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Abstract
Amyotrophic lateral sclerosis (ALS) is associated with considerable clinical heterogeneity spanning from diverse disability 
profiles, differences in UMN/LMN involvement, divergent progression rates, to variability in frontotemporal dysfunction. 
A multitude of classification frameworks and staging systems have been proposed based on clinical and neuropsychologi-
cal characteristics, but disease subtypes are seldom defined based on anatomical patterns of disease burden without a prior 
clinical stratification. A prospective research study was conducted with a uniform imaging protocol to ascertain disease 
subtypes based on preferential cerebral involvement. Fifteen brain regions were systematically evaluated in each participant 
based on a comprehensive panel of cortical, subcortical and white matter integrity metrics. Using min–max scaled compos-
ite regional integrity scores, a two-step cluster analysis was conducted. Two radiological clusters were identified; 35.5% of 
patients belonging to ‘Cluster 1’ and 64.5% of patients segregating to ‘Cluster 2’. Subjects in Cluster 1 exhibited marked 
frontotemporal change. Predictor ranking revealed the following hierarchy of anatomical regions in decreasing importance: 
superior lateral temporal, inferior frontal, superior frontal, parietal, limbic, mesial inferior temporal, peri-Sylvian, subcortical, 
long association fibres, commissural, occipital, ‘sensory’, ‘motor’, cerebellum, and brainstem. While the majority of imag-
ing studies first stratify patients based on clinical criteria or genetic profiles to describe phenotype- and genotype-associated 
imaging signatures, a data-driven approach may identify distinct disease subtypes without a priori patient categorisation. 
Our study illustrates that large radiology datasets may be potentially utilised to uncover disease subtypes associated with 
unique genetic, clinical or prognostic profiles.

Keywords Amyotrophic lateral sclerosis · Neuroimaging · Biomarkers · Motor neuron disease · Diffusion imaging · 
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Introduction

Clinical heterogeneity in ALS is widely recognised. While 
the diagnosis of ALS requires a core set of clinical features, 
considerable differences exist in progression rates, disability 
profiles, survival, cognitive manifestations, and behavioural 
features [1–4]. Key dimensions of clinical heterogeneity 
include LMN versus UMN predominance, body region of 
symptom onset and cognitive profiles, but less characteristic 

symptoms, such as extrapyramidal, cerebellar, and sensory 
deficits may also add to the diversity of clinical manifesta-
tions [5–8]. The practical upshot of clinical heterogeneity 
includes the considerable differences in care needs, support 
services, caregiver burden and resources needed for the 
multidisciplinary management of the condition. It is widely 
recognised that individualised supportive strategies are 
required for the optimal management of ALS, and it is also 
increasingly accepted the individualised pharmacotherapy 
may be needed instead of the traditional “one-drug-for-all” 
approach. The ramifications of disease heterogeneity span 
beyond patient care and are a considerable challenge in clini-
cal trials which are often hampered by small cohort sizes, 
stringent entry criteria and high drop-out rates [9]. In line 
with the concepts of precision medicine, and in recogni-
tion of the diversity of clinical trajectories in ALS, a mul-
titude of classification schemes and staging systems were 
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introduced to categorise patient with similar disability, prog-
nostic or cognitive profiles [10–14]. These staging systems 
are relatively easy to apply in the clinical setting, useful in 
pharmacological trials, and proved successful in reducing 
clinical diversity by allocating patients into specific disease 
categories. Clinical staging, however, require the careful 
consideration of observed parameters and invariably rely on 
the interpretation of medical cues, reported symptoms and 
other potentially subjective factors. An alternative to clini-
cal staging is the exploration of quantitative biomarker data 
[15–17] to evaluate if distinct subgroups exist, using a data-
driven approach relying solely on quantitative, “measured” 
variables. While the majority of imaging studies use clinical 
categorisation first to then describe phenotype-, genotype- or 
stage-associated radiological profiles [18, 19], an alterna-
tive is the cluster analysis of pooled imaging data and the 
subsequent analysis of cluster-associated clinical character-
istics. Accordingly, the main objective of this study is the 
evaluation of a large unsegregated MR dataset with regards 
to radiological clusters of anatomical involvement without 
a priori patient categorisation. Our hypothesis is that dis-
ease subtypes may be readily identified using a data-driven 
approach without relying on accompanying clinical vari-
ables. A secondary objective of the study is the interroga-
tion of cluster-associated demographic, clinical and genetic 
information once cluster membership has been established 
for each participant.

Methods

Participants

A total of 214 patients with amyotrophic lateral sclerosis 
(ALS) were included in a prospective, single-centre study. 
The study was approved by the institutional ethics board 
(Beaumont Hospital, Dublin, Ireland), and all participants 
provided informed consent. Exclusion criteria included prior 
cerebrovascular events, traumatic brain injury, neurosurgi-
cal procedures, as well as comorbid neoplastic, paraneo-
plastic or neuroinflammatory diagnoses. Participating ALS 
patients were diagnosed according to the El Escorial criteria. 
161 patients were screened for GGG GCC  hexanucleotide 
expansions in C9orf72. Methods for genetic screening have 
been previously reported [20]. GGG GCC  repeat expan-
sions in C9orf72 longer than 30 repeats were considered 
pathological.

Magnetic resonance imaging

A standardised imaging protocol was implemented on a 
3 Tesla Philips Achieva Magnetic resonance (MR) plat-
form. T1-weighted (T1w) images were acquired with a 3D 

Inversion Recovery prepared Spoiled Gradient Recalled 
echo (IR-SPGR) sequence with a spatial resolution of 
1  mm3, field-of-view (FOV) of 256 × 256 × 160 mm, flip 
angle = 8°, SENSE factor = 1.5, TR/TE = 8.5/3.9  ms, 
TI = 1060  ms. Diffusion tensor images (DTI) were 
acquired with a spin-echo echo planar imaging (SE-EPI) 
pulse sequence using a 32-direction Stejskal-Tanner dif-
fusion encoding scheme; 60 slices with no interslice gap, 
spatial resolution = 2.5  mm3, FOV = 245 × 245 × 150 mm, 
TR/TE = 7639/59 ms, SENSE factor = 2.5, b-values = 0, 
1100 s/mm2, dynamic stabilisation and spectral presatu-
ration with inversion recovery (SPIR) fat suppression. 
To assess for comorbid vascular and neuroinflammatory 
pathologies, an Inversion Recovery Turbo Spin Echo 
(IR-TSE) sequence was used to acquire FLAIR images, 
which were systematically reviewed for each participant. 
FLAIR data were acquired in axial orientation: spatial 
resolution = 0.65 × 0.87 × 4 mm, 30 slices with 1 mm gap, 
FOV = 230 × 183 × 150  mm, TR/TE = 11,000/125  ms, 
TI = 2800 ms, 120° refocusing pulse, with flow compensa-
tion and motion smoothing and a saturation slab covering 
the neck region.

Cortical thickness values

The pre-processing of T1-weighted data included non-
parametric non-uniform intensity normalisation, affine 
registration to the MNI305 atlas, intensity normalisation, 
skull striping, automatic subcortical segmentation, linear 
volumetric registration, neck removal, tessellation of the 
grey matter-white matter boundary, surface smoothing, 
inflation to minimise metric distortion, and automated 
topology correction [21]. The anatomical labels of the 
Desikan–Killiany atlas [22] were used to calculate aver-
age cortical thickness in the following cortical regions 
in the left and right cerebral hemispheres separately: (1) 
banks superior temporal sulcus, (2) caudal anterior cin-
gulate cortex, (3) caudal middle frontal gyrus, (4) cuneus 
cortex, (5) entorhinal cortex, (6) frontal pole, (7) fusiform 
gyrus, (8) inferior parietal cortex, (9) inferior temporal 
gyrus, (10) insula, (11) isthmus–cingulate cortex, (12) 
lateral occipital cortex, (13) lateral orbitofrontal cortex, 
(14) lingual gyrus, (15) medial orbital frontal cortex, (16) 
middle temporal gyrus, (17) parahippocampal gyrus, (18) 
paracentral lobule, (19) pars opercularis, (20) pars orbit-
alis, (21) pars triangularis, (22) pericalcarine cortex, (23) 
postcentral gyrus (24) posterior-cingulate cortex, (25) pre-
central gyrus, (26) precuneus cortex, (27) rostral anterior 
cingulate cortex, (28) rostral middle frontal gyrus, (29) 
superior frontal gyrus, (30) superior parietal cortex, (31) 
superior temporal gyrus, (32) supramarginal gyrus, (33) 
temporal pole, and (34) transverse temporal cortex.
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Volume metrics

The brainstem was segmented with a Bayesian parcella-
tion approach into the medulla oblongata, pons, midbrain 
and superior cerebellar peduncle, based on a probabilistic 
brainstem atlas derived from 49 scans [23]. A total of 25 
volume variables were estimated from each pre-processed 
T1-weighted dataset: (1) left cerebellar cortex volume, (2) 
left thalamus volume, (3) left caudate volume, (4) left puta-
men volume, (5) left pallidum volume, (6) left accumbens 
volume, (7) left amygdala, (8) left hippocampus, (9) right 
cerebellar cortex volume, (10) right thalamus volume, (11) 
right caudate volume, (12) right putamen volume, (13) right 
pallidum volume, (14) right accumbens volume, (15) right 
amygdala, (16) right hippocampus, (17) posterior corpus 
callosum volume, (18) middle corpus callosum volume, (19) 
central corpus callosum volume, (20) mid-anterior corpus 
callosum volume, (21) anterior corpus callosum volume, 
(22) medulla volume, (23) pons volume, (24) superior cer-
ebellar peduncle volume, and (25) midbrain volume, and the 
total intracranial volume (TIV) was also estimated for each 
subject. Each volume value was converted as a percentage 
of the subject’s total intracranial volume (TIV) to account 
for TIV variations.

White matter indices

Following quality control, eddy current corrections and skull 
removal were applied to DTI data before a tensor model was 
fitted to generate diffusivity maps of fractional anisotropy 
(FA). FMRIB’s software library’s (v6.0) tract-based statis-
tics (TBSS) module was implemented for the non-linear 
registration of DTI images, skeletonisation and the creation 
of a mean FA mask. The study-specific white matter skel-
eton was masked in MNI space by the anatomical labels of 
the following white matter regions: left and right anterior 
thalamic radiation, left and right posterior thalamic radia-
tion, left and right cerebellar white matter skeleton, left and 
right corticospinal tract, forceps major, body of the corpus 
callosum, forceps minor, left and right inferior cerebellar 
peduncle, middle cerebellar peduncle, left and right supe-
rior cerebellar peduncle, left and right inferior longitudinal 
fasciculus, left and right uncinate fasciculus, left and right 
superior frontal lobe, left and right inferior frontal lobe, left 
and right temporal lobe, left and right occipital lobe, left 
and right parietal lobe, left and right cingulum, left and right 
inferior fronto-occipital fasciculus, left and right superior 
longitudinal fasciculus, left and right medial lemniscus, for-
nix, and brainstem. To generate spatial masks for the cer-
ebellar peduncles, medial lemniscus and posterior thalamic 
radiation, the labels of the ICBM-DTI-81 white matter atlas 
[24, 25] were used. To create masks for the cingulum, for-
ceps major, forceps minor, body of corpus callosum, anterior 

thalamic radiation, uncinate, inferior longitudinal fasciculi, 
superior longitudinal fasciculi, inferior fronto-occipital fas-
ciculi, and corticospinal tracts, the labels of the JHU white 
matter tractography atlas [26, 27] were utilised. FMRIB’s 
fornix template [28] was used to mask the study-specific 
white matter skeleton in MNI space. Labels of the MNI 
probabilistic atlas [29, 30] was used to generate a white 
masks for the cerebellum, frontal, temporal, occipital, and 
parietal lobes. The frontal lobe was divided into inferior and 
superior sections at MNI coordinate z = 8. Label 8 of the 
Harvard–Oxford probability atlas [31] was used to create a 
brainstem mask.

Statistical interpretation

Fifteen key regions of interest (ROIs) were defined cover-
ing the entire cerebrum: (1) inferior frontal, (2) superior 
frontal, (3) peri-Sylvian (lateral sulcus), (4) mesial inferior 
temporal, (5) superior lateral temporal, (6) parietal, (7) 
occipital, (8) “motor”, (9) commissural, (10) brainstem, (11) 
cerebellum, (12) subcortical, (13) limbic, (14) long asso-
ciation fibres, and (15) “sensory”. A total of 25 volumetric 
variables, 68 cortical thickness values and 40 white matter 
indices were systematically retrieved from each subject’s 
imaging data. Integrity metrics of bilateral structures were 
averaged pairwise, resulting in a total of 74 variables (17 
volumes, 34 thickness, 23 FA) in each subject (Table 1). 
In each anatomical region, cortical thickness values were 
added and min–max normalised to a 0–1 scale. In subcorti-
cal and infratentorial ROIs (corpus callosum, basal ganglia, 
brainstem, cerebellum etc.), volume values were added and 
min–max normalised instead. With the exception of the long 
association ROI, where the two input FA values were 0–1 
scaled separately, white matter metrics in each other ROI 
were added and 0–1 scaled. As a result, in each ROI there 
were two 0–1 scaled indices which were added for a single 
composite score representing the integrity of the ROI rang-
ing from 0 to 2, higher scores indicating superior regional 
integrity, lower scores representing degenerative change.

Based on the 15 regional integrity scores, a 2-step 
cluster analysis was conducted using Euclidean distance 
measure. The number of clusters was not fixed a priori, 
and the Bayesian Information Criterion (BIC) was used 
to determine the number of clusters. Based on cluster 
membership of individual patients, cluster sizes were 
determined and silhouette analyses run using the STATS 
CLUS SIL extension of SPSS. The hierarchy of input 
variables was calculated to rank predictor importance, 
i.e. the measures of which brain regions best segregate 
the patients. Cluster membership was plotted in a scatter 
plot along the integrity gradient of the three most rel-
evant ROI to demonstrate case separation. In post hoc 
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analyses, the clinical and genetic profiles of the clusters 
were contrasted.

Results

Two-step cluster analysis identified two distinct clusters of 
anatomical disease-burden distribution, 35.5% of patients 
(n = 76) segregating to Cluster 1 and 64.5% (n = 138) to 
Cluster 2. The silhouette coefficient of 0.572 indicates 

Table 1  Definition of regions of interest and input imaging variables

ROI region-of-interest, FA fractional anisotropy, th. thickness, vol. volume

ROI Cortical thickness/volume metrics White matter metrics

1 Inferior frontal Lateral orbitofrontal th.
Medial orbitofrontal th.
Pars orbitalis th.
Frontal pole th.
Rostral anterior cingulate th.

Inferior frontal FA

2 Superior frontal Superior frontal th.
Rostral middle frontal th.
Caudal middle frontal th.
Caudal anterior cingulate th.

Superior frontal FA

3 “Peri-Sylvian” Pars opercularis th.
Pars triangularis th.
Insula th.

Uncinate fasciculus FA

4 Mesial-inferior temporal Entorhinal th.
Parahippocampal th.
Fusiform th.
Temporal pole th.

Inferior longitudinal fasciculus FA

5 Superior-lateral temporal Superior temporal th.
Middle temporal th.
Inferior temporal th.
Transverse temporal th.
Banks of the superior temporal sulcus th.

Average temporal FA

6 Parietal Inferior parietal th.
Superior parietal th.
Supramarginal th.
Precuneus th.
Posterior cingulate th.
Isthmus cingulate th.

Average parietal FA

7 Occipital Lateral occipital th.
Lingual th.
Cuneus th.
Pericalcarine th.

Average occipital FA

8 Motor Precentral th.
Paracentral th.

Corticospinal tract FA

9 Commissural Posterior, middle, central, mid-anterior, anterior cor-
pus callosum vol.

Forceps major FA
Forceps minor FA
Body of corpus callosum FA

10 Brainstem Medulla vol., pons vol., midbrain vol Brainstem FA
11 Cerebellum Cerebellar cortex vol., superior cerebellar peduncle 

vol.
Inferior cerebellar peduncle FA, middle cerebellar 

peduncle FA, superior cerebellar peduncle FA, aver-
age cerebellar FA

12 Subcortical Thalamus vol., caudate vol., putamen vol., pallidum 
vol., accumbens vol.

Anterior thalamic radiation FA, posterior thalamic 
radiation FA

13 Limbic Amygdala vol., hippocampus vol. Fornix FA
Cingulum FA

14 Long association fibres – Inferior fronto-occipital fasciculus FA, superior longi-
tudinal fasciculus FA

15 Sensory Postcentral gyrus Medial lemniscus FA
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reasonable cohesion and separation according to Kauf-
man and Rousseeuw [32]. Variable ranking revealed that 
the ROIs that best predict cluster membership are superior 
lateral temporal, inferior frontal, superior frontal, parietal, 
limbic, mesial inferior temporal, peri-Sylvian, subcortical, 
long association fibres, commissural, occipital, ‘sensory’, 
‘motor’, cerebellum, and brainstem in descending order of 
importance (Fig. 1).

To illustrate the discrimination potential of the ana-
tomical regions between the clusters, a scatter plot was 
generated based on the integrity of the three most relevant 
anatomical regions (Fig. 2).

Based on allocated cluster membership, the demo-
graphic, clinical and genetic profiles of the two clusters 
were evaluated; Cluster 1: n = 76 age: 61.9 ± 11.9, male: 54 
(71.1%), right handed: 73 (96.1%), education 13.5 ± 3.2, 
spinal onset: 67 (88.2%), ALSFRS-r: 37.9 ± 5.4, impaired 
on ECAS: 20 [26.3% of subjects in the cluster, 29.8% of 
subjects with ECAS available in the cluster (n = 67)], 
ALS-FTD: 13 (17.1%), C9orf72 hexanucleotide carriers: 
16 (21.1% of cluster).

Cluster 2: n = 138, age: 60.5 ± 11.9, male: 86 (62.3%), 
right handed: 129 (93.5%), education 14.1 ± 3.3, spi-
nal onset: 119 (86.2%), ALSFRS-r: 38.8 ± 6.2, impaired 
on ECAS: 21 (15.2% of subjects in the cluster, 17.9% of 
subjects with ECAS available in the cluster (n = 117)), 

ALS-FTD: 15 (10.9%), C9orf72 hexanucleotide carriers: 
6 (4.3% of cluster). The two clusters were matched for 
age (p = 0.39), sex (χ2

corr. = 1.29, p = 0.256), handedness 
(χ2

corr. = 0.22, p = 0.64), education (p = 0.25), site of symp-
tom onset (χ2

corr. = 0.35, p = 0.85), ALSFRS-r (p = 0.28), 
presence of comorbid FTD (χ2corr. = 1.17, p = 0.28), and 
the proportion of patients with impairment on ECAS 

Fig. 1  The relative predic-
tor importance profile of each 
anatomical region

Fig. 2  3D scatter plot of patients in Cluster 1 and Cluster 2 based on 
the integrity of the superior lateral temporal, inferior frontal and pari-
etal ROI



4409Journal of Neurology (2022) 269:4404–4413 

1 3

(χ2corr. = 3.99, p = 0.136). The two clusters differed in genetic 
profiles (χ2corr. = 23.17, p < 0.0001). In Cluster 1, there were 
16 hexanucleotide repeat carriers which is 23.5% of patients 
with genetic information available in the cluster (n = 68). In 
Cluster 2, there were only six hexanucleotide repeat carriers 
which is 6.5% of patients with genetic information avail-
able in the cluster (n = 93). Of the 22 hexanucleotide carriers 
included in the study, 72.7% (n = 16) clustered to Cluster 1, 
and only 27.3% (n = 6) to Cluster 2.

Discussion

Our data confirm the radiological clustering of ALS into 
two relatively distinct subtypes. Contrary to previous stag-
ing or classification studies, we have not incorporated any 
complementary clinical, demographic or genetic information 
and uncovered two distinct subtypes based on the anatomical 
distribution of degenerative change alone in a large cohort of 
pooled ALS patients. The motivation behind our approach 
was to solely interpret objective, quantitative, spatially coded 
radiological data without applying any a priori stratification 
strategy. Whilst most studies first categorise patients based 
on clinical, genetic or phenotypic criteria to then describe 
phenotype- or genotype-associated imaging signatures, our 
intention was the opposite; evaluate the natural segregation 
of patients based on pathological patterns and then assess 
clinical features associated with the clusters.

Using cerebral grey and white matte measures in 15 cer-
ebral regions covering the entire brain, we have detected 2 
distinct subgroups: a larger cluster (64.5%) of patients with 
moderate extra-motor disease burden and a smaller cluster 
(35.5%) with considerable frontotemporal pathology. One 
of the objectives of the study was to evaluate which brain 
regions best distinguish the subgroups; therefore, the evalu-
ation of predictor importance is of particular interest. The 
marked involvement of superior lateral temporal and fron-
tal regions in a subset of patients is consistent with previ-
ous reports, but the high predictor importance of parietal 
changes merits further discussion. ALS is not traditionally 
associated with preferential parietal atrophy [33]. Parietal 
changes have been sporadically described mostly in asso-
ciation with advanced disease, but our study suggests that 
parietal indices may help to segregate patients into sub-
groups. Predictor importance ranking also revealed that the 
involvement of brain regions traditionally associated with 
ALS, such as the motor cortex, corticospinal tracts, com-
missural structures and brainstem do not readily distinguish 
disease clusters as the pathology of these regions represent 
core, unifying features of disease [34, 35]. The low predictor 
importance of the cerebellum is also of interest. Cerebellar 
changes in ALS have only been recently characterised in 
detail [36] and the gravity of cerebellar changes are thought 

to be associated with specific genotypes and phenotypes [7, 
37]. While an ALS-ataxia continuum was proposed by some, 
our data did not indicate the existence of a cluster of patients 
with marked cerebellar involvement without frontotemporal 
change.

The heterogeneity of limbic involvement is consistent 
with the vast body of neuropsychology and neuroimaging 
literature [38–40]. The importance of mesial inferior tem-
poral structures in segregating ALS subtypes is consistent 
with the literature of medial temporal pathology in ALS 
and their contribution to cognitive deficits [18, 41]. Peri-
Sylvian features ranked relatively high in our study, despite 
the left–right averaging of integrity variables. Peri-Sylvian 
regions are seldom assessed specifically in ALS, as the focus 
of imaging studies in ALS-FTD is often orbitofrontal, dorso-
lateral prefrontal and various temporal regions. Preferential 
insular and Broca’s area degeneration have been previously 
described in association with C9orf72 [42] but also often 
detected in whole-brain cortical thickness or morphomet-
ric analyses. Language deficits in ALS are also relatively 
well described [43, 44], but rarely linked to focal degen-
erative change [45]. Subcortical integrity metrics ranked 
to the middle of predictor hierarchy which is somewhat 
unexpected given the role of subcortical structures driv-
ing neuropsychological manifestations and the notion that 
hexanucleotide carriers may exhibit particularly marked sub-
cortical degeneration [46–49]. Sensory areas ranked low in 
their importance of separating the clusters, despite recent 
reports of subtle or subclinical sensory deficits in ALS [50, 
51]. Our predictor analysis outcomes highlight the impor-
tance of systematically assessing each brain region in ALS 
instead of only pursuing the analysis of brain regions which 
are known to be affected based on post mortem data. Cer-
tain anatomical areas such as the parietal lobes and occipital 
lobe may not be characteristic regions of degeneration, yet, 
as illustrated, may have a role in segregating specific ALS 
subtypes. This observation is consistent with the emerging 
machine-learning literature of ALS [52, 53] which suggests 
that feature importance analyses, especially in multi-class 
classification schemes, may identify brain regions which are 
not classically associated with ALS [54, 55].

Our data indicate a relative discordance between clini-
cal and radiological profiles. While subjects in Cluster 1 
exhibited marked frontotemporal change radiologically 
and the proportion of patients with cognitive impairment 
was higher, the statistical comparison of clinical variables 
in the two clusters did not reach significance. Further-
more, the two clusters were also matched in motor disa-
bility as indicated by their ALSFRS-r profiles. The disso-
ciation between disease burden and clinical performance 
is increasingly recognised [56] and a multitude of factors, 
such as compensatory processes, “motor reserve” and 
“cognitive reserve” may contribute [57–59]. The relative 
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genetic segregation of subjects based on their imaging 
profiles is of particular interest; 72.7% of hexanucleotide 
carriers segregated to Cluster 1, and only 27.3% to Cluster 
2. It is conceivable, that in much larger datasets, imaging 
may have a role in uncovering anatomically unique sub-
groups which may carry a higher percentage of specific 
genetic variants or groups with distinct clinical features.

Our study is not without limitations. A silhouette coef-
ficient of 0.572 can only be interpreted as a “reasonable” 
structure [32]. Our cluster analysis relied on cross-sec-
tional data, and similarly to other studies [53, 60], the 
clinical implications of cluster membership need to be 
characterised further with regards to potential prognostic 
and survival ramifications. The assessment whether radi-
ological cluster membership is consistent longitudinally 
throughout the course of the disease would be of inter-
est [61]. Furthermore, only very basic clinical variables 
were appraised in the resulting anatomical clusters such 
as composite disability scores and cognitive screening 
outcomes. The fine-grained assessment of specific clini-
cal domains such as pyramidal, extrapyramidal, cerebel-
lar, language, social cognition, and apathy scores may 
reveal significant inter-cluster differences [4, 5, 62–64]. 
To explore patient segregation into core pathological pat-
terns, relatively large anatomical regions were defined 
and only structural integrity metrics evaluated. The incor-
poration of spinal cord metrics [65, 66] and functional 
network integrity indices [17, 67] may have helped to 
identify additional clusters. Only symptomatic patients 
with an established diagnosis of ALS were included in 
this study. Given the considerable evidence of brain [44, 
68] and spinal cord [69] alterations long before symp-
tom onset, the anatomical clustering of asymptomatic 
mutation carriers would be of particular interest. Finally, 
the inclusion of non-ALS MNDs, such as SBMA, SMA, 
PLS, PPS or PMA in cluster analyses may be of potential 
interest to evaluate if these subtypes segregate from ALS 
based on their radiological profiles [70–76]. Notwith-
standing these limitations, our study demonstrates that 
pooled radiology data may be utilised to uncover disease 
subtypes which may be associated with unique genetic 
profiles.

Conclusions

Cluster analysis of imaging data reveals distinct subtypes in 
ALS without accompanying clinical information. The inter-
rogation of biomarkers by data-driven approaches helps to 
explore the heterogeneity of neurodegenerative conditions 
without a priori patient stratification. With the increased 
availability of large harmonised datasets, similar analyses 

may expose unique disease subtypes with distinctive clini-
cal, prognostic or genetic traits.
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copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.
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