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Abstract

Background: In the post-genomic era, the rapid increase in high-throughput data calls for computational tools

capable of integrating data of diverse types and facilitating recognition of biologically meaningful patterns within

them. For example, protein-protein interaction data sets have been clustered to identify stable complexes, but

scientists lack easily accessible tools to facilitate combined analyses of multiple data sets from different types of

experiments. Here we present clusterMaker, a Cytoscape plugin that implements several clustering algorithms and

provides network, dendrogram, and heat map views of the results. The Cytoscape network is linked to all of the

other views, so that a selection in one is immediately reflected in the others. clusterMaker is the first Cytoscape

plugin to implement such a wide variety of clustering algorithms and visualizations, including the only

implementations of hierarchical clustering, dendrogram plus heat map visualization (tree view), k-means, k-medoid,

SCPS, AutoSOME, and native (Java) MCL.

Results: Results are presented in the form of three scenarios of use: analysis of protein expression data using a

recently published mouse interactome and a mouse microarray data set of nearly one hundred diverse cell/tissue

types; the identification of protein complexes in the yeast Saccharomyces cerevisiae; and the cluster analysis of the

vicinal oxygen chelate (VOC) enzyme superfamily. For scenario one, we explore functionally enriched mouse

interactomes specific to particular cellular phenotypes and apply fuzzy clustering. For scenario two, we explore the

prefoldin complex in detail using both physical and genetic interaction clusters. For scenario three, we explore the

possible annotation of a protein as a methylmalonyl-CoA epimerase within the VOC superfamily. Cytoscape session

files for all three scenarios are provided in the Additional Files section.

Conclusions: The Cytoscape plugin clusterMaker provides a number of clustering algorithms and visualizations that

can be used independently or in combination for analysis and visualization of biological data sets, and for

confirming or generating hypotheses about biological function. Several of these visualizations and algorithms are

only available to Cytoscape users through the clusterMaker plugin. clusterMaker is available via the Cytoscape plugin

manager.

Background
High-throughput techniques to generate genomic, pro-

teomic, transcriptomic, metabolomic, and interactomic

data continue to advance, generating huge data sets cov-

ering more species and more information about the

biology of individual species than ever before. Along

with this increase in the different types and amount of

data, there have been many advances in analytical tech-

niques. One particular technique that has seen wide use

in ‘omics studies is clustering. Clustering algorithms

detect patterns within data sets, and organize related

genes, proteins, or other key elements to highlight those

patterns.

One of the most familiar approaches is the hierarchi-

cal clustering of genes and their expression levels under

various conditions to produce a dendrogram and heat

map (Figure 1A) for analyzing and visualizing microar-

ray data [1]. Hierarchical clustering has also been used

to analyze genetic interaction data based on double-
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deletion mutants [2,3]. Such interaction networks can be

represented as matrices of genes against genes, where

each cell contains the strength of the interaction

between two genes (Figure 1B).

A second clustering approach identifies stable com-

plexes from large sets of protein-protein interactions. Such

network clustering algorithms include Molecular Complex

Detection (MCODE) [4], Restricted Neighborhood Search

Clustering (RNSC) [5], Super Paramagnetic Clustering

(SPC) [6], Markov Clustering (MCL) [7,8], and hierarchical

clustering [9]. Given a protein-protein interaction network

(Figure 1C), the goal is to isolate the complexes from the

less stable or transient interactions (Figure 1D).

A third use of clustering is the identification of similar

groups of proteins for the purpose of classification [10],

that is, inferring properties of proteins of unknown

function based on their similarity to proteins of known

function. There are many approaches to this classifica-

tion, including machine learning [11-13] (see [11] for a

good overview) as well as clustering large groups of pro-

teins based on either sequence or structural similarity

metrics [7,8,14-28]. Clustering algorithms that have

been applied to the categorization of proteins include

Spectral Clustering of Protein Sequences (SCPS) [24],

TransClust [25,29], MCL [7,8], Affinity Propagation [27],

and FORCE [26].

Cytoscape [30,31] is an open-source, cross-platform

software package for visualizing and analyzing biological

networks. Cytoscape provides an extensive plugin appli-

cation programming interface (API) that allows pro-

grammers to extend the native capabilities of Cytoscape

to provide new functionality. Cytoscape currently lists

over 100 plugins, many of which perform some kind of

clustering. However the user interface for each of these

individual plugins is very different, and there is no inter-

action between them.

clusterMaker is a new Cytoscape plugin that provides

many frequently used clustering algorithms, including

A. B.

C. D.

Figure 1 Screenshots of clusterMaker visualizations. (A) and (C) show the results of hierarchically clustering (by expression data) the yeast

protein-protein interaction network included with Cytoscape (galFiltered.cys). (A) TreeView visualization showing the clustering of both nodes

and attributes. (B) The symmetrical TreeView of an EMAP showing a selected cluster. (C) Cytoscape screenshot of the network used to produce

(A). The group hierarchy is shown. The groups (and nodes that are part of those groups) are selected as a subtree in the TreeView. (D) The new

network resulting from an MCL clustering of the TAP-MS data from Collins, et al. [52]. The option to restore inter-cluster edges after the

automatic layout was selected.
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nearly all of the algorithms named above as well as heat

map and dendrogram visualizations. The visualizations

are all linked to the Cytoscape network, allowing selec-

tions in the network to be reflected in one or more of

the other views, and selections in the heat maps to be

reflected in the network view and all other visible heat

maps. clusterMaker currently provides ten clustering

algorithms in two broad categories, network clustering

and attribute clustering, together with a unified user

interface.

Network clustering algorithms

Network clustering algorithms find densely connected

regions in a network. There are multiple approaches to

network clustering, including using graph algorithms to

find dense regions, either using a local approach starting

with a node neighborhood or using a global approach

starting with the entire graph and iteratively partitioning

it into clusters, and using linear algebra to operate

directly on the adjacency matrix. The network clustering

algorithms in clusterMaker are: MCL [7,8], Affinity Pro-

pagation [27], MCODE[4], Community Clustering

(GLay) [32,33], SCPS [24], TransClust [25], and Auto-

SOME [34]. These algorithms are generally used for

finding modules and complexes within protein-protein

interaction networks [4,33,35,36] and for identifying

functionally related groups of proteins within large pro-

tein-protein similarity networks [7,24,25,37]. cluster-

Maker also includes the Connected Components

algorithm, which assigns existing network partitions

(connected components) to clusters. clusterMaker pro-

vides the only implementations of SCPS and AutoSOME

available within Cytoscape, and the only multi-threaded

native Java MCL implementation.

Attribute clustering algorithms

Attribute clustering algorithms group nodes based on

similarity of their node attributes or on the basis of a

single edge attribute. The attribute clustering algorithms

in clusterMaker are: Hierarchical, k-means, k-medoid,

and AutoSOME. Note that AutoSOME is in both lists,

and may be used to generate networks based on node

attributes.

Hierarchical, k-medoid, and k-means algorithms are

commonly used for clustering gene expression data [1]

and genetic interaction profiles [2]. AutoSOME is typi-

cally used for clustering expression data and general

network partitioning. In general, however, most of the

clustering algorithms may be used for either purpose

provided the data is transformed appropriately. cluster-

Maker provides the only implementation of these clus-

tering algorithms in Cytoscape. In addition to the basic

k-means and k-medoid algorithms, beginning with ver-

sion 1.10, clusterMaker provides the facility to choose k

by finding the k that maximizes the average silhouette

for the solution [38]. Coupled with clusterMaker’s heat-

map and dendrogram visualization, this represents a rea-

sonably complete clustering environment for the

analysis and visualization of expression profiles and

other microarray experiments within the context of

pathway, protein-protein interaction, and other net-

work-oriented biological data.

Implementation
clusterMaker is implemented as a plugin to the open

source network analysis and visualization package,

Cytoscape [30]. clusterMaker extends Cytoscape’s cap-

abilities by providing various clustering algorithms and

associated visualizations, and intuitively links those to

the network visualization provided by Cytoscape. cluster-

Maker is written entirely in Java to allow easy portability

to any platform supporting the Java virtual machine.

clusterMaker exposes parameters for each clustering

algorithm via a graphical user interface (GUI). When a

user selects an algorithm, a dialog appears for specifying

the node or edge attribute(s) to use for the data source,

along with any algorithm-specific parameters such as k

for k-means clustering, the expansion factor for MCL,

the linkage for hierarchical clustering, and the distance

metric for k-means, k-medoid, or hierarchical clustering.

For example, the k-means, k-medoid, and hierarchical

implementations support clustering on both genes

(nodes) and arrays (attributes). A typical application

might be to select a set of node attributes containing

the expression change ratios for different time points or

conditions compared to a control, and then perform

hierarchical clustering on the nodes and (optionally)

attributes. All of the clustering methods allow selection

of a single edge numeric attribute for clustering. For k-

means, k-medoid, and hierarchical clustering, this attri-

bute is used to construct a symmetric adjacency matrix

for clustering. For network clustering algorithms, the

edge weight is assumed to be a similarity metric,

although a number of conversions are provided. If no

attribute is provided, a default weight of 1 is assigned to

each edge in the network. Network clustering algorithms

provide the option to set an edge weight cut-off, either

by entering a value, viewing the histogram of values and

using a slider to select the cutoff, or by a heuristic based

on the histogram [39]. The detailed parameters for each

algorithm are documented in the original papers or on

the clusterMaker web site at: http://www.rbvi.ucsf.edu/

cytoscape/cluster/clusterMaker.html.

Algorithm-specific implementation details

Each of the algorithms provided by clusterMaker has

been integrated into the source code to provide a con-

sistent user interface and operation. Table 1 lists the
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available algorithms, with brief descriptions and imple-

mentation information.

Visualization

clusterMaker provides three different visualizations

(types of display), depending on the algorithm. Any

numeric attributes within the network can be displayed

as a heat map (Figure 2B). Heat maps are also used to

show the results of k-means, k-medoid, and AutoSOME

clustering, with each of the identified clusters separated

by a bar in the heat map.

The second type of visualization, a tree view, is used

by hierarchical clustering and is shown as a dendrogram

combined with a heat map (Figures 1A, B, 2A). The

heat map and tree view implementations were derived

from Java TreeView [40], but were significantly modified

to interact with the network and to function as

embedded methods. Multiple heat maps or tree views

may be active at the same time, allowing simultaneous

display of different data sources or types. clusterMaker’s

heat map implementations (Eisen TreeView, Eisen

KnnView, and HeatMapView) all provide the ability to

map colors from the heat map onto the network. This

mapping can be for a single attribute in the heat map or

can be used to animate through some or all of the

attributes.

The third type of visualization is the network view

provided by Cytoscape, but constructed by one of clus-

terMaker’s network clustering algorithms (currently Affi-

nity Propagation, AutoSOME, Connected Components,

Community, MCODE, MCL, SCPS, or Transitivity clus-

tering). The output network shows only the intra-cluster

edges (all inter-cluster edges are dropped) and the net-

work is automatically arranged using the Cytoscape

force-directed layout. The user may opt to redisplay the

inter-cluster edges after the network has been laid out

(Figure 1D).

All of the algorithms also provide the option of creat-

ing a Cytoscape group for each cluster. A group collects

a set of nodes and their edges into one object that can

be represented as a new node. For hierarchical cluster-

ing, the resulting groups are hierarchically constructed

so that the user can view clustering results at any level

of the dendrogram (Figure 1C - left side).

Selections in each view are linked across views. Selecting

a node in Cytoscape will show that node in all of the cur-

rently displayed views. Similarly, selecting a node or group

of edges in a view will select that node or group of edges

in the current network, which will, in turn, update all

other views. The user may also link multiple network

views to allow for comparison between clustering algo-

rithms or link heat maps or tree views to multiple different

Table 1 clusterMaker algorithm implementation notes

Algorithm Description Source Details

Hierarchical Standard hierarchical clustering as
implemented by Eisen[1]

Cluster 3.0 package from Michiel de Hoon of the
University of Tokyo

Ported by clusterMaker authors from C
to Java

k-means Standard k-means clustering as
implemented by Eisen[1] with the

addition of silhouette estimation of k

Cluster 3.0 package from Michiel de Hoon of the
University of Tokyo

Ported by clusterMaker authors from C
to Java. Silhouette implemented by

clusterMaker authors.

k-medoid Modification of k-means from above to
use medoid rather than means

Implemented by clusterMaker authors.
Silhouette implemented by clusterMaker

authors.

AutoSOME The AutoSOME cluster algorithm [34] The distributed AutoSOME implementation Ported directly to clusterMaker by
AutoSOME author

Affinity
Propagation

The message passing-based approach to
clustering by Frey and Dueck[27]

Implemented from the algorithm description in
the original reference

Implemented by clusterMaker authors

Connected
Components

Simple division based on connectivity Implemented by clusterMaker authors

Community
(GLay)

Newman-Girvan[32] community
clustering as implemented by Su, et al.

[33]

The original GLay plugin for Cytoscape Ported by clusterMaker authors

MCODE Bader and Hogue[4] algorithm for
finding modules in PPI networks

The MCODE Cytoscape plugin Ported by clusterMaker authors

MCL Markov clustering algorithm from van
Dongen[8,28] that uses random walks to

simulate flow

Implemented from original thesis with reference
to C implementation for validation of results.

Implemented by clusterMaker authors as
a parallel algorithm to take advantage

of multiple CPU cores.

SCPS Spectral clustering algorithm for BLAST
similarity networks[24]

Implemented from the algorithm description in
the original reference using the authors’

implementation to validate results

Implemented by clusterMaker authors

Transitivity
Clustering

Transitivity based clustering approach
from Wittkop, et al.[25]

Ported from Cytoscape TransClust plugin Ported by original TransClust authors
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networks. Linked selection provides significant power to

the user for exploring various data sets to corroborate

computational results or formulate new hypotheses.

Cytoscape 2.8.2 with clusterMaker plugin version 1.10

was used for all of the analyses described here. Cytoscape

is available from http://www.cytoscape.org and the clus-

terMaker plugin is available through the Cytoscape plu-

gin manager. clusterMaker exports a number of

Cytoscape commands to allow other Cytoscape plugins

and software developers to take advantage of its features.

Results
We explore how clusterMaker and Cytoscape might be

used together by presenting three example research

scenarios. Our focus is on the computational tools

rather than on the specific data; the scenarios are based

on previously published studies and the results are not

meant to represent novel findings. It is also the case

that both clusterMaker and Cytoscape are relatively

sophisticated tools, with many features that may require

some effort to fully master. Our intent is not to illus-

trate all of the features available in these tools, but

rather to provide examples of how they can be applied

to gain insight into scientific problems.

Scenario 1: Analysis of Protein Expression Data

A principal goal of gene expression cluster analysis is to

identify biologically meaningful groups of co-expressed

Figure 2 Gene expression clustering reveals mouse protein interactome modules and fuzzy relationships among mouse cells and

tissues. Heat maps showing clusters of mouse gene expression data (GSE10246) identified using (A) hierarchical clustering and (B) AutoSOME

clustering. (C) Protein interactome [45] divided into subnetworks corresponding to co-expression clusters identified by AutoSOME. (D) Fuzzy

cluster network of cell/tissue types in GSE10246. Nodes represent individual cell/tissue types (labeled with first word of each sample name only),

node colors correspond to different clusters, and increasing edge thickness and opacity reflect increasing frequency of co-clustering between

any given pair of nodes over all ensemble iterations (see [34]). (E) Expression data of four cell/tissue types from GSE10246 superimposed onto

the ten largest subnetworks from panel C (Stomach = GSM258771; Lymph Node = GSM258691; Cerebral Cortex = GSM258635; Embryonic Stem

Cell = GSM258658). All expression data are log2 scaled and median centered. In panel B, all clusters are ordered by decreasing cluster size, and

the yellow-cyan color scale is identical to panel A. In panels A and B, all arrays (cell/tissue types) are horizontally ordered the same as the

GSE10246 data set.
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genes or samples (i.e. transcriptomes) from potentially

large data sets. Although downstream analysis of co-

expression clusters typically involves exploration of

enriched functional groups (e.g., using DAVID [41] or

BiNGO [42]), another powerful analytical approach is to

examine clusters for corresponding molecular interac-

tions. Cluster analysis of data sets that integrate interac-

tion and expression data can identify biomolecular

networks with common expression patterns in a single

step, and reveal both known and unexpected pathways

[43].

Hierarchical clustering builds a tree that hierarchically

connects every data point [1], but it does not automati-

cally identify discrete clusters without the use of a tree

cutting method (e.g. [44]). Depending upon the goals of

the researcher, it may be desirable to identify discrete

clusters from large data sets, especially for functional

enrichment and biomolecular pathway analysis.

By contrast, AutoSOME identifies both discrete and

fuzzy clusters from large data sets without prior knowl-

edge of cluster number [34]. The latter feature is useful

for exploring transcriptome clusters, for example, to

show how different clusters of diverse transcriptomes

relate to one another. In the following protocol, applica-

tion of AutoSOME and hierarchical clustering to a com-

bined protein interactome and gene expression data set

is demonstrated, along with an anecdotal downstream

analysis.

Scenario 1 Data sources

A mouse protein interactome (SVM-network) was

downloaded from the MppDB website (http://bio.scu.

edu.cn/mppi/) [45]. This network is a product of exten-

sive literature mining, prior knowledge of co-expressed

genes and interacting domains, and other measures of

functional and contextual relatedness. To integrate gene

expression data, a whole-genome microarray data set

representing diverse mouse cells and tissues [46] was

downloaded from the Gene Expression Omnibus as a

Series Matrix file (GSE10246; http://www.ncbi.nlm.nih.

gov/geo/). This microarray data set contains 182 arrays

(91 in duplicate) and 45,101 gene probes.

Scenario 1 Protocol

After mapping of UniProtKB identifiers to official gene

symbols using DAVID [41] and removal of duplicate

edges, the mouse interactome was imported into Cytos-

cape. This network consists of 3,347 proteins and

13,088 non-redundant interactions. The GSE10246

expression array was pre-processed by mapping probe

set identifiers to gene symbols and taking the highest

expressed probe for each gene symbol. The resulting

data were log2-scaled, and all genes were median-cen-

tered. These two normalization steps are generally

recommended when using AutoSOME clustering, and

can also be performed using the AutoSOME implemen-

tation within clusterMaker. Of the 21,864 unique genes

in the expression data set, 3,049 genes were successfully

mapped to the interaction network when imported into

Cytoscape (Additional File 1).

Initially, the expression data were clustered hierarchi-

cally using the pairwise centroid linkage method and the

uncentered correlation distance metric. All 182 array

sources (i.e. transcriptomes) were used as input, and

nodes without data were ignored. A heat map of the

gene co-expression cluster results was rendered as a tree

view with the yellow-cyan color scheme (Figure 2A).

Next, the same expression data were clustered with

clusterMaker’s AutoSOME implementation using Run-

ning Mode = Normal, P-value Threshold = 0.1, 50

Ensemble Runs, and Sum of Squares = 1 normalization

(both genes and arrays) and the results were rendered as

a yellow-cyan heat map (Figure 2B). Of 34 clusters and

14 singletons, 97% of all analyzed genes (2,958/3,049)

fall into the largest 15 clusters. To map cluster results

to the mouse interactome, a new network was created

with inter-cluster edges removed (Figure 2C). In addi-

tion, AutoSOME fuzzy clustering was performed on all

182 arrays. Clustering was performed using Distance

Metric = Uncentered Correlation, Running Mode =

Normal, P-value Threshold = 0.05, 50 Ensemble Runs,

and Sum of Squares = 1 normalization (both genes and

arrays) identifying 16 fuzzy clusters. After setting the

maximum number of edges to display in the fuzzy net-

work to 4,000, ‘Network’ was selected in the Data Out-

put section, and the fuzzy clusters were rendered by

pressing ‘Display’ (Figure 2D). For increased legibility,

the node and font sizes in Figure 2D were enlarged

using VizMapper, a core Cytoscape component that

allows for the creation and editing of network visual

styles.

Scenario 1 Results

Initially, 3,049 genes from the multi-tissue mouse micro-

array data set (GSE10246) were hierarchically clustered,

and the resulting expression tree was rendered as a heat

map (Figure 2A). Though complex gene co-expression

patterns are evident in Figure 2A, it is not immediately

obvious how to parse the dendrogram into discrete clus-

ters for further analysis. By contrast, AutoSOME identi-

fied 34 discrete co-expression clusters and 14 singleton

genes (Figure 2B). These clusters partition the mouse

protein interaction network into 148 subnetworks and

1,432 singleton proteins (Figure 2C). Composed of 42%

of all proteins in the analyzed interactome (1,282/3,049),

the ten largest subnetworks are indicated in Figure 2C

and their corresponding co-expression clusters are

labeled in the heat map of Figure 2B.
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Downstream analysis of the ten largest subnetworks

(Figure 2C) using DAVID revealed highly significant

functional enrichments for all but one subnetwork

(Table 2). Subnetwork 1 is highly enriched in genes

involved in endoderm and mesoderm differentiation

pathways, important for diverse organs, subnetwork 2

genes are robustly associated with immune system func-

tions, subnetwork 3 genes are highly enriched in neuro-

nal processes, and subnetwork 4 genes in cell cycle

activities (Table 2). To illustrate modularity in gene

expression, expression levels for representative cells/tis-

sues were mapped onto the ten largest networks using

Cytoscape’s VizMapper. As shown in Figure 2E, subnet-

work expression profiles clearly distinguish the four

selected cell/tissue types. Further, the results of the

functional enrichment analysis strongly correlate with

patterns of up- and down-regulation. For example, of

the four cell/tissue types, subnetwork 3 is only up-regu-

lated in the cerebral cortex sample, consistent with this

subnetwork’s enrichment in neuronal activity (Table 2).

Finally, in addition to gene co-expression analysis,

AutoSOME fuzzy clustering was performed on the

182 transcriptomes, and the 16 resulting clusters are

illustrated in Figure 2D. Along with discrete clusters

denoted by different colored nodes, the fuzzy network

shows how individual clusters and their constituents

relate to one another. For example, as shown in

Figure 2D, mast cells are more closely related to den-

dritic cells than macrophages, and neuro2a cells (neu-

roblastoma cells) are more like embryonic stem cells

than cerebral cells. Such fuzzy cluster networks pro-

vide an alternative to the conventional hierarchical

method for exploring intra- and inter-cluster

relationships.

Scenario 2: Identification of Protein Complexes

There are several challenges to finding complexes

within a protein-protein interaction data set with clus-

tering. Experimental sources of protein-protein interac-

tion data include yeast two-hybrid (Y2H) [47,48] and

split-ubiquitin [49] approaches, high-throughput mass

spectrometric protein complex identification (HMS-

PCI) [50] and tandem affinity purification followed by

mass spectrometry (TAP-MS) [35,51]. Due to the mul-

tiplicity of approaches and the varying degrees of false

positives and false negatives, it is difficult to have a

high confidence in any particular cluster result. One

approach to increasing confidence in the results of a

clustering algorithm is to use additional independent

data to corroborate the cluster selections. Besides

increasing confidence in the clusters, combining data

of different types and sources can provide additional

insight into biomolecular interactions, regulatory

mechanisms, and pathways. For example, combining

Table 2 Enriched functional categories according to DAVID analysis, related to Figure 2C.

Network Cluster No. No. Enriched Proteins (total) Functional Category Enrichment Score Benjamini P-value

1 76 (483) pattern specification process 34.7 8.3 × 10-43

32 (483) lung development 25.1 1.3 × 10-18

55 (483) blood vessel development 22.0 8.3 × 10-27

71 (483) skeletal system development 21.1 6.8 × 10-38

32 (483) gland morphogenesis 17.3 1.6 × 10-22

2 61 (339) immune system development 28.4 1.5 × 10-36

63 (339) defense response 20.4 3.3 × 10-28

3 43 (182) neuron projection 24.0 1.2 × 10-34

38 (182) transmission of nerve impulse 14.8 1.4 × 10-27

4 57 (106) DNA metabolic process 36.5 1.1 × 10-54

51 (106) cell cycle 19.8 2.3 × 10-37

5 16 (65) regulation of apoptosis 4.8 1.8 × 10-5

10 (65) chaperone 4.4 2.2 × 10-7

6 12 (34) cell motion 8.3 1.4 × 10-7

8 (34) vasculature development 3.6 1.4 × 10-4

7 7 (24) leukocyte differentiation 4.9 3.7 × 10-6

5 (24) regulation of T cell activation 3.2 1.9 × 10-3

8 15 (21) visual perception 12.3 4.5 × 10-19

9 (21) eye development 9.4 4.2 × 10-10

9 0 (18) no enrichment NS NS

10 8 (11) DNA binding 4.7 9.9 × 10-4

6 (11) chordate embryonic development 4.1 1.8 × 10-3
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putative protein-protein complex information with

gene expression data can provide clues as to the role

of individual proteins within a complex. For instance,

differential expression in response to various stimuli

might indicate a regulatory role for one or more of the

proteins.

Scenario 2 Data sources

A high-quality protein-protein interaction data set pub-

lished in 2007 [52] forms the core network for this ana-

lysis. This data set combines three previously published

high-throughput protein interaction data sets [35,50,51]

to increase the quality and coverage of the resulting

interaction network. The authors assigned a Purification

Enrichment (PE) score to reflect the quality of interac-

tions within the combined set.

Two yeast epistatic miniarray profiles (EMAPs) were

also used: chromosome biology [53] and RNA proces-

sing [54] to provide genetic interaction data as a com-

plement to the protein-protein interaction data set.

Scenario 2 Protocol

The combined protein-protein interaction data set was

imported into Cytoscape with a PE cutoff of 1.85, which

corresponds to the scaled value of 0.20 used by the

authors in the original data set [52]. The result is a net-

work with 2742 genes and 16,218 interactions. The PE

score was imported as an edge attribute and in addition

to the gene symbol, the systematic name was imported

as a node attribute (Additional File 2).

The initial network was clustered using clusterMaker’s

MCL implementation with the following settings: Gran-

ularity parameter = 1.8, Array sources = PE Score; and

MCL Advanced Settings of: Weak edge weight pruning

threshold = 1 × 10-20, maximum residual value = 1 ×

10-6, and iterations = 16. MCL’s iterations are not uni-

form, and in this example, iterations 3 and 4 take signif-

icantly more time than the other iterations. The

resulting network contains 408 clusters, with the largest

consisting of 254 nodes. The nodes were colored

according to the cluster assignment (Figure 3A).

The EMAPs were converted into tab-delimited text

files from the original Cluster (.cdt) format files with

the strength of interaction imported as an edge attri-

bute. Each EMAP was then clustered hierarchically

with pairwise average linkage and uncentered correla-

tion as the distance metric using the imported strength

of interaction. The resulting clusters were shown in

clusterMaker’s tree view with the yellow-cyan color

scheme used by convention for EMAPs (Figure 3B and

3C). clusterMaker links selection of all heat map win-

dows with the current network, facilitating interactive

exploration and comparison of the clusters across the

data sets.

Scenario 2 Results

To explore the putative complexes derived from com-

bining the physical interactions with genetic data, we

chose the cluster formed by GIM3, GIM4, GIM5,

PAC10, YKE2, and PFD, which represents the prefoldin

complex.

Prefoldin complex

Figure 3A shows the cluster results, with the prefoldin

cluster shown in the lower right. These nodes also clus-

ter well in all of the EMAPs where they appear, particu-

larly in the chromosome biology (Figure 3B inset) and

RNA processing (Figure 3C inset) EMAPs. In each case,

the interaction in the EMAPs is epistatic, which indi-

cates that each of the pairwise double-deletion mutants

grows better than might be expected given the growth

rate of each single deletion mutant. An epistatic interac-

tion is evidence that the two proteins are part of the

same pathway, and the tight clustering strongly suggests

that they are in the same complex. Given the results of

the clustering and the strong corroboration from the

genetic interaction data, it is clear that these proteins

are part of the same complex. Each of these proteins is

annotated in the Saccharomyces Genome Database

(SGD) (http://www.yeastgenome.org) as part of the pre-

foldin complex, consistent with these results.

While this result is only confirmatory and does not

provide any new knowledge about prefoldin, it is inter-

esting to explore genetic interactions between the pre-

foldin complex and other putative complexes. For

example, in the chromosome biology EMAP, the genes

in the prefoldin complex all show a strongly negative

(aggravating) genetic interaction with the genes in the

SWR1 chromatin remodeling complex (APR6, SWC3,

SWR1, VPS72, VPS71, SWC5, and YAF9) and a positive

(epistatic) interaction with the genes in the SET1/COM-

PASS complex (BRE2, SWD1, and SWD3) (Figure 3D).

Both SET1 and SWR1 are involved in various aspects of

chromatin biology. SET1 catalyzes methylation of his-

tone H3 and the SWR1 complex is required for the

incorporation of histone variant H2AZ into chromatin.

It is interesting to speculate on why SET1 and SWR1

should have opposite genetic interactions with prefoldin.

This might relate to the eukaryotic specialization of pre-

foldin for the correct tubular assembly of actin and

related tubular proteins, which are required for cell divi-

sion. A role in cell division is consistent with one addi-

tional negative genetic interaction between the genes in

the prefoldin complex and several of the genes involved

in kinetochore-microtubule interactions (e.g. MCM16,

MCM21) and tubulin folding (CIN1, CIN2, CIN4).

Scenario 3: Protein Similarity

More than 40% of all known proteins lack any annota-

tions within public databases [55]. As a result, millions
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Figure 3 Clustering of yeast protein-protein interaction networks in the context of overlapping yeast genetic interaction data reveals

possible pathway interactions between three well-known complexes. (A) The overall results of MCL clustering of the Collins et al., [52] data

set showing the largest clusters. Nodes are colored according to cluster. Thick edges represent intra-cluster edges and thin edges are inter-

cluster. Three complexes are highlighted: SWR1, SET1, and prefoldin. (B) Closeup of the prefoldin complex from the chromosome biology EMAP

(Additional File 3). Note that there is a very strong positive genetic interaction (yellow) between all of the genes in the complex except for GIM3

and GIM4, which is still positive overall. (C) Closeup of the prefoldin complex from the RNA processing EMAP (Additional File 4). The closeup

shows the same slightly decreased interaction for GIM3 and GIM4. (D) The section of the chromosome biology EMAP with the prefoldin

complex showing the strong negative interaction with SWR1 and positive interaction with SET1.
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of proteins are completely uncharacterized except for

sequence and (possibly) predicted domain architectures.

A number of approaches have been proposed for classi-

fying proteins by function[7,8,11-28], and clusterMaker

provides several algorithms well-suited for clustering

proteins based on some similarity metric such as

BLAST [56]. While sequence clustering approaches do

not provide a definitive categorization of proteins, these

approaches can be extremely useful as initial steps in an

overall curation pipeline. clusterMaker allows research-

ers to rapidly cluster data sets and visualize the results.

By mapping protein function annotations to visible node

properties, the curator may immediately discern clusters

that include both unknowns and functionally character-

ized proteins. The availability of multiple clustering

algorithms allows the curator to assign a greater confi-

dence to those predictions that appear consistently

across multiple clustering outputs. This approach can

significantly reduce the overall curation timeline, parti-

cularly in the early stages before other approaches such

as hidden Markov models (HMMs) are applicable.

Scenario 3 Data sources

The Structure-Function-Linkage Database (SFLD) is a

gold-standard resource tool linking sequence informa-

tion from mechanistically diverse enzyme superfamilies

to their characterized structural and functional proper-

ties [57]. The SFLD provides a three-level classification

for proteins: superfamily - evolutionarily related proteins

that catalyze the same partial reaction, family - proteins

within a superfamily that catalyze the same overall reac-

tion, and subgroup - a mid-level classification containing

multiple families with shared functional residue motifs.

From the superfamilies present in the SLFD, we chose

to cluster the vicinal oxygen chelate (VOC) superfamily,

a group of metal-dependent enzymes that share a com-

mon fold motif and catalyze a variety of reactions [58].

It is difficult to discriminate specific functions (overall

reaction catalyzed and thus family membership) within

this superfamily due to multiple, perhaps serial permuta-

tions and other rearrangements in its evolutionary his-

tory [59]. The VOC superfamily data set is composed of

683 protein sequences, partially classified among seven

subgroups and 17 families. Less than half of these

sequences included both a family and subgroup classifi-

cation, and 224 sequences contained a subgroup classifi-

cation but not a family classification. The remaining 168

sequences were completely uncharacterized.

Scenario 3 Protocol

The SFLD VOC superfamily was loaded into Cytoscape

through the SFLDLoader plugin with an e-value cutoff

of 1e-1(Additional File 5). Nodes in the network repre-

sent individual proteins, with family and subgroup

classifications already specified among the properties of

the nodes. Edges in the network represent protein simi-

larities based on the BLAST e-values of each pairwise

sequence alignment.

clusterMaker was used to select a cutoff based on

properties of the network edge weight distribution (Fig-

ure 4A). This cutoff selection heuristic has been shown

to improve the accuracy of clustering a protein similar-

ity network into families [39]. Using the -LOG(value)

edge weight conversion, a heuristically determined cutoff

of 6.0 was used for all clustering runs.

MCL, TransClust and SCPS clustering were performed

on the VOC protein similarity network. Default para-

meters were used except that the MCL granularity para-

meter was set to 2.5. Clustering outputs were visualized

by coloring the nodes based on known family assign-

ments (where available), allowing rapid identification of

clusters composed of characterized members of a single

family plus uncharacterized nodes. Such uncharacterized

nodes are potential members of the co-clustered family.

Scenario 3 Results

MCL generated 26 clusters and TransClust generated 28

clusters. These numbers adequately approximate the

presence of 17 distinct families in 50% of the VOC data

set. SCPS, on the other hand, generated only three clus-

ters, which indicates an overabundance of false positives

in the SCPS clustering data. Therefore, further analyses

focused only on the MCL and TransClust clustering

results. As shown in Figure 4B, these results are domi-

nated by uncharacterized proteins (colored red in the

figure). Certain clusters are composed entirely of

uncharacterized proteins, while other clusters are com-

posed of uncharacterized proteins as well as two or

more known families. The most interesting clusters con-

tain just two colors, representing the grouping of

uncharacterized proteins with a single VOC family.

These clusters allow us to hypothesize the functions of

the uncharacterized proteins.

Three such single-family clusters are present in almost

equal measures across both the TransClust and MCL

results (Figure 4C), one of which is the methylmalonyl-

CoA epimerase subgroup of 50 proteins (arrow in Figure

4C). This includes the nine characterized members of

the methylmalonyl-CoA epimerase family and 41

sequences that lack a family classification in the SFLD,

although they are annotated to be in the same subgroup.

The size of the cluster is 52 in the TransClust results

and 53 in the MCL results. The additional few nodes

represent sequences lacking a subgroup classification

and that appear in both the TransClust and MCL

results, suggesting that putatively assigning these to the

methylmalonyl-CoA epimerase subgroup would be

reasonable.
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In an effort to seek additional evidence of family and

subgroup membership, we explored in some detail a

randomly chosen uncharacterized protein on the periph-

ery of the methylmalonyl-CoA epimerase cluster (see

Figure 4C). The hypothetical (predicted) protein

BH2212 from Bacillus halodurans (gi:15614775) lacks

both a family and subgroup assignment. We aligned its

sequence with that of methylmalonyl-CoA epimerase

from Propionibacterium shermanii (gi:15826388). Four

of the five functionally critical active site residues align

perfectly with the uncharacterized sequence. These four

residues bind the active-site metal ion needed for cataly-

sis. In the initial alignment, the fifth residue, a glutamic

acid that abstracts a proton from the substrate, is shifted

by one position, but minor editing can also align this

residue without degrading the rest of the alignment.

Thus, the unknown protein is likely capable of binding

the active site metal and may also perform the

epimerization of (2R)-methylamonyl-CoA. The next step

in functional annotation of this sequence would be to

compare it to the hidden Markov models (HMMs) used

to characterize the methylmalonyl-CoA epimerase family

and subgroup in the SFLD or experimentally verify the

function of the protein. These further analyses are

beyond the scope of this paper.

Discussion
clusterMaker is not the first package to combine a num-

ber of clustering algorithms with several viewing

options. The excellent MeV package [60,61], which is

part of the TM4 microarray analysis package, provides

clustering algorithms and visualizations for analyzing

microarray data. But clusterMaker, while providing

fewer microarray analysis algorithms and visualizations

than MeV, adds a relatively simple and consistent user

interface together with the ability to interconnect
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Figure 4 Protein similarity network clustering indicates possible family membership for uncharacterized proteins. (A) A distribution of

edge weights (binned -log(BLAST E-values)) of the VOC superfamily is shown, with a cutoff value of 5.5 indicated by a red vertical line. The

cutoff was determined by a heuristic described in [53] and was used for subsequent clustering. (B) MCL clusters for the VOC superfamily are

displayed with nodes colored by family assignment. Red nodes represent proteins with unknown function. (See Additional File 6 for TransClust

Clusters). (C) Four clusters within the MCL clustering results show only proteins from a single family or proteins of unknown function. (Three of

these four clusters also appear in the TransClust results.) Based on this analysis, we hypothesize that the function of the unknowns is the same

as that of the other proteins in each cluster. The protein highlighted in blue is BH2212, which was randomly selected for further analysis.
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multiple types of data (expression, genetic interaction,

physical interaction) interactively, and to combine the

power of cluster analysis with network analysis.

Such interconnections and combinations may provide

additional confidence in the results, as some of the clus-

tering methods complement one another, or simply a

more in-depth exploration of the data. For example, the

hierarchical and MCL clusters agree well in scenario 2,

but the hierarchical heat map visualization shows the

additional neighborhood context around the clusters.

This context might be useful to show potential temporal

interactions, or proteins that might be shared between

complexes. Similarly, the use of multiple approaches in

scenario 1 provides very different views of the data

which can highlight relationships and groupings not

obvious in any single view, and using multiple clustering

approaches in scenario 3 improves our confidence in

putative functional assignments.

A key feature of clusterMaker is the ability to link

results across all views, whether heat map or network.

This interactive linking is a critical aspect of the design

and implementation of clusterMaker and allows

researchers to explore data in a number of different

ways without having to remember results or manually

compare values.

clusterMaker is designed to be part of the Cytoscape

environment. First, all of the clustering algorithms

allow users to create Cytoscape groups that may be

used by other Cytoscape plugins for further analysis,

or by users to select all of the members of a given

cluster or to collapse an entire cluster into a “meta

node”. Second, all of the algorithms store their results

as Cytoscape attributes that are available to other plu-

gins and saved with a Cytoscape session. Finally, clus-

terMaker exports all of its algorithms and

visualizations for use by other plugins through the

CyCommand API provided in Cytoscape. This provides

a mechanism for other plugin developers to take

advantage of clusterMaker’s capabilities improving

overall reuse. Through the Cytoscape commandTool

plugin, users may script clusterMaker’s clustering

actions and visualizations through a command file.

Several improvements to clusterMaker will be imple-

mented in the future. First, we plan to add a number of

algorithms to clusterMaker, including HOPACH [62],

Quality Threshhold [63], as well as fuzzy c-means [64]

or other fuzzy clustering approaches. Second, additional

pre-clustering and post-clustering filter options could be

incorporated, such as the Fluff, and K-Core filtering

options used in MCODE [4] or the Best neighbor meth-

ods provided by jClust [65]. Third, coupling enrichment

analysis such as BiNGO [42] with clustering results

could be very useful. Finally, there are several additional

visualization options that might be added, including the

addition of one-dimensional histograms to the tree and

heatmap views, visual identification of clusters formed

by selecting dendrogram cutoffs, interactive setting of

parameters, and many others. We believe the needs of

clusterMaker users and shifting biological data sets

should be the primary driver in clusterMaker’s evolution,

so it is likely that as clusterMaker evolves other algo-

rithms and visualizations will be added to the list.

Conclusions
clusterMaker is an important addition to the suite of

Cytoscape plugins. It provides a clustering framework

that allows users to compute and visualize clusters in

multiple ways and interactively explore the results across

all of the various approaches. clusterMaker’s algorithms

include several unique additions to Cytoscape, including

hierarchical clustering, k-means and k-medoid cluster-

ing, AutoSOME, SCPS, and a multi-threaded Java imple-

mentation of MCL. It also adds to these unique

algorithms unique visualizations including heatmaps

with (TreeView) or without dendrograms (HeatMap,

KnnView), clustered network views, and clustered net-

work views with inter-cluster edges. Using clusterMaker,

all of these visualizations may be linked together to sup-

port interactive exploration of the data sets. All of these

algorithms and visualizations are available to be used by

other Cytoscape plugins or through command scripts.

These capabilities allow researchers to interactively

explore, analyze and compare a variety of different data

within a network context. We will be adding additional

algorithms and visualizations to meet new clustering

requirements as they arise.

Availability and requirements
Project name: clusterMaker

Project home page: http://www.rbvi.ucsf.edu/cytos-

cape/cluster/clusterMaker.html

Installation: clusterMaker 1.10 is available from the

Cytoscape Plugin Manager under the Analysis category

Source: http://chianti.ucsd.edu/svn/csplugins/trunk/

ucsf/scooter/clusterMaker

Operating system(s): Platform independent

Programming language: Java

Other requirements: Java 1.6 or higher, Cytoscape

2.8.2 or higher

License: GNU GPL

Any restrictions to use by non-academics: None

Additional material

Additional file 1: Cytoscape session file for scenario 1. A Cytoscape

session file contains a network with the mouse protein-protein

interaction data set discussed in scenario 1 as well as the imported

expression data.
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Additional file 2: Cytoscape session file for scenario 2. A Cytoscape

session file contains a network representing the Collins, et al. data set as

well as two of the EMAPs discussed in scenario 2.

Additional file 3: Chromosome biology EMAP. Results of the

clusterMaker hierarchical cluster of the chromosome biology [53] EMAP.

Additional file 4: RNA processing EMAP. Results of the clusterMaker

hierarchical cluster of the RNA processing [54] EMAP.

Additional file 5: Cytoscape session file for scenario 3. A Cytoscape

session file with the VOC superfamily downloaded from the Structure-

Function Linkage Database.

Additional file 6: TransClust results. Results of clustering the VOC

superfamily using clusterMaker’s Transitivity Cluster implementation.

Acknowledgements

This work was supported by NIH grant P41 RR001081 to TEF. We thank

Elaine C. Meng for her helpful comments in preparing this manuscript.

Author details
1Department of Pharmaceutical Chemistry, University of California San

Francisco, San Francisco, California, USA. 2Institute for Stem Cell Biology and

Regenerative Medicine, Stanford University School of Medicine, Stanford,

California, USA. 3Max Planck Institute for Informatics, Saarbrücken, Germany.
4Buck Institute for Age Research, Novato, California, USA. 5Bioinformatics

Program, University of Michigan, Ann Arbor, MI, USA. 6National Center for

Integrative Biomedical Informatics, University of Michigan, Ann Arbor, MI,

USA. 7The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada.
8Department of Molecular Genetics, University of Toronto, Ontario, Canada.
9Department of Bioengineering and Therapeutic Sciences, University of

California San Francisco, San Francisco, California, USA.

Authors’ contributions

JHM wrote clusterMaker and performed the Scenario 2 analysis. LA added

heuristic cutoffs, SCPS, and AP algorithms to clusterMaker and performed the

Scenario 3 analysis. AMN added AutoSOME to clusterMaker and performed

the Scenario 1 analysis. JB and TW contributed Transitivity Clustering to

clusterMaker, GS contributed GLay to clusterMaker, and GDB contributed

MCODE to clusterMaker. TEF supervised the overall implementation of

clusterMaker and the design of the scenarios. All authors read and approved

the final manuscript.

Received: 8 August 2011 Accepted: 9 November 2011

Published: 9 November 2011

References

1. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display

of genome-wide expression patterns. Proc Natl Acad Sci USA 1998,

95(25):14863-14868.

2. Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, Punna T,

Ihmels J, Andrews B, Boone C, Greenblatt JF, et al: Exploration of the

function and organization of the yeast early secretory pathway through

an epistatic miniarray profile. Cell 2005, 123(3):507-519.

3. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H,

Koh JL, Toufighi K, Mostafavi S, et al: The genetic landscape of a cell.

Science 2010, 327(5964):425-431.

4. Bader GD, Hogue CW: An automated method for finding molecular

complexes in large protein interaction networks. BMC Bioinformatics 2003, 4:2.

5. King AD, Przulj N, Jurisica I: Protein complex prediction via cost-based

clustering. Bioinformatics 2004, 20(17):3013-3020.

6. Blatt M, Wiseman S, Domany E: Super-paramagnetic clustering of data.

Physical Review Leters 1996, 76.

7. Enright AJ, Van Dongen S, Ouzounis CA: An efficient algorithm for large-

scale detection of protein families. Nucleic Acids Res 2002, 30(7):1575-1584.

8. van Dongen S: Graph Clustering by Flow Simulation University of Utrecht;

2000.

9. Rives AW, Galitski T: Modular organization of cellular networks.

Proceedings of the National Academy of Sciences of the United States of

America 2003, 100(3):1128-1133.

10. Wu CH, Nikolskaya A, Huang H, Yeh LS, Natale DA, Vinayaka CR, Hu ZZ,

Mazumder R, Kumar S, Kourtesis P, et al: PIRSF: family classification system

at the Protein Information Resource. Nucleic acids research 2004, , 32

Database: D112-114.

11. Lee BJ, Shin MS, Oh YJ, Oh HS, Ryu KH: Identification of protein functions

using a machine-learning approach based on sequence-derived

properties. Proteome Sci 2009, 7:27.

12. Qiu JD, Luo SH, Huang JH, Liang RP: Using support vector machines to

distinguish enzymes: approached by incorporating wavelet transform. J

Theor Biol 2009, 256(4):625-631.

13. Zhu F, Han LY, Chen X, Lin HH, Ong S, Xie B, Zhang HL, Chen YZ:

Homology-free prediction of functional class of proteins and peptides

by support vector machines. Curr Protein Pept Sci 2008, 9(1):70-95.

14. Kriventseva EV, Biswas M, Apweiler R: Clustering and analysis of protein

families. Curr Opin Struct Biol 2001, 11(3):334-339.

15. Apweiler R, Biswas M, Fleischmann W, Kanapin A, Karavidopoulou Y,

Kersey P, Kriventseva EV, Mittard V, Mulder N, Phan I, et al: Proteome

Analysis Database: online application of InterPro and CluSTr for the

functional classification of proteins in whole genomes. Nucleic acids

research 2001, 29(1):44-48.

16. Li W, Jaroszewski L, Godzik A: Clustering of highly homologous sequences

to reduce the size of large protein databases. Bioinformatics 2001,

17(3):282-283.

17. Li W, Jaroszewski L, Godzik A: Sequence clustering strategies improve

remote homology recognitions while reducing search times. Protein Eng

2002, 15(8):643-649.

18. Yona G, Linial N, Linial M: ProtoMap: automatic classification of protein

sequences and hierarchy of protein families. Nucleic acids research 2000,

28(1):49-55.

19. Sasson O, Vaaknin A, Fleischer H, Portugaly E, Bilu Y, Linial N, Linial M:

ProtoNet: hierarchical classification of the protein space. Nucleic acids

research 2003, 31(1):348-352.

20. Kriventseva EV, Fleischmann W, Zdobnov EM, Apweiler R: CluSTr: a

database of clusters of SWISS-PROT+TrEMBL proteins. Nucleic acids

research 2001, 29(1):33-36.

21. Krause A, Haas SA, Coward E, Vingron M: SYSTERS, GeneNest, SpliceNest:

exploring sequence space from genome to protein. Nucleic acids research

2002, 30(1):299-300.

22. Enright AJ, Ouzounis CA: GeneRAGE: a robust algorithm for sequence

clustering and domain detection. Bioinformatics 2000, 16(5):451-457.

23. Abascal F, Valencia A: Clustering of proximal sequence space for the

identification of protein families. Bioinformatics 2002, 18(7):908-921.

24. Nepusz T, Sasidharan R, Paccanaro A: SCPS: a fast implementation of a

spectral method for detecting protein families on a genome-wide scale.

BMC Bioinformatics 2010, 11:120.

25. Wittkop T, Emig D, Lange S, Rahmann S, Albrecht M, Morris JH, Bocker S,

Stoye J, Baumbach J: Partitioning biological data with transitivity

clustering. Nat Methods 2010, 7(6):419-420.

26. Wittkop T, Baumbach J, Lobo FP, Rahmann S: Large scale clustering of

protein sequences with FORCE - A layout based heuristic for weighted

cluster editing. BMC Bioinformatics 2007, 8:396.

27. Frey BJ, Dueck D: Clustering by passing messages between data points.

Science 2007, 315(5814):972-976.

28. van Dongen S: A cluster algorithm for graphs. Amsterdam: National

Research Institue in the Netherlands; 2000.

29. Wittkop T, Emig D, Truss A, Albrecht M, Bocker S, Baumbach J:

Comprehensive cluster analysis with Transitivity Clustering. Nature

protocols 2011, 6(3):285-295.

30. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N,

Schwikowski B, Ideker T: Cytoscape: a software environment for

integrated models of biomolecular interaction networks. Genome Res

2003, 13(11):2498-2504.

31. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C,

Christmas R, Avila-Campilo I, Creech M, Gross B, et al: Integration of

biological networks and gene expression data using Cytoscape. Nat

Protoc 2007, 2(10):2366-2382.

32. Newman ME, Girvan M: Finding and evaluating community structure in

networks. Phys Rev E Stat Nonlin Soft Matter Phys 2004, 69(2 Pt 2):026113.

33. Su G, Kuchinsky A, Morris JH, States DJ, Meng F: GLay: community

structure analysis of biological networks. Bioinformatics 2010,

26(24):3135-3137.

Morris et al. BMC Bioinformatics 2011, 12:436

http://www.biomedcentral.com/1471-2105/12/436

Page 13 of 14

http://www.biomedcentral.com/content/supplementary/1471-2105-12-436-S2.CYS
http://www.biomedcentral.com/content/supplementary/1471-2105-12-436-S3.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-12-436-S4.PDF
http://www.biomedcentral.com/content/supplementary/1471-2105-12-436-S5.CYS
http://www.biomedcentral.com/content/supplementary/1471-2105-12-436-S6.PDF
http://www.ncbi.nlm.nih.gov/pubmed/9843981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16269340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16269340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16269340?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20093466?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12525261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12525261?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15180928?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15180928?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11917018?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11917018?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12538875?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19664241?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19664241?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19664241?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19049810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19049810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18336324?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18336324?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11406384?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11406384?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11125045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11125045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11125045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11294794?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11294794?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12364578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12364578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592179?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592179?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12520020?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11125042?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11125042?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11752319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11752319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10871267?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10871267?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12117788?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12117788?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20214776?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20214776?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20508635?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20508635?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17941985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17941985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17941985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17218491?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21372810?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14597658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14597658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17947979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17947979?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14995526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14995526?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21123224?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21123224?dopt=Abstract


34. Newman AM, Cooper JB: AutoSOME: a clustering method for identifying

gene expression modules without prior knowledge of cluster number.

BMC Bioinformatics 2010, 11:117.

35. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S,

Datta N, Tikuisis AP, et al: Global landscape of protein complexes in the

yeast Saccharomyces cerevisiae. Nature 2006, 440(7084):637-643.

36. Vlasblom J, Wodak SJ: Markov clustering versus affinity propagation for

the partitioning of protein interaction graphs. BMC Bioinformatics 2009,

10:99.

37. Yang F, Zhu Q-X, Tang D-M, Zhao M-Y: Clustering Protein Sequences

Using Affinity Propagation Based on an Improved Similarity Measure.

Evolutionary Bioinformatics 2010, 2009:137, 1812-EBO-Clustering-Protein-

Sequences-Using-Affinity-Propagation-Based-on-an-Im.pdf.

38. Rousseeuw PJ: Silhouettes: A graphical aid to the interpretation and

validation of cluster analysis. Journal of Computational and Applied

Mathematics 1987, 20:53-65.

39. Apeltsin L, Morris JH, Babbitt PC, Ferrin TE: Improving the quality of

protein similarity network clustering algorithms using the network edge

weight distribution. Bioinformatics 2011, 27(3):326-333.

40. Saldanha AJ: Java Treeview–extensible visualization of microarray data.

Bioinformatics 2004, 20(17):3246-3248.

41. Huang da W, Sherman BT, Lempicki RA: Systematic and integrative

analysis of large gene lists using DAVID bioinformatics resources. Nature

protocols 2009, 4(1):44-57.

42. Maere S, Heymans K, Kuiper M: BiNGO: a Cytoscape plugin to assess

overrepresentation of gene ontology categories in biological networks.

Bioinformatics 2005, 21(16):3448-3449.

43. Ideker T, Ozier O, Schwikowski B, Siegel AF: Discovering regulatory and

signalling circuits in molecular interaction networks. Bioinformatics 2002,

18(Suppl 1):S233-240.

44. Giancarlo R, Scaturro D, Utro F: Computational cluster validation for

microarray data analysis: experimental assessment of Clest, Consensus

Clustering, Figure of Merit, Gap Statistics and Model Explorer. BMC

Bioinformatics 2008, 9:462.

45. Li X, Cai H, Xu J, Ying S, Zhang Y: A mouse protein interactome through

combined literature mining with multiple sources of interaction

evidence. Amino Acids 2010, 38(4):1237-1252.

46. Lattin JE, Schroder K, Su AI, Walker JR, Zhang J, Wiltshire T, Saijo K, Glass CK,

Hume DA, Kellie S, et al: Expression analysis of G Protein-Coupled

Receptors in mouse macrophages. Immunome Res 2008, 4:5.

47. Ito T, Tashiro K, Muta S, Ozawa R, Chiba T, Nishizawa M, Yamamoto K,

Kuhara S, Sakaki Y: Toward a protein-protein interaction map of the

budding yeast: A comprehensive system to examine two-hybrid

interactions in all possible combinations between the yeast proteins.

Proc Natl Acad Sci USA 2000, 97(3):1143-1147.

48. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D,

Narayan V, Srinivasan M, Pochart P, et al: A comprehensive analysis of

protein-protein interactions in Saccharomyces cerevisiae. Nature 2000,

403(6770):623-627.

49. Johnsson N: A split-ubiquitin-based assay detects the influence of

mutations on the conformational stability of the p53 DNA binding

domain in vivo. FEBS Lett 2002, 531(2):259-264.

50. Ho Y, Gruhler A, Heilbut A, Bader GD, Moore L, Adams SL, Millar A, Taylor P,

Bennett K, Boutilier K, et al: Systematic identification of protein complexes

in Saccharomyces cerevisiae by mass spectrometry. Nature 2002,

415(6868):180-183.

51. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C,

Jensen LJ, Bastuck S, Dumpelfeld B, et al: Proteome survey reveals

modularity of the yeast cell machinery. Nature 2006, 440(7084):631-636.

52. Collins SR, Kemmeren P, Zhao XC, Greenblatt JF, Spencer F, Holstege FC,

Weissman JS, Krogan NJ: Toward a comprehensive atlas of the physical

interactome of Saccharomyces cerevisiae. Mol Cell Proteomics 2007,

6(3):439-450.

53. Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, Chu CS,

Schuldiner M, Gebbia M, Recht J, Shales M, et al: Functional dissection of

protein complexes involved in yeast chromosome biology using a

genetic interaction map. Nature 2007, 446(7137):806-810.

54. Wilmes GM, Bergkessel M, Bandyopadhyay S, Shales M, Braberg H,

Cagney G, Collins SR, Whitworth GB, Kress TL, Weissman JS, et al: A genetic

interaction map of RNA-processing factors reveals links between Sem1/

Dss1-containing complexes and mRNA export and splicing. Mol Cell

2008, 32(5):735-746.

55. Jaroszewski L, Li Z, Krishna SS, Bakolitsa C, Wooley J, Deacon AM, Wilson IA,

Godzik A: Exploration of uncharted regions of the protein universe. PLoS

biology 2009, 7(9):e1000205.

56. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment

search tool. Journal of molecular biology 1990, 215(3):403-410.

57. Pegg SC, Brown SD, Ojha S, Seffernick J, Meng EC, Morris JH, Chang PJ,

Huang CC, Ferrin TE, Babbitt PC: Leveraging enzyme structure-function

relationships for functional inference and experimental design: the

structure-function linkage database. Biochemistry 2006, 45(8):2545-2555.

58. Armstrong RN: Mechanistic diversity in a metalloenzyme superfamily.

Biochemistry 2000, 39(45):13625-13632.

59. Babbitt PC: Exploring the VOC superfamily.Edited by: Apeltsin L 2011.

60. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M,

Currier T, Thiagarajan M, et al: TM4: a free, open-source system for

microarray data management and analysis. Biotechniques 2003,

34(2):374-378.

61. Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J,

Thiagarajan M, White JA, Quackenbush J: TM4 microarray software suite.

Methods in enzymology 2006, 411:134-193.

62. J van der Laan M, Pollard KS: A new algorithm for hybrid hierarchical

clustering with visualization and the bootstrap. Journal of Statistical

Planning and Inference 2003, 117(2):275-303.

63. Heyer LJ, Kruglyak S, Yooseph S: Exploring expression data: identification

and analysis of coexpressed genes. Genome research 1999,

9(11):1106-1115.

64. Bezdek JC: Pattern Recognition with Fuzzy Objective Function

Algorithms. Kluwer Academic Publishers; 1981.

65. Pavlopoulos GA, Moschopoulos CN, Hooper SD, Schneider R, Kossida S:

jClust: a clustering and visualization toolbox. Bioinformatics 2009,

25(15):1994-1996.

doi:10.1186/1471-2105-12-436
Cite this article as: Morris et al.: clusterMaker: a multi-algorithm
clustering plugin for Cytoscape. BMC Bioinformatics 2011 12:436.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Morris et al. BMC Bioinformatics 2011, 12:436

http://www.biomedcentral.com/1471-2105/12/436

Page 14 of 14

http://www.ncbi.nlm.nih.gov/pubmed/20202218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20202218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16554755?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16554755?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19331680?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19331680?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21118823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21118823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21118823?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15180930?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19131956?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15972284?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15972284?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12169552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12169552?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18959783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18959783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18959783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19669079?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19669079?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19669079?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18442421?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18442421?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10655498?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10655498?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10655498?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10688190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10688190?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12417323?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12417323?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12417323?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11805837?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11805837?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16429126?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16429126?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17200106?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17200106?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17314980?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17314980?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17314980?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19061648?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19061648?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19061648?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19787035?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2231712?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16489747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16489747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16489747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11076500?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12613259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12613259?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16939790?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10568750?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10568750?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19454618?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Network clustering algorithms
	Attribute clustering algorithms

	Implementation
	Algorithm-specific implementation details
	Visualization

	Results
	Scenario 1: Analysis of Protein Expression Data
	Scenario 1 Data sources
	Scenario 1 Protocol
	Scenario 1 Results
	Scenario 2: Identification of Protein Complexes
	Scenario 2 Data sources
	Scenario 2 Protocol
	Scenario 2 Results
	Prefoldin complex

	Scenario 3: Protein Similarity
	Scenario 3 Data sources
	Scenario 3 Protocol
	Scenario 3 Results

	Discussion
	Conclusions
	Availability and requirements
	Acknowledgements
	Author details
	Authors' contributions
	References

