop a length-based filter used

during the Mapper phase. In particular, we observe that documents

of size l cannot possible join with documents of size less than sl, or

documents of size greater than l
s

, where s is the similarity thresh-

old (or 1−distance threshold) for Jaccard. Given this, we bucke-

tize documents by length into consecutive ranges {b1 : [0, k), b2 :
[k, k

s
), b3 : [ k

s
, k

s2
), . . .}, where the observation is that documents

in bucket bi can only join with documents in buckets bi+1 and bi−1,

and nothing else. Based on this, we put consecutive buckets into

groups, that is gi = {bi ∩ bi+1}. We use the group id, gi, in con-

junction with the anchor partition id in our Mapping Phase 7.2 as

the reducer key, thereby further reducing the size of each partition.

This approach still guarantees correctness, because in each anchor

partition, a pair of documents in adjacent buckets bi, bi+1 will be

mapped to exactly one sub-partition in group gi. This new par-

titioning scheme greatly improves scalability for both ClusterJoin

and PrefixJoin, as shown by ClusterJoin-len and prefix-len curves

in Figure 8.

While the idea of a length-based filter is not new and has been

used, for instance in PP-Join [27], to the best of our knowledge the

length bucketization scheme has not been used in mapping parti-

tions for similarity join in Map Reduce.

Discussion. The point of this exercise is not to show that our ap-

proach is the best for Jaccard similarity. In fact, we believe that for

short homogeneous data sets with distinct tokens, PrefixJoin [27]

and a very recent work MassJoin [13] (shown to be more scalable

than PrefixJoin) may be more suitable.

The upshot of this is that while ClusterJoin is effective for a large

number of scenarios, it is not always the best approach. In fact,

we believe that it is unlikely that one technique can dominate ev-

ery other algorithm across all possible settings, especially given the

complexity of the problem under study. As a result, different tech-

niques like ClusterJoin need to be developed that are optimized for

different distance functions and data sets with different characteris-

tics. Our ClusterJoin approach, for example, is perhaps more suit-

able for vector- or distribution-based distance functions with low

distance thresholds and high dimensional data. As another exam-

ple, even though the V-SMART-Join approach is not very efficient

in our experiments using high dimensional document data sets, is

likely to be the most scalable for sparse data sets with a large token

alphabet, as the authors rightfully argue and show in [18] using the

IP/Cookie data set.

Perhaps just as Hash Join, Index Join and Nested Loop Join work

well under different circumstances for relational join, understand-

ing the relative performance of different similarity-join algorithms

in different scenarios will allow us to develop a cost model that ul-

timately can be used to select the right algorithm based on the data

and distance function in question. We believe this is an interesting

area for future research.

9. CONCLUSIONS
In this paper, we propose a ClusterJoin framework for similar-

ity joins using MapReduce. We design a set of strong filters us-

ing a novel bisector-based reasoning, and a dynamic partitioning

scheme that guarantees load balancing with high probability. Our

approach is scalable and our experiments show that it outperforms

the current state-of-the-art techniques significantly for a variety of

distance functions with low distance thresholds.
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