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Abstract

Point process filters have been applied successfully to decode neural signals and track

neural dynamics. Traditionally, these methods assume that multiunit spiking activity

has already been correctly spike-sorted. As a result, these methods are not appropriate
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for situations where sorting cannot be performed with high precision such as real-time

decoding for brain-computer interfaces. As the unsupervised spike-sorting problem re-

mains unsolved, we took an alternative approach that takes advantage of recent insights

about clusterless decoding. Here we present a new point process decoding algorithm

that does not require multiunit signals to be sorted into individual units. We use the the-

ory of marked point processes to construct a function that characterizes the relationship

between a covariate of interest (in this case, the location of a rat on a track) and fea-

tures of the spike waveforms. In our example, we use tetrode recordings, and the marks

represent a four-dimensional vector of the maximum amplitudes of the spike waveform

on each of the four electrodes. In general, the marks may represent any features of the

spike waveform. We then use Bayes’ rule to estimate spatial location from hippocampal

neural activity.

We validate our approach with a simulation study and with experimental data recorded

in the hippocampus of a rat moving through a linear environment. Our decoding algo-

rithm accurately reconstructs the rat’s position from unsorted multiunit spiking activ-

ity. We then compare the quality of our decoding algorithm to that of a traditional

spike-sorting and decoding algorithm. Our analyses show that the proposed decoding

algorithm performs equivalently or better than algorithms based on sorted single-unit

activity. These results provide a path toward accurate real-time decoding of spiking

patterns that could be used to carry out content-specific manipulations of population

activity in hippocampus or elsewhere in the brain.

2



1 Introduction

Neural systems encode information about external stimuli in temporal sequences of ac-

tion potentials. Because action potentials have stereotyped, impulse waveforms, they

are most appropriately modeled as point processes (Brillinger, 1992). Neural systems

are moreover dynamic in that the ensemble firing of populations of neurons, repre-

senting some biologically relevant variable, continually evolves. Decoding algorithms

based on adaptive filters have been developed to study how the firing patterns maintain

dynamic representations of relevant stimuli. More specifically, both discrete-time and

continuous-time point process filter algorithms have been applied with great success to

address problems of estimating a continuous state variable, such as the location of an

animal exploring its environment (Brown et al., 1998; Huang et al., 2009; Koyama et

al., 2010).

A prerequisite for these increasingly efficient decoding methods is the application

of spike-sorting: the waveforms recorded extracellularly at electrodes must be clustered

into putative single neurons. Therefore, the accuracy of the spike-sorting critically im-

pacts the accuracy of the decoding (Brown et al., 2004). Many algorithms for spike-

sorting, whether real-time and automatic or offline and manual, have been developed

since the 1960s (Lewicki, 1998; Wild et al., 2012). The majority of these algorithms

are clustering-based methods, allocating each spike to a putative single cell based on

the characteristics of spike waveforms. These types of pure waveform, hard bound-

ary spike-sorting algorithms, suffer from many sources of error such as nonstation-

ary noises, non-Gaussian clusters, and synchrony (Lewicki, 1998; Harris et al., 2000;

Quiroga, 2012). In addition, they also have been shown to yield biased and inconsistent
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estimates for neural receptive fields (Ventura, 2009b). Another clustering method, soft

or probabilistic spike assignment, has been incorporated into some decoding paradigms

and analyses have shown that these algorithms can yield unbiased estimates of stimula-

tion parameters (Ventura, 2008, 2009a). Nonetheless, these algorithms, like most hard

sorting methods, are not well suited to real-time implementations, both because the al-

gorithms are too computationally intensive and because they rely on having the entire

dataset available for the clustering algorithm.

More recently, decoding methods without a spike-sorting step have been investi-

gated (Luczak & Narayanan, 2005; Stark & Abeles, 2007; Fraser et al., 2009; Kloost-

erman et al., 2014). A notable development is the spike feature decoding approach

proposed by Kloosterman and colleagues. It incorporates a covariate-dependent soft

sorting method to estimate a nonparametric distribution of the animal’s position. This

improves decoding performance by using information that is otherwise excluded by

sorting spikes into discrete clusters. However, this method does not incorporate a model

of the animal’s position trajectory, and therefore the decoding results can depend sub-

stantially on specific model parameters such as the choice of a discrete time bin width:

if the time scale is too broad, the algorithm cannot track the stimuli fast enough; if too

narrow, it cannot integrate information provided by spikes nearby in time. Addition-

ally, this algorithm extracts information from spike intervals, but does not optimally

incorporate information from intervals that contain no spikes.

To address these issues, we propose a novel algorithm for adaptive decoding of spik-

ing activity which avoids the clustering problem of spike-sorting entirely by defining a

joint model for the spike waveform and receptive field structure, and uses a state-space
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model to incorporate knowledge of the properties of the signal to decode. The goal

of the proposed algorithm is to decode an adaptive state variable, in this case the dy-

namic trajectory of the rat along a track, by computing the posterior distribution of the

state process conditioned on the set of observations up until the current time. Our al-

gorithm takes directly as inputs the recorded spikes where each spike is associated with

a vector of characteristic features selected from the raw waveforms. Such inputs can

be mathematically described by a marked point process, where the points are the spike

times and the marks are their corresponding waveform. In this paper, we first char-

acterize the spiking activity of an ensemble of neurons using the conditional intensity

function for marked point processes. Next, we construct a stochastic state marked point

process filter to iteratively calculate the full posterior probability for the state variable.

We illustrate our approach in a simulation study where the decoding algorithm is used

to reconstruct an animal’s position from unsorted multiunit place cell spiking activity.

We also apply the algorithm to experimental data recorded in the hippocampus of a rat

navigating a linear environment. We then compare the quality of fit of our clusterless

decoding algorithm to that of a traditional spike-sorting and decoding algorithm.

2 Methods

Any orderly point process can be fully characterized by its conditional intensity func-

tion (Daley & Vere-Jones, 2003). A conditional intensity function describes the instan-

taneous probability of observing a spike, given previous spiking history. By relating the

conditional intensity function to specific biological and behavioral signals we can spec-
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ify a spike train encoding model. The conditional intensity function also generalizes to

the marked case, in which a random vector, termed a mark, is attached to each point. In

the case of tetrode recordings, for example, the mark could be a length four vector of

the maximum amplitudes on each of the four electrodes at every spike time. A marked

point process is completely defined by its joint mark intensity function

λ(t, ~m|Ht) = lim
∆→0

Pr(a spike with mark vector ~m in (t, t+ ∆]|Ht)

∆
, (1)

where Ht is the history of the spiking activity up to time t. λ(t, ~m|Ht) represents a joint

stochastic model for the marks as well as the arrivals of the point process.

The joint mark intensity function characterizes the instantaneous probability of ob-

serving a spike with mark ~m at time t as a function of factors that may influence spiking

activity. We posit that the spiking activity depends on some underlying internal state

variable x(t), such as an animal’s location in space, that varies across time. We can

therefore model the spiking activity as λ(t, ~m|Ht) = g(x(t), ~m|Ht). When taking an

integral of λ(t, ~m|Ht) over the mark space M, we get the probability of observing a

spike regardless of the mark value:

Λ(t|Ht) =

∫
M

λ(t, ~m|Ht)d~m. (2)

Λ(t|Ht) can be understood as the conventional conditional intensity function of a tem-

poral point process. For a marked point process, Λ(t|Ht) is called the intensity function

of the ground process (Daley & Vere-Jones, 2003). The mark space M can be of any

dimension.
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The goal of our decoding algorithm is to compute, at each time point, the posterior

distribution of the state variable given observed marked spiking activity. To do this, we

apply the theory of state-space adaptive filters (Haykin, 1996). Recursive filter equa-

tions can be solved in both discrete-time and continuous-time (Eden et al., 2004; Eden

& Brown, 2008). In this paper we present an algorithm in discrete-time.

To describe the discrete-time filters, we partition an observation interval [0, T ] into

{tk : 0 ≤ t1 < · · · < tN ≤ T} and let ∆k = tk − tk−1. The posterior density for the

state variable at time tk can be derived simply using Bayes’ rule,

p (xk|∆Nk, ~mk, Hk) =
p (xk|Hk) p (∆Nk, ~mk|xk, Hk)

p(∆Nk, ~mk|Hk)
, (3)

where xk = x(tk) is the state variable at time tk, ∆Nk is the number of spikes observed

in the interval (tk−1, tk], and Hk is the spiking history up to time tk. ~mk represents a

collection of mark vectors ~mki , i = 1, · · · ,∆Nk, observed in the interval (tk−1, tk].

The first term in the numerator on the right hand side of equation (3), p(xk|Hk), is

the one-step prediction density defined by the Chapman-Kolmogorov equation as

p (xk|Hk) =

∫
p(xk|xk−1)p (xk−1|∆Nk−1, ~mk−1, Hk−1) dxk−1. (4)

Here we have assumed that given the past state value, xk−1, the distribution of the cur-

rent state does not depend on past spiking activity. The integral in equation (4) typically

cannot be solved analytically, but multiple numerical and approximation methods are

available to compute its value at each time point. In this case, we performed numer-

ical integration over a one-dimensional state space using a simple Riemann sum. If
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the state variable is high-dimensional, alternative methods can be considered to im-

prove computational efficiency. In particular, when prior knowledge allows us to as-

sume unimodality of the posterior density, a linear recursive Gaussian approximation to

the posterior density can be constructed (Brown et al., 1998; Eden et al., 2004; Smith

& Brown, 2003). Alternatively, when the posterior distribution is unknown, sequen-

tial Monte Carlo methods, also called particle filters, can provide efficient estimation

(Doucet et al., 2001; Ergun et al., 2007). We show the construction of these two types

of algorithms in the Appendix.

Equation (4) has two components: p(xk|xk−1), which is given by a state evolution

model under the Markovian assumption, and p(xk−1|∆Nk−1, ~mk−1, Hk), which is the

posterior density from the last iteration step. We multiply this probability density func-

tion with the posterior distribution of the state variable at the previous time step tk−1,

and numerically integrate the product over all possible values of the previous state,

xk−1. The resulting integral is the a one-step prediction density at the current time tk.

The second term in equation (3), p(∆Nk, ~mk|xk, Hk), is the likelihood or observa-

tion distribution at the current time, and can be fully characterized by the joint mark

intensity function λ(t, ~m|Ht):

p (∆Nk, ~mk|xk, Hk)

∝


exp [−∆kΛ(tk|Hk)] , ∆Nk = 0;

∆Nk∏
i=1

[λ(tk, ~mki |Hk)∆k] exp [−∆kΛ(tk|Hk)], ∆Nk > 0.
(5)

We can interpret equation (5) by separating the product on the right hand side into
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two terms. The
∏∆Nk

i=1 [λ(tk, ~mki |Hk)∆k] term characterizes the distribution of firing

∆Nk spikes, such that the mark value of the ith spike in the interval (tk−1, tk] is mki ,

where i = 1, · · · ,∆Nk. If no spike occurs, i.e., ∆Nk = 0, this term equals 1. The

exp [−∆kΛ(tk|Hk)] term gives the probability of not firing any other spikes in the ob-

servation interval, where Λ(tk|Hk) =
∫
M

λ(tk, ~mk|Hk)d~mk as defined in equation (2).

The discrete-time likelihood or observation distribution defined by equation (5) as-

sumes that within a small time step ∆k, conditional on the history Hk and the current

value of the state vector xk, spiking activity for the neural ensemble is independent.

However, the spiking activity at a given time step can explicitly depend on the past

history of activity from the entire population, including dependencies between neurons.

The observation distribution is then multiplied by the one-step prediction density to

get the posterior density at the current time. Note that we can drop the normalization

term, p(∆Nk, ~mk|Hk) because it is not a function of xk. Substituting equation (4)

into equation (3) yields a recursive expression for the evolution of the unnormalized

posterior density:

p(xk|∆Nk, ~mk, Hk)

∝ p (∆Nk, ~mk|xk, Hk)

∫
p(xk|xk−1)p(xk−1|∆Nk−1, ~mk−1, Hk−1)dxk−1. (6)

3 Simulation Study

We first tested this approach on simulated data corresponding to the activity of two

“place cells” firing as an animal traverses a linear track. Place cells are neurons in the
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hippocampus that are activity primarily when an animal is located in a certain portion

of it’s environment (O’Keefe & Dostrovsky, 1971; O’Keefe, 1979). Substantial amount

of information about the position carried by place cells have been reliably quantified

with a formal statistical algorithm and used to reconstruct the trajectory and predict the

future position of the rat (Muller & Kubie, 1989; Wilson & McNaughton, 1993; Zhang

et al., 1998; Brown et al., 1998).

In this section, we apply the clusterless decoding algorithm to the problem of decod-

ing a one-dimensional position of a rat on a linear track using a marked point process

arising from two hippocampal place cells, where the one-dimensional mark represents

the peak height of the spike waveform. Here we note that accurate decoding of position

based on place cell activity normally requires many cells. Our goal here is therefore not

to test the accuracy of decoding, but rather to provide intuition about how our approach

works in a simple case. First, we simulate the rat’s trajectory using an autoregressive

process and the joint mark intensity function of the two cells using a mixture of two

bivariate Gaussian distributions. Then, we use marked point process filter to recon-

struct the location of the rat at each time step. We show that the filter yields exact full

posterior densities that are often multimodal. We also reconstruct the trajectory using a

traditional algorithm in which decoding was applied after spike-sorting. Last, we com-

pare the performance of the clusterless decoding algorithm to the traditional decoding

algorithm.
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3.1 Data Simulation

We simulated the movement of a rat running back and forth along a linear track with

the following transition probability

p(xk|xk−1) ∼ N (αxk−1, σ) , (7)

where we set α = 0.98 and σ = 0.05 to generate an autoregressive process whose

steady-state standard deviation is 1.26.

We defined the joint mark intensity of two hippocampal place cells using a bivariate

Gaussian mixture function,

λ(t, ~m) =

2∑
c=1

exp

αc −
x(t)− µcx

~m− µc~m


T 2(σcx)

2 0

0 2(σc~m)2


−1x(t)− µcx

~m− µc~m


 . (8)

This model assumes that spikes originate from an ensemble of two cells and that the

joint mark intensity function for each cell’s place field and marks is a multivariate Gaus-

sian function. In other words, each cell has a place field with a Gaussian shape, and the

marginal distribution of the marks given the rat’s position is a multivariate Gaussian

distribution.

The parameters for this model include αc for c = 1, 2, which controls the maximum

in-field firing rate for the cth neuron. x(t) is the animal’s linearized position at time

t and ~m is the one-dimensional mark value. µcx is the center of the place field and

µ~mc is the mean of the density function for marks for neuron c. σcx and σc~m are the
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standard deviations of the place field and the mark space for neuron c respectively. In

this illustrative example, we set the centers of the place field at µ1
x = −1.5 and µ2

x = 1.5

respectively, with a (σ1
x)

2 = (σ2
x)

2 = 0.1 variance. We set the maximum in-field firing

rate of both neurons to α1 = α2 = 100 spikes per second. The one-dimensional mark

space for the two neurons are centered at µ1
~m = 10 and µ2

~m = 13 respectively, with

standard deviations σ~m = σ1
~m = σ2

~m varying between 0.01 and 5.

By plugging in the simulated position trajectories, x(t), into Equation (8), we com-

puted the instantaneous intensity at each time step. The underlying unmarked spike

trains are generated under an inhomogeneous Poisson process model with rate Λ(t|Ht)

given by equation (2). The marks associated with the spike trains are sampled from the

probability density f(~m|t) =
λ(t, ~m)

Λ(t|Ht)
.

Figure 1 displays the results of a representative, one-second trial where spiking

activity of two neurons with moderate mark space overlap σ~m = 2 was simulated.

Figure 1(A) shows the simulated trajectory of the animal with the linear location on the

y-axis. Figure 1(B) plots the simulated spike train with the mark value on the y-axis.

Visually, we cannot identify a clear clustering of the mark values. Figure 1(D) shows

the true joint mark intensity function λ(t, ~m) used to simulate the marked spike train

in Figure 1(B). The two simulated neurons overlap over a moderate amount of mark

space, but are fairly localized in space, with little overlap of their place fields.

3.2 Decoding Results

In this subsection, we present the decoding results of the simulated data described in

subsection 3.1 Data Simulation using the clusterless decoding algorithm described in
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the Methods section. When calculating the observation distribution defined in Equation

(5), we used the true joint mark intensity function specified in Equation (8). In real

data, we will need to estimate an encoding model for the joint mark intensity function.

However, this simulation study affords us the opportunity to explore errors due purely

to the decoding algorithms.

Figure 2(A) shows the posterior density for the position of the animal during a one-

second trial as a function of time, using the clusterless decoding algorithm. The blue

line shows the true position of the animal, and the red region is the estimated posterior

density at that time step. We can see that the estimate tracks the true position relatively

closely, and the region of high posterior density covers the true position most of the

time.

In order to compare with the traditional approach where decoding is applied after

spike-sorting, we also implemented a decoding algorithm on individual neurons after

classifying the spikes into clusters using linear discriminant functions (Bishop, 2006).

Here we assume the number of neurons being recorded is known and that we have true

knowledge of the rate function λc(t) about neuron c. This is more knowledge than is

typically available for clustering and decoding, where both the number of neurons and

place fields must be estimated. The time-dependent rate function for individual neuron,

λc(t), takes the following form:

λc(t) = exp

{
αc − 1√

2(σcx)
2

(x(t)− µcx)
2

}
. (9)

Note that λc(t) represents the conventional rate function for an inhomogeneous Poisson
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process, not the joint mark intensity process we have used to define our marked point

process model.

Figure 1(C) plots the spike raster of the two simulated neurons sorted using a linear

discriminant function on their marks. Figure 1(E) shows the true condition intensity

function λc(t) for each neuron c, i.e., the place field of each neuron.

In this case, the unnormalized posterior density is of the form

p(xk|∆N1
k ,∆N

2
k )

∝
2∏
c=1

Pr(∆N c
k |Hk)

∫
p(xk|xk−1)p(xk−1|∆N1

k−1,∆N
2
k−1)dxk−1. (10)

The probability of seeing ∆N c
k spikes from neuron c during the time interval (tk−1, tk]

is

Pr(∆N c
k |Hk) ∝ (λck∆k)

∆Nc
k exp {−λck∆k} , (11)

where, for simplicity, λck denotes λc(tk).

Figure 2(B) and 2(D) are results using decoding with spike-sorting where the de-

coder is applied after classifying the spikes into two clusters. Figure 2(B) shows the

posterior density using decoding with spike-sorting. Visually, we obtained comparable

tracking for the animal’s trajectory.

To illustrate the advantage of using a clusterless decoding algorithm when clear

clustering of neurons is difficult, we zoomed in on the decoding results at times between

400 ms and 600 ms, shown in Figure 2(C) and 2(D). From Figure 1(B) and 1(C), we can

see that even though the rat’s position is positive, and therefore only Neuron 2 is spiking,

the spike waveforms cannot be perfectly resolved. This leads to incorrect decoding
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results using the presorted spiking activity. However, the marked point process decoder

results in a bimodal posterior distribution that accurately reflects the uncertainty due

to the waveform overlap. Figure 2(C) demonstrates the multimodality of the posterior

estimated by a clusterless decoder. For example, at time around 430 ms when a new

spike arrives, the posterior density splits into two modes, one near a linearized position

of -1 and another around a linearized position at 1.5. The posterior density is slightly

higher in the region correctly predicting the animal’s position in the negative regime.

For the decoding with spike-sorting results shown in Figure 2(D), the algorithm has

some trouble tracking the trajectory after new spikes from both neurons arrive because

the posterior density in this case is not multimodal. For example at time around 430 ms,

the posterior density incorrectly estimates the animal’s position at a positive value near

1.

3.3 Goodness-of-Fit Analysis

In order to compare the quality of fit between the two decoding algorithms, we sim-

ulated 100 trials of spiking activity for different degrees of overlap between the two

neurons in the mark space. We evaluate the ability of these two algorithms to track

the location of the animal when the overlaps in the mark space between the joint mark

intensity functions of the simulated neural ensemble vary from low (σcm = 0.01) to

high (σcm = 5) in units of the number of standard deviations, using two different mea-

sures: the root-mean-squared error (rMSE) between the true positions of the animal and

their estimated values and the percentage of the time that the true position values were

covered by the 99% highest posterior density (HPD) region (Casella & Berger, 2001).
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To calculate the 99% HPD region, we find the largest value y0 such that

∫
{x:ρk(x)>y0}

ρk(x)dx = 0.99, (12)

where ρk denotes the posterior density at time step tk as defined in equation (3) for

marked point processes and in equation (10) for the unmarked case. The 99% HPD

region is thus given by {x : ρk(x) > y0}. Because an HPD region indicates the region

of highest posterior probability regardless of contiguity, it is a useful measure of uncer-

tainty when the posterior density can be multimodal. If the state space model is correct,

the 99% HPD region should contain the true position of the animal at any time step with

probability 0.99.

Figure 3(A) shows the rMSEs between the true positions of the animal and their

estimated values averaged across 100 trials as a function of σm. Error bars represent 2

standard deviations from the mean rMSE. The dotted line represents the performance

of the clusterless decoding method. The solid line represents the performance of the

decoding with spike-sorting method. When the standard deviations of both mark spaces

exceed 1, the clusterless decoder consistently gives the lower mean rMSE and there is

no overlap between the error bars for the two algorithms.

The comparison of the rMSEs shows that as the overlap between the marks for the

individual neurons increases and clustering of the spike waveforms becomes more diffi-

cult, the clusterless decoding algorithm provides a consistently more accurate estimate

of the rat’s position than the decoding algorithm using presorted spikes.

Figure 3(B) shows the fraction of time that the true position values were covered by
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the 99% HPD region averaged across 100 trials as a function of σm, which measures

how well each algorithm characterizes their uncertainty. The flat dotted line with narrow

error bars illustrates that regardless of the degree of the overlap between mark spaces,

the true trajectory stays in the 99% HPD region of the clusterless decoding method

around 99% of the time with very little variance about this percentage of time across

the 100 repeated trials of the simulation. The descending solid line with widening

error bars illustrates that, for decoding with spike-sorting, as the degree of the overlap

between mark spaces increases, the fraction of time that the true trajectory stays in the

99% HPD region is decreasing from 99% to 80% with an increasing variance.

The comparison of the 99% HPD region illustrates two advantages of the clusterless

decoding algorithm regarding the uncertainty of the state estimates. First, the width of a

99% HPD describes the degree of uncertainty in the estimates. As the overlap between

the mark spaces increases, the width of the 99% HPD region of the decoding algo-

rithm using presorted spikes increases, indicating decreasing certainty in the estimated

position. However, the clusterless decoding algorithm provides a narrower 99% HPD

region regardless of the mark space overlap. This means that the clusterless decoding

algorithm provides more estimates of the rat’s position and is less influenced by the de-

gree of overlap in the mark space. Second, the percentage of time within the 99% HPD

represents the accuracy of uncertainty in the estimates. As the overlap in the mark dis-

tribution between the neurons increases, the decoding with presorted spikes estimates

the uncertainty in position with less accuracy, while the estimated certainty of the clus-

terless decoding algorithm remains the correct at around 99%. Therefore the estimated

certainty for the clusterless decoding algorithm is both higher and more accurate than
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the estimated certainty for decoding with presorted spikes.

4 An Application to Position Decoding from Multiunit

Activity in Rat Hippocampus

We also applied the clusterless decoding algorithm to experimental data recorded using

a multi-electrode array in the hippocampus of a rat running back and forth on a linear

track. The data used in this analysis were recorded from 5 tetrodes in the dorsal CA1 and

CA2 regions of the hippocampus. Ten units with active place fields were identified by

manual clustering of spike waveforms from these tetrodes. Details of the experimental

preparation, data acquisition and choice of spike-sorting method can be found in the

Appendix.

When recording from multi-electrode arrays, each electrode records the signals from

nearby neurons, and these signals can be combined across electrodes. Thus, by combin-

ing tetrodes together, we can gain additional spatial information about each signal. In

this case, assuming that conditional on the spiking history and the current state variable

the spiking activity is independent between tetrodes, we can augment the observation

distribution in equation (5) to be

p (∆Nk, ~mk|xk, Hk)

∝



S∏
s=1

exp [−∆kΛ
s(tk)], ∆Nk = 0;

S∏
s=1

∆Ns
k∏

i=1

[λs(tk, ~mki)∆k] exp [−∆kΛ
s(tk)], ∆Nk > 0,

(13)
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where S is the number of groups of recordings, in this case the number of tetrodes.

∆N s
k is the number of spikes observed from neurons on tetrode s during (tk−1, tk].

Λs(tk) =
∫
M

λs(tk, ~mk)d~mk, where λs(tk, ~mk) defines the joint mark intensity function

for neurons on tetrode s, where s = 1, · · · , S.

In this analysis, we propose a marked Poisson, nonparametric clusterless encoding

model to estimate the joint mark intensity function λ(t, ~m), given an observation inter-

val t ∈ (0, T ] with a sequence of N spike times 0 < u1 < · · · < ui < · · · < uN ≤ T :

λ̂(t, ~m) =

1
N

∑N
i=1

1
Bx

1
det (B~m)

K
(
x(t)−xui

Bx
, B−1

~m (~m− ~mui)
)

1
T

∑T
j=1

1
bx
K
(
x(t)−xj
bx

) , (14)

where N is the total number of spikes, ui is the time of ith spike, and T is the total

time of the experiment. K is a multivariate kernel in both the place field and the mark

space whose smoothness depends on both the smoothing parameter Bx and the band-

width matrix B~m (Ramsay & Silverman, 2010). K is a univariate kernel on the spatial

component only and its smoothing parameter is bx.

Here we used Gaussian kernels for both K and K:

K =

{
1√
2π

exp

[
−1

2

(
x(t)− xui

Bx

)2
]}

·

{
1(√
2π
)d exp

[
−1

2
(~m− ~mui)

TB−T~m B−1
~m (~m− ~mui)

]}
, (15)

K =

{
1√
2π

exp

[
−1

2

(
x(t)− xj

bx

)2
]}

, (16)

where d = 4 is the dimension of the mark space. The bandwidths were chosen based
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on previous knowledge of two things: variability in the waveform structure for a single

neuron and prior information about spatial extent of a place field. For this analysis, bx

and Bx were set to 1.5% of the linear track length, and B~m was set to a 4-dimensional

scalar matrix whose diagonal entries equal 20 mV. We found that our results remain

consistent for a wide range of bandwidths.

We then compare the results to decoding based on sorted data. These data included a

total of 11 active place cells across an 840 second recording session. To assess whether

the models generalize well to unobserved data as well as to limit overfitting, both algo-

rithms are carried out using a 5-fold cross-validation.

Figure 4 illustrates the decoding results from signals recorded from 5 tetrodes in

the CA1 and CA2 regions of the hippocampus using the two different algorithms. Here

we display the first 125 seconds of decoding results in both panels. Figure 4(A) are

decoding results using the clusterless decoding algorithm. Figure 4(B) are decoding

results where the decoder is applied after the spikes have been manually sorted into

clusters. The blue line shows the true position of the animal, and the red region shows

the estimated posterior density at that time step. We can see that the estimate tracks the

true position closely, and the region of highest posterior density covers the true position

most of the time. In contrast, as shown in Figure 4(B), the posterior density using

decoding with spike-sorting has some trouble tracking the true trajectory, for example

between time 6250 seconds and 6260 seconds.

To assess quality of fit, we calculated the root-mean-square error (rMSE) in cen-

timeters and the percentage of the time that the true position values fall within the 99%

HPD region. We compared the rMSE and percentage of time within 99% HPD region
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for the decoding results on the entire 840 seconds of recording. The posterior density

computed through the clusterless decoding algorithm has an rMSE of 14.3 cm and re-

mains within the 99% HPD region 74.25% of the time. The size of the 99% HPD region

for the clusterless decoding algorithm has a mean of 10.5 cm and a standard deviation

of 6.96 cm. The posterior density computed by first spike-sorting and then decoding

has a rMSE of 26.0 cm and remains within the 99% HPD region 70.76% of the time.

The size of the 99% HPD region for the decoded with sorted spikes has a mean of 17.2

cm and a standard deviation of 13.14 cm.

The clusterless algorithm has narrower 99% HPD region, more accurately reflect-

ing the uncertainty of the decoding estimates. The algorithm that uses spike-sorting

has wider 99% HPD region, suggesting less certainty in the estimates. Therefore the

estimated certainty for the clusterless decoding method is both higher and more accu-

rate than the estimated certainty for the spike-sorting based method. Both visually and

numerically, we showed that our proposed clusterless algorithm performs as well as or

better than algorithm based on sorted spikes.

5 Discussion

We previously used point process theory to develop efficient decoding algorithms based

on spike train observations (Brown et al., 1998; Eden et al., 2004; Huang et al., 2009;

Koyama et al., 2010). In each of these cases, a key assumption is that the signals

have been accurately sorted into single units before the decoding algorithm is applied.

Although new spike-sorting algorithms are actively being developed, spike-sorting still
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remains a time-consuming, difficult task, suffers from many sources of errors, and likely

provides biased estimates (Lewicki, 1998; Harris et al., 2000; Quiroga, 2012). In this

article, we have proposed a novel clusterless decoding algorithm that maintains the

accuracy of previous methods, but avoids spike-sorting.

The proposed clusterless decoding algorithm has several important advantages. First,

this algorithm does not require that the multiunit activity has been accurately sorted into

single units. Instead, by using the theory of marked point processes, the algorithm char-

acterizes directly the relationship between a desired variable and features of the spike

waveforms. We bypass spike-sorting by modeling the spiking activity as a joint func-

tion of the state variable to decode and of features of the spike waveforms. Therefore,

this new algorithm can incorporate information from spikes that, in previous decoders

that relied on spike sorting, may have been thrown out because of difficulties in cluster-

ing, or misclassified. Indeed, in a recent analysis of the effects of spike-sorting schemes

on decoding performance, Todorova and colleagues confirmed that discarding wave-

forms that do not match any template—the “hash”—systematically degrades decoding

(Todorova et al., 2014), consistent with previous studies (Stark & Abeles, 2007; Fraser

et al., 2009).

Another advantage of the marked point process approach is that the joint intensity

mark function defines a population level place receptive field structure, which will typ-

ically have multimodal structure. That is, the joint intensity mark function is expected

to have multiple peaks in the joint place and mark space. Previous work by Huang et

al. has shown that de- coding algorithms that allow for highly nongaussian and mul-

timodal posterior densities perform better at reconstructing the animal’s trajectory and
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predicting future decisions (Huang et al., 2009).

Last, formulating the decoding problem within a state-space paradigm offers a num-

ber of specific benefits. It allows us to incorporate knowledge about the system we are

decoding, in this case the rat’s position trajectory. This also imposes an implicit conti-

nuity constraint, preventing large fluctuations in the state estimates. This allows us to

track the state variable smoothly without high dependence on the choice of time step

during decoding. Moreover, due to the state-space approach, the resulting decoding

algorithm incorporates information from both spike intervals and non-spike intervals.

We tested the new decoding algorithm on tetrode recordings from the hippocampus

of a rat running back and forth on a linear track. We showed that the clusterless de-

coding algorithm provided a slightly improved accuracy than that of the decoding with

manual spike-sorting approach. The intention of this example is to demonstrate com-

parable decoding accuracy without the additional, time-consuming spike-sorting step,

thus making this algorithm a suitable candidate for real-time application.

There are a number of directions in which this work may be extended. The nu-

merical integration we used to compute the filtering is efficient when decoding low-

dimensional signals. When the desired variable is high-dimensional, alternative adap-

tive algorithms can be used to ensure efficiency, such as sequential Monte Carlo meth-

ods or Gaussian approximate filters.

In the application example, we presented a nonparametric encoding model to esti-

mate the joint mark intensity function based on kernel methods. We have found that

our results remain consistent for a wide range of bandwidths. Therefore, in real-time

decoding, it is reasonable to set the smoothing parameter and bandwidth matrix before-
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hand. We also recognize for non-parametric kernel based encoding, the computation

time increases with the total number of spikes. In the interest of real-time applications,

it is possible to explore other more efficient models as well. Within the family of non-

parametric encoding model, one can include a time dimension with receding horizon to

reduce the number of spikes encoded at any given time.

Another choice of encoding model is semi-parametric models, for example, a multi-

dimension grid interpolated for the joint distribution of mark and place field. This grid

can serve as a kind of look-up table for the estimated joint mark intensity function. By

calculating this grid beforehand, we can perform real-time clusterless decoding without

any computation time spent in encoding. A more general approach to reduce encoding

time is to perform dimension reduction on the multi-dimensional mark space before

encoding.

Finally, as we move away from the prerequisite of spike-sorting, multivariate marked

point process models can be developed to describe coupling between neurons (Ba et al.,

2014).

Another future role for these methods is in the development of new types of closed-

loop experiments. Traditionally, experiments designed to study the role of specific spike

patterns in stimulus-response tasks take one of two forms: observational studies that

characterize statistical properties of neural activity during such tasks or interventional

studies that broadly alter neural activity over an entire neural population or brain region.

However, new closed-loop experiments designed based on the content of neural signals

aim to characterize causal relationships between neural activity and the biological and

behavioral signals they encode. The proposed algorithm can allow investigators to ma-
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nipulate millisecond-timescale spike patterns in a content-specific way, altering spiking

activity related to certain neural patterns while leaving activity related to other patterns

intact.

In conclusion, we develop a novel method for modeling neural response properties

and decoding biological and behavioral signals by expanding the class of neural models

to incorporate marked point processes. We found that the resulting decoding signals

were estimated with higher accuracy and more confidence than traditional spike-sorting

based methods. We believe this work has broad implications, allowing for better neural

coding models across a wide range of brain areas and neural systems.

6 Appendix

6.1 Hippocampal data collection and preprocessing

The hippocampal data in this paper are from a single male Long-Evans rat (500-600 g)

trained to alternate in a linear track for liquid reward (condensed milk). A microdrive

array containing 21 independently movable tetrodes was implanted targeting the hip-

pocampal cell layers according to University of California San Francisco Institutional

Animal Care and Use Committee and US National Institutes of Health guidelines. All

neural signals were recorded relative to a reference tetrode in the corpus callosum. Fol-

lowing data collection, electrode locations were verified histologically to localize to the

CA1–CA2 region of the hippocampus.

Data were collected using the NSpike data acquisition system (L.M.F. and J. MacArthur,

Harvard Instrumentation Design Laboratory). An infrared diode array with a large and a
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small cluster of diodes was attached to the preamps during recording. Following record-

ing, the rats position on the track was reconstructed using a semi-automated analysis of

digital video of the experiment. Individual units (putative single neurons) were identi-

fied by clustering spikes using peak amplitude, principal components, and spike width

as variables (MatClust, M. Karlsson) (Karlsson & Frank, 2008).

6.2 Gaussian approximation to the posterior density

Because in this paper the state variable is low-dimensional, we used a simple Riemann

sum to perform numerical integration over the state space in order to solve the one-

step prediction density in equation (4). If the state variable is high-dimensional and

the posterior density can be assumed to be approximately Gaussian, a stochastic state

point process filter (SSPPF) can be used. The SSPPF is constructed using a Gaussian

approximation to the posterior density. Detailed derivation of approximate Gaussian

filters for temporal point processes can be found in (Brown et al., 1998; Eden et al.,

2004). Here we provide an extension of the SSPPF to the marked case.

For estimating higher-dimensional state variables, a linear recursive Gaussian ap-

proximation to the posterior density at each time step, p(xk|∆Nk,mk) can be con-

structed with the estimated conditional mean xk|k and variance Wk|k as follows:

W−1
k|k =

(
FkWk−1|k−1F

T
k +Qk

)−1
+

[
∂2Λk

∂xk∂xTk
∆k −

∆Nk∑
i=1

∂2 log λik
∂xk∂xTk

]
xk=Fkxk−1|k−1

xk|k = Fkxk−1|k−1 +Wk|k

[
∆Nk∑
i=1

(
∂ log λik
∂xk

)T
−
(
∂Λk

∂xk

)T
∆k

]
xk=Fkxk−1|k−1

,
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where, for simplicity, λik denotes λ(tk, ~mki |Hk) and Λk denotes Λ(tk|Hk) =

∫
M

λ(tk, ~mk|Hk)d~mk.

In the posterior mean equation, the innovation includes two terms. The first term,

∂ log λik
∂xk

, depends on the marks of the observed spikes. The second term
∂Λk

∂xk
includes

Λk, which is the intensity function of the ground process and relates to the intensity of

observing any spikes regardless of the mark.

6.3 Sequential Monte Carlo decoding algorithm

When the state variable is high-dimensional and the posterior density cannot be as-

sumed to be approximately Gaussian, another computationally efficient alternative is a

sequential Monte Carlo algorithm. Point process adaptive filters using sequential Monte

Carlo approximations to the posterior density have been developed in previous litera-

ture (Ergun et al., 2007; Meng et al., 2011). Here we provide a pseudo-code description

of the algorithm with extension to marked point processes.

At each time step t, the algorithm produces a collection of weighed samples, or

particles, each containing proposed values for the state variable xt. We construct esti-

mates for the state variable by computing their sample means over all the particles, and

construct approximate 95% confidence intervals.

1. Initialization:

Set t = 0 and for i = 1, · · · , n particles, draw the initial states and parameters

from an initial probability distribution and set the importance weight of the ith particle

wi0 = n−1 for all i. Set t=1.

2. Importance sampling:

Using the particles from the previous step which represent the one-step prediction
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density defined in equation (4) as the sampling distribution, update all of the states xt.

Evaluate the importance weight of the ith particle

wit = wtt−1p(∆Nt, ~mk|Ht),

where p(∆Nt, ~mk|Ht) is computed by equation (5) or (13).

Normalize the importance weights

w̃it =
wit∑
j w

j
t

.

3. Resampling:

Resampling can be performed at any fixed interval. Draw n particles {x̃it : i =

1, · · · , n} from {sit : i, · · · , n} using the residual resampling approach. Reset the

weights to w̃it = n−1 to obtrain the Monte Carlo estimate of the probability density

p(x̃t|Nt) ≈ n−1

n∑
i=t

δ(x̃t − x̃it),

where δ(·) is the Dirac delta function, indicating a point mass at 0.

4. Repeat steps 2–3.
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FIGURE 1. (A) Simulated trajectory of the animal running back and forth on a lin-

ear track. (B) One second unsorted spike train with marks from two simulated neurons.

(C) One second raster plot of spikes without marks where the spikes were sorted via a

linear discriminant function on their mark values. (D) True joint mark intensity of the

two simulated neurons as a function of linear position on the y-axis and mark value on

the x-axis. The place fields center at -1.5 and 1.5 respectively, with a 0.1 variance. The

mark spaces are one-dimensional with mean of 10 and 13 respectively, and standard

deviation of 2. (E) True rate of each of the two simulated neurons as a function of linear

position. It represents the place field of each neuron.
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FIGURE 2. Decoding results for two simulated neurons. (A) Posterior density of

the animal’s linear position using the clusterless decoding algorithm. The blue line

represents the actual position of the animal. The red represents the posterior density at

each time step. (B) Posterior density of the animal’s linear position using the decoding

with spike-sorting. (C) Clusterless decoding results zoomed in at time between 400 and

600 ms, showing the multimodality of the posterior around 430 ms. (D) Decoding with

spike-sorting results zoomed in at time between 400 and 600 ms.
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FIGURE 3. Quality of fit comparison between the two decoding algorithms. (A)

Root-mean-squared error (rMSE) between the true positions of the animal and their

estimated values averaged across 100 trials as a function of the overlap between mark

spaces of two simulated neurons. Error bars represent 2 standard deviations from the

mean rMSE. The dotted line represents the performance of clusterless decoding method.

The solid line represents the performance of decoding with spike-sorting method. (B)

Fraction of time that the true position values were covered by the 99% highest posterior

density (HPD) region averaged across 100 trials as a function of the overlap between

mark spaces of two simulated neurons. Error bars represent 2 standard deviations from

the mean coverage probability. The dotted line represents the performance of clusterless

decoding method. The solid line represents the performance of decoding with spike-

sorting method.
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FIGURE 4. Decoding results for hippocampus data. (A) Posterior density of the

rat’s linear position using the clusterless decoding algorithm. The blue line represents

the actual position of the rat. The red represents the posterior density at each time

step. The posterior density computed through the clusterless decoding algorithm has

an rMSE of 14.3 cm and remains within the 99% HPD region 74.25% of the time. (B)

Posterior density of the rat’s linear position using decoding with manual spike-sorting.

The posterior density computed by first spike-sorting and then decoding has a rMSE of

26.0 cm and remains within the 99% HPD region 70.76% of the time.
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