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Abstract 
 
Equilibrium clusters of protein lysozyme are at the center of an ongoing scientific debate. Previous 

attempts to provide a microscopic description of the clusters that is consistent with all experimental 

evidence have not been fully successful. The primary reason is the use of model potentials that have a 

pre-defined shape.  In this paper we derive a model-free inter-protein potential directly from 

experimental structure factor.The derived potential is globally repulsive but has a local minimum at 

short distances. The minimum is essential for the correct behavior of the structure factor with protein 

concentration, in particular the shifting pattern of the signature maximum at short wave vectors. 

Equilibrium clusters are observed throughout the entire range of concentrations but their nature differs 

in the low and high concentration limits. At low concentrations, the clusters are extended in shape. As 

the concentration is increased, small clusters collapse while large clusters are assembled from the small 

ones. Hydrodynamic interactions drive a kinetic slow down at high concentrations, where a transition 

into a fluid of permanent clusters of specific size is observed.  In good agreement with the available 

experimental data, our simulations shed new light on the microscopic nature of protein clusters. 
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Introduction 

Whether protein lysozyme can make equilibrium clusters in aqueous solutions is the subject of a 

vigorous scientific debate. It started in 2004 with the paper of  Stradner et al1, presenting the results of a 

small-angle neutron scattering (SANS) study of aqueous solutions of protein lysozyme at varying 

concentration c. The reported static structure factor exhibited a second maximum located at a short 

wave vector ݇௠௔௫, in addition to the main maximum at a longer wave vector corresponding to the 

nearest-neighbor distance between the proteins. Since the second maximum indicates longer-range 

correlations it was concluded that it reports small protein assemblies, or clusters, and corresponds to 

the inter-cluster distances. Furthermore, the hallmark of the experimental observations - that ݇௠௔௫ 

does not shift with c, implies that the cluster-cluster distance remains the same for all concentrations. 

The only way this can be achieved is when the clusters grow in size at increasing concentration. 

Specifically, a proportionality relationship ௖ܰ~ܿ was assumed, where ௖ܰ is the cluster size.  

The cluster model was questioned by Shukla et al2, 3who repeated the original scattering experiments 

and found that ݇௠௔௫ actually shifts to higher values as the concentration is increased. Based on this 

observation the authors suggested that ݇௠௔௫ is the main maximum in the structure factor and that this 

maximum corresponds to the nearest-neighbor distance between the proteins. Since the proteins are 

believed to experience strong mutual repulsion under the conditions of the experiment they choose to 

remain at a maximal possible distance one from another. This leads to the uniform compression of the 

solution at increasing concentration, causing all inter-protein distances to shrink. As a consequence, the 

position of the maximum in the structure factor shifts upwards, in good agreement with the 

measurements. This model does not envision the formation of any clusters.  
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An alternative explanation seeking to reconcile the above two scenarios was proposed by Liu et al4. 

These authors varied systematically the shape of a model potential and used integral-equation theory to 

identify systems that a) display a maximum at ݇௠௔௫ but lack clusters at low protein concentrations and 

b) display clusters but lack the maximum at high protein concentrations. Either case provides evidence 

against a strong correlation between a maximum at  ݇௠௔௫ and the appearance of clusters, as was 

suggested earlier1, 5. Instead, it is argued that the maximum arises because of the specific shape of the 

inter-protein potential which causes strong protein-protein correlations at intermediate distances 

(compared to the nearest-neighbors contacts) that may be realized through clusters but also through 

other structures, for instance protein gels. Correlation between the appearance of clusters and the 

maximum at ݇௠௔௫is seen when ܵሺ݇୫ୟ୶ ሻ is larger than 2.76. An important conclusion following from this 

observation is that the presence of clusters cannot be determined based on structural information 

alone. Instead, it is argued that additional studies are needed, in which the size of the various species in 

the system can be evaluated directly.  

Such studies were carried out recently by the neutron spin-echo (NSE) method7-9, measuring 

hydrodynamic radius, and by NMR8, 10, reporting long-time diffusion constant. Both approaches find 

evidence that, at increasing protein concentration, a new species emerges, which has a radius larger 

than that of the monomer and, therefore, can be associated with clusters. A consensus opinion 

emerging from these studies8, 11 is that lysozyme clusters do exist but only at high protein 

concentrations, where ݇௠௔௫ exhibits no shifting. This is to be contrasted with the low protein 

concentrations, where ݇௠௔௫ shifts and no clusters are observed.  

While the existence of clusters does not seem to be contested anymore, their nature remains elusive. A 

major obstacle for the structural characterization of clusters at the microscopic level is the lack of 

reliable inter-protein potentials. Lysozyme has been studied extensively over the last decade under a 
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wide range of conditions2, 12-19. However, in all these studies either a model potential2, 12-17 or an integral-

equation theory was used18, 19,  both of which are approximate. As a consequence, there is no potential 

for lysozyme to date that produces good agreement with experiment. In the most accurate approaches, 

potentials are obtained directly from SANS data by fitting 2, 4, 9, 20, 21. The quality of such potentials 

remains untested, however. In one case20, simulations experience very slow dynamics, presumably 

because of a deep minimum in the employed potential, reaching  ~8݇஻ܶ, where ݇஻ is the Boltzmann 

constant and ܶ is the temperature. As a consequence, comparison with experiment is made difficult by 

poor equilibration. Studies conducted by another group9, 21 do not suffer from the convergence problem 

but produce results that do not completely agree with experiment. Indeed, it is found21  that the 

maximum in the obtained structure factor does not shift with concentration. In addition, the system 

does not experience a kinetic slow down near a certain critical concentration9 seen experimentally. 

These shortcomings leave the question about the nature of lysozyme clusters unanswered. 

Equilibrium clusters are a relatively new and little studied phenomenon1, 22, 23. In physics and chemistry 

clusters represent a particular example of particle self-assembly. In biology, protein clusters may have a 

well-defined functional role, for instance, serving as a first step in the polymerization reaction 

responsible for the sickle cell disease24, 25. Since recently clusters have also been researched for use in 

nanotechnological applications, in particular,  drug delivery26.  In the wider context, a comprehensive 

understanding of why and how clusters are made is needed for both advancing  the frontiers of basic 

science and developing new technologies. 

In this paper, we present the first microscopic description of lysozyme clusters that agrees well with all 

available experimental data. As in our prior work27, we use SANS data to derive inter-protein potential 

by Boltzmann inversion.  We focus on the structure factor28 that has the characteristic second maximum 

at ݇௠௔௫. The potential obtained by our procedure is repulsive everywhere except at short distances, 
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where it has a small local minimum. The minimum, in contrast to a global minimum considered earlier2, 4, 

9, 21, ensures that the experimental concentration behavior of ݇௠௔௫ is correctly reproduced: shifting is 

seen at low concentrations and there is no shifting at high ܿ.  The model predicts small and extended 

clusters at low concentrations while at high concentrations, the clusters are large and collapsed. At 

increasing concentration, a transition into a non-ergodic state is seen. Beyond a critical concentration ܿ௖௥ ൌ 300݉݃/݈݉ the clusters can be considered frozen, or permanent. Hydrodynamic interactions, 

included in our model through the dissipative particle dynamics (DPD), cause a kinetic slow down on 

approach to ܿ௖௥, in good agreement with experiment.  

Model and methods 

The inter-protein potential ݒሺݎሻ was obtained as described in detail previously27. Briefly, our method 

relies on the one-to-one correspondence between a potential ݒሺݎሻ and the associated pair distribution 

function (PDF)29. The potential is determined in successive iterations30-32 as ݒ௟ାଵሺݎሻ ൌ ሻݎ௟ሺݒ െ݇ߣ஻݈ܶ݃݋ሺ݃ோሺݎሻ/݃௟ሺݎሻሻሻ, where ݒ௟ሺݎሻis the approximation at iteration ݈, ݃ோሺݎሻ is the experimental PDF, ݃௟ሺݎሻ is the PDF obtained at iteration ݈ and ߣ is a certain adjustable parameter whose purpose is to 

control the rate of convergence. The iterations were started from a purely repulsive initial guess ݒଵሺݎሻ. 

Pair distribution function was computed at each iteration by molecular simulations using stochastic 

dynamics algorithm. The temperature was set at ܶ ൌ  while the number of particles was set to ܭ298

match the experimental density. It took 48 iterations to obtain the potential shown in Figure 1(b). The 

iterations used a cut-off distance of ܴ௖ ൌ250Å. The simulation box contained 800 particles. 

To obtain structural functions simulations were performed at three temperatures as indicated in Figure 

2(a). The size of the system was reduced to 512 particles, which had no adverse effects on the results. 

Additionally, the cut-off distance was reduced to 75Å. The potential is seen to decay to zero at that 

distance. The truncated part at ݎ ൐ ܴ௖ contains small undulations, which we ignored as they were 
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judged an artifact of the truncation of the experimental structure factor at a finite wave vector during 

the numerical Fourier transform. 

All simulations were performed for the potential in which the distance was multiplied by 0.1. The size of 

the simulation box was scaled appropriately. This allowed us to bring the system to the atomic scale, 

making it easier to set simulation parameters and manage and store the data. We used the stochastic 

algorithm implemented in Gromacs33, 34 to maintain constant temperature. The inverse friction 

coefficient was set to ߬௧ ൌ All trajectories contained 5 .ݏ݌2 · 10ହ time steps. The time step was set at ݐߜ ൌ  .ݏ2݂

Dissipative particle dynamics (DPD) method was used to conduct dynamics simulations35. A Fortran code 

was written specifically for this purpose. The method takes into account viscous forces between 

particles that are mediated by the solvent flows, or the hydrodynamic (HD) interactions. Stochastic 

forces are added to maintain constant temperature. The equations of motions to be solved are as 

follows: 

ݐԦ௜݀ݎ݀ ൌ  ሻݐԦ௜ሺݒ
(1) 

݉ ݐԦ௜݀ݒ݀ ൌ Ԧ݂௜ሺݐሻ ൌ ෍ Ԧ௜௝൯௜ஷ௝,௥೔ೕழோ௖ݎԦ஼൫ܨ ൅ ෍ ൛ܨԦ஽൫ݎԦ௜௝, Ԧ௜௝൯ݒ ൅ Ԧ௜௝൯ൟ௜ஷ௝,௥೔ೕழோ௖௩ݎԦோ൫ܨ  
(2) 

where  ݉ is the mass of  the particles, ݎԦ௜௝ ൌ Ԧ௜ݎ െ Ԧ௜௝ݒ,Ԧ௝ݎ ൌ Ԧ௜ݒ െ  Ԧ௜ isݒ ,݅ Ԧ௜ is the radius vector of particleݎ ,Ԧ௝ݒ

its velocity and Ԧ݂௜ሺݐሻ is the total force acting on that  particle. The force is pair-wise additive and 

composed of three contributions. The first is the conservative force due to inter-particle potential ܨԦ஼൫ݎԦ௜௝൯. The second is the viscous drag force ܨԦ஽൫ݎԦ௜௝,  Ԧ௜௝൯, which describes how movements of oneݒ

particle are transmitted to the other particle through the flow of solvent. This force depends on relative 

velocity of the affected particles.  The third is a random force ܨԦோ൫ݎԦ௜௝൯, designed to maintain constant 
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temperature in the system. Stochastic and viscous forces are related through the fluctuation-dissipation 

theorem. In our implementation the relevant expressions are:  
ிԦೃ൫௥೔ೕ൯௠ ݐߜ ൌ ݂ሺݎ௜௝ሻ ݃ ௥Ԧ೔ೕ௥೔ೕ  and  ߦ

ிԦವ൫௥೔ೕ൯௠ ݐߜ ൌ
െ݂ሺݎ௜௝ሻଶ ሺ௩ሬԦ೔ೕ௥Ԧ೔ೕሻ௥೔ೕ ௥Ԧ೔ೕ௥೔ೕ, where ߦ is a random variable uniformly distributed between 0 and 1, ݐߜ is the time 

step to be used in numerical integration of the equations of motion,  ݃ ൌ ඥ2݇஻ܶ/݉ and ݂ሺݎ௜௝ሻ is a 

certain dimensionless function that controls the strength of the viscous forces. We used the self-

consistent leap-frog algorithm of Pagonabarraga et al 36 to integrate the equations of motion(1)-(2). The 

algorithm consists of two consecutive steps as shown below: 

Step 1 

Ԧ௜ݒ ൬ݐ ൅ 2ݐߜ ൰ ൌ Ԧ௜ݒ ൬ݐ െ 2ݐߜ ൰ ൅ ݐߜ Ԧ݂௜ሺݐሻ݉ ൌ
ൌ Ԧ௜ݒ ൬ݐ െ 2ݐߜ ൰ ൅ ݐߜ Ԧ௜஼݉ܨ ൅ ෍ ቊ݂൫ݎ௜௝൯݃ ݎԦ௜௝ݎ௜௝ ߦ  െ ݂ሺݎ௜௝ሻଶ ሺݒԦ௜௝ݎԦ௜௝ሻݎ௜௝ ௜௝ቋ௝ஷ௜,௥೔ೕழோ೎ೡݎԦ௜௝ݎ  

Step 2 ݎԦ௜ሺݐ ൅ ሻݐߜ ൌ ሻݐԦ௜ሺݎ ൅ ݐߜሻݐԦ௜ሺݒ ൅ Ԧ݂௜ሺݐሻ݉ ଶ2ݐߜ  

 

In step 1 the velocities are propagated by ݐ . Note however, that the right-hand side contains a 

contribution that depends on velocities at moment of time ݐ. The latter can be estimated  as ݒԦ௜ሺݐሻ ൌ
௩ሬԦ೔ቀ௧ାഃ೟మ ቁା௩ሬԦ೔ቀ௧ିഃ೟మ ቁଶ ,  which turns the single equation for particle ݅  in Step 1 into a system of coupled linear 

equations for all particles36. The equations can be efficiently solved by matrix inversion. However,  this 

method becomes time consuming for large systems so instead we chose the iterative solution. It took no 

more than 5 iterations for all densities to obtain converged velocities. The second step is for the 

propagation of coordinates. It is straightforward to perform once the velocities are known.  
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The summation in eq. (2) is carried out over pairs of particles with mutual separations up to certain cut-

off distance. For the conservative forces, the cut-off is ܴ௖ ൌ 75Å as was discussed earlier. For the 

hydrodynamic interactions we used a different cut-off ܴ௖௩, which was set according to the following 

considerations. Function ݂ሺݎ௜௝ሻ controls the strength of the viscous force acting between particles at a 

distance ݎ௜௝. It is defined by the properties of the solvent contained in the space between the particles. If 

something other than solvent, for instance another particle, is allowed to enter that space, ݂ሺݎ௜௝ሻ is 

expected to change drastically. In this case the description with a single ݂ሺݎሻ function may no longer be 

a good approximation for HD interactions and should be avoided. We set ܴܿݒ according to this criterion. 

It is seen in Figure 1(a) that the nearest-neighbor distance in a pair of particles is 26Å, which means that 

the distance between furthermost particles in a 3-particle linear cluster is 52Å or more. To eliminate the 

error in HD interactions caused by such clusters we set the cut-off at a shorter distance, ܴܿݒ ൌ 50Å. 

For simplicity we ignored the distance dependence in ݂ሺݎሻ36 and replaced that function with a constant ݂37. We varied ݂, which is the only free parameter in the algorithm, systematically in order to determine 

its effect on the dynamics of the system. Note that the static structure is not affected by ݂. The value of 0.4 was seen to produce best agreement between simulation and experiment. Lower ݂ values 

underestimate ܦ଴/ܦ௦ሺ݇ሻ (faster dynamics) while higher values – overestimate it (slower dynamics). To 

the extent that the employed model of HD interactions is correct, the determined value of ݂ reflects the 

true dynamics of the studied system. 

The dissipative force in eq. (2) is along the vector connecting the particles35. We also tested models in 

which the force lies along a perpendicular direction37 or along the vector of relative velocities38. 

Quantitatively the results differed among all three approaches but qualitatively – remained the same.  
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Results and Discussion 

Inter-protein potentials 

Structural functions of protein solutions intricately depend on a number of parameters, including pH, 

the type and concentration of buffer used, counter ions etc. In this study we use the SANS data of 

Abramo et al28obtained for lysozyme solutions at pH 2, temperature ܶ=298K and protein number 

density 6102.4 −⋅=ρ  Å-3. In common with the results of other groups1, 2, 39, the studied static structure 

factor ܵሺ݇ሻ has a second maximum at ݇௠௔௫~0.1Åିଵ, indicating the presence of long-range correlations. 

To derive the inter-protein potential ݒሺݎሻ we follow the Boltzmann inversion procedure as described in 

detail in our previous work27. Briefly, the structure factor is first converted into the pair-distribution 

function ݃ሺݎሻ, which is then used in an iterative fitting procedure to find the corresponding ݒሺݎሻ.  The 

experimental structural functions are shown in Figure 1(a) in comparison with their theoretical 

counterparts. Overall, there is a very good agreement between theory and experiment. The pair 

distribution function displays some ripples for ݎ ൐ 8݊݉ which, most likely, are an error resulting from 

the truncation of ܵሺ݇ሻ at a finite wave vector. 

Globally, the generated potential, shown in Figure 1(b), is repulsive but has a small local minimum at ݎ ൌ 2.6݊݉ . For further analysis we split the potential into a short-range, ݒ௦௥ሺݎሻ, and a long-range, ݒ௟௥ሺݎሻ, components, ݒሺݎሻ ൌ ሻݎ௦௥ሺݒ ൅  ሻ. The long-range part is approximated by the electrostaticݎ௟௥ሺݒ

solvation energy of a charged colloid computed within the framework of the one-component model40 

ሻݎ௟௥ሺݒ ൌ ሻݎ௢௖௠ሺݒ ሻ, whereݎ௢௖௠ሺݒߛ ൌ ݇஻ܶܮ஻ܼ଴ଶ߯ଶ ௘షഉೝ௥  and ߛ is a coefficient  introduced by us to 

correct for the errors in the model. The protein’s density ߩ, its charge ܼ଴, and the counter-ion density ߩ௦ 

can be used to compute other quantities involved in this expression, including : a) the Bjerrum’s length 

஻ܮ ൌ ௘మସగఢబఢሺ்ሻ ଵ௞ಳ், where ݁ is the electron charge, ߳଴ is the dielectric permittivity of vacuum,  ߳ሺܶሻ is the 
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dielectric constant of water and ܶ is the temperature, b) the screening constant ߢ ൌ ඥ4ܮߨ஻ሺߩ|ܼ଴| ൅  ௦ሻ, and c) a scaling constant ߯ that can be computed numerically40 from ܽ, theߩ2

presumed radius of the protein and ߶ ൌ ସଷ  the protein volume fraction. With the following values ,ߩଷܽߨ

adopted for the model’s parameters: ܼ଴ ൌ ௦ߩ ,17 ൌ 6 mM28, ܽ ൌ 1.7݊݉9, ܶ ൌ  and ߳=78.541 we ܭ298

get ܮ஻ ൌ ߢ , 0.713݊݉ ൌ 0.837݊݉ିଵand ߯ଶ ൌ 2.98 . The correction coefficient ߛ is determined from 

the condition that ݒ௟௥ሺݎሻ reproduces the tail of the full potential ݒሺݎሻ in the long- ݎ range. This means 

that the short-range part in the concerned range is zero, which is a reasonable assumption. For 0.35=ߛ 

the model and the actual potential match at ݎ௠ ൌ 0.42݊݉, as shown in Figure 1(b). For larger distances 

the two potentials are in good agreement. The fitted potential displays some ripples which most likely 

are unphysical. Its long-range region is highlighted in the inset of Figure 1(b), which plots  ݒݎሺݎሻ and thus 

should exhibit an exponential decay. Indeed this is what happens over the range of distances from 4 to 

7nm. The decay constant  0.78݊݉ିଵ agrees remarkably well with the value of 0.837݊݉ିଵ predicted by 

the theory. Further evidence of the high accuracy of the OCM theory is that it overestimates (since 1>ߛ) 

the strength of the repulsive potential only by about a factor of 2.  

Temperature-driven structural transformation 

The short-range part of the potential acting between charged colloids solvated in water is the sum of 

two terms: dispersion and hydrophobic interactions. The first term is temperature independent. The 

second term does depend on temperature. However, if solvation of small hydrocarbons is used as a 

phenomenological model42, the dependence is strong around ܶ ൌ  but moderates significantly ܭ373

below ܶ ൌ  Theoretical calculations seem to support this assessment. Numerical estimate of the . ܭ298

surface tension, for instance, obtained by Huang and Chandler43 for hard-sphere solutes  in water varies 

only by about 2% when the temperature changes between 277K and 298K. As a consequence, the 

associated change of the hydrophobic solvation energy can be considered small.  
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The electrostatic long-range potential, on the other hand, appears to be more sensitive to temperature 

variations when T is in the room temperature range. If at ܶ ൌ  the dielectric constant, which ܭ298

describes how strongly charge-charge interactions are screened, is 78 then at ܶ ൌ  it increases to ܭ277

87. As a result, the electrostatic repulsion is expected to weaken by more than 10%.  

Taking these arguments into consideration we retain temperature dependence only in the long-range 

part of the potential ݒ௟௥ሺݎ; ܶሻ while the short-range part, ݒ௦௥ሺݎሻ, is treated as temperature 

independent. The short-range part then can be evaluated as ݒ௦௥ሺݎሻ ൌ ;ݎሺݒ ெܶ஽ሻ െ ;ݎ௟௥ሺݒ ெܶ஽ሻ, where ݒሺݎ; ெܶ஽ሻ is the potential extracted from SANS data while ݒ௟௥ሺݎ; ெܶ஽ሻ is the model long-range potential. 

Both potentials are computed for some reference temperature ெܶ஽. With these notations, the full 

potential can be computed for any temperature ܶ as ݒሺݎ; ܶሻ ൌ ;ݎሺݒ ெܶ஽ሻ െ ;ݎ௟௥ሺݒ ெܶ஽ሻ ൅ ;ݎ௟௥ሺݒ ܶሻ. We 

used this formula together with the simulation data for  ெܶ஽ ൌ  to compute potentials for two ܭ298

other temperatures: ܶ ൌ 278 and 273ܭ. The results are shown in Figure 2(a). Like for ܶ ൌ  these ,ܭ298

potentials have a local minimum at short distances. As the temperature is decreased the position of the 

minimum shifts to the left while its depth increases.  As anticipated, this is the consequence of the 

weakening electrostatic repulsion at lower temperatures41. Note also that this trend would be further 

enhanced by the temperature dependence in the hydrophobic forces44,  which was neglected in the 

present model. How justifiable are the assumptions made in the derivation of the model can be tested 

directly in SANS experiments at varying T. 

The position of the cluster maximum ݇௠௔௫  in the structure factor evaluated for all three temperatures  

is shown in Figure 2(b) as a function of the protein concentration ܿ, calculated from the numerical 

density as ܿሾ݉݃/݈݉ሿ ൌ 2.37 · 10଻ൣߩÅିଷ൧. As the concentration is increased, ݇௠௔௫ rises rapidly until 

certain transition point ்ܿ, after which a flat plateau follows. While this shape is consistent for all 

studied temperatures, its details are specific for each T.  In particular, the transition concentration is 
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close to 150 mg/ml for ܶ ൌ ܶ but declines rapidly for lower temperatures. For ܭ298 ൌ  drops ்ܿ ,ܭ273

to 50 mg/ml, making the maximum-position curve flat in a very wide range of concentrations.  

While the concentration data for ݇௠௔௫ measured under the same experimental conditions as those for 

which the inter-protein potential was derived28 are not available, comparison can be made with the 

experimental data of Cardinaux et al9, obtained under different pH and salt concentration. Remarkably, 

these experiments report exactly the same behavior for  ݇௠௔௫as our simulations, as can be seen from 

Figure 2(b). There is an upward shift in both theoretical and experimental curves  as the temperature is 

increased, while the point at which plateau sets in is moving to a higher concentration. Numerically,   ݇௠௔௫ observed in the two curves differ by 0.02Åିଵ, which is the consequence of different experimental 

conditions under which the two data sets were obtained 1, 2, 9. Importantly, the experimentally observed 

concentration dependence of ݇௠௔௫, and its behavior with temperature, are correctly reproduced by the 

theory. 

Evidence for clusters 

Clustering analysis was conducted using a criterion according to which the given particle belongs to a 

cluster if it is separated from it by a distance ݎ ൏ ௕ݎ ௕, whereݎ ൌ 3.6 ݊݉ and corresponds to the position 

of the barrier in the inter-protein potential. The results, shown in Figure 3 for ܶ ൌ  demonstrate ,ܭ273

that  the studied system makes clusters at increasing protein concentration. Panel a) displays fraction of 

particles ܲሺݏሻ belonging to a cluster of size ݏ computed at varying protein concentration. While at low ܿ 

mostly monomers are observed, their population is seen to decline as the concentration is increased. 

Concomitantly, clusters of larger sizes, dimers, trimers and so on, begin to appear. Panel b) displays 

population of the four smallest clusters over a range of concentrations. It is seen that at  ܿ ൌ100 ݉݃/݈݉ , the percentage of monomers drops below 50%. This concentration can be regarded as the 

transition point into the cluster fluid state. At ൐ 125݉݃/݈݉ , there are more particles engaged in 
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dimers than in monomers.  Further concentration increases result in further reduction of monomers in 

favor of clusters.  Note that the appearance of clusters can not explain the observed concentration 

trends in ݇௠௔௫. Indeed, at ܶ ൌ ܿ the plateau in ݇௠௔௫ሺܿሻ begins at ܭ273 ൌ 50݉݃/݈݉. At that point, the 

system is comprised mostly of monomers with a small percentage of dimers while a significant 

population of clusters is not observed until ܿ ൌ 100 ݉݃/݈݉. Therefore, there must be another 

mechanism responsible for the shifting patterns of ݇௠௔௫. 

To learn more about this mechanism, it is instructive to consider a potential without a minimum, as 

shown in Figure 1(b).We computed structural functions for this potential using the same protocols as for 

the original system. Figure 2(b) shows the obtained ݇௠௔௫ at ܶ ൌ  At high concentrations, there is .ܭ273

no sign of  leveling off. Instead, after starting at low ܿ from values very close to those of the original 

potential, ݇௠௔௫ continues to grow uncontrollably as the concentration is increased. In real space, this 

behavior indicates a shrinking correlation length, in agreement with the predictions made earlier for 

systems interacting via purely repulsive potentials2, 9. This structural transformation can be visualized by 

projecting the inter-protein distances onto a plot of potential energy. Figure 4(a) shows one such 

visualization along with a cartoon illustrating anticipated structural changes. Since the interaction 

among particles is repulsive, the system tends to maximize its inter-particle distances. When binned into 

a distribution these distances are centered around a certain average value. Each pair of particles makes 

a contribution to the total potential energy of the system. As the concentration is increased, the system 

undergoes a uniform compression, driven by the need to minimize the potential energy. As a result, the 

average inter-protein distance shifts to the left while ݇௠௔௫ shifts to the right;  the average energy of a 

pair of particles goes up together with the total potential energy. Further increase of density does not 

bring about any new behavior:  the distances still continue to shrink while pushing the particles further 

uphill on the potential energy surface. 
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In the case of the potential with a local minimum, there are no clusters (all distances are greater than ݎ௕, 

the  position of the barrier) in the infinite dilution limit. At finite densities clusters begin to form and, as 

Figure 3(a) demonstrates, this happens for a very low ܿ. Note that the potential energy minimum is still 

attained when the inter-particle distances are at their maximum. Consequently, the formation of 

clusters necessarily costs potential energy.  In the analysis of a potential with a local minimum similar to 

that studied here45, we explained that in the limit of low c clusters in such systems are stabilized by 

entropy. This is the consequence of the volume of the configuration space corresponding to cluster 

states being greater than the volume of the space available to the monomeric states. An illustration of 

what happens at finite but low c is shown in Figure 4(b), top row. Since the cluster population is low, ݎ ൐  ௕ for the majority of particles. The system responds to an increase in density in two ways. First, theݎ

number of particles belonging to a cluster increases. This is evident from Figure 3(a) and can be explained 

in terms of the thermodynamic balance shifting away from monomers and toward clusters due to the 

loss of entropy by the former.  The percentage of particles affected by this process is still low, however. 

Second, the particles with ݎ ൐  ௕undergo a uniform compression as they try to minimize the potentialݎ

energy. This results in the shift of the average distance to the left, see Figure 4(b), middle row, just as for 

the model without the local minimum. Also in common with that model, there will be a shift in ݇௠௔௫to 

the right. As the average distance continues to shrink, the average energy of a pair of particles continues 

to rise. At some density, it becomes beneficial for the particles to cross over the barrier into the local 

minimum instead of continuing moving uphill on the potential energy surface, see Figure 4(b), bottom 

row. At that point, the assembly of clusters becomes driven by the potential energy, as observed 

earlier45, while the shrinking of the average distance stops,  since it leads to a higher potential energy 

compared to that offered by the clustering route. It follows from this analysis that the concentration ܿ௠ 

at which assembly of clusters changes its mechanism should be equal to ்ܿ, the density at which the 

shifting in ݇௠௔௫ሺܿሻ stops. A key prediction of this model is that for ܿ ൐ ܿ௠, the potential energy 
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produced by the potential with the local minimum should be lower than that of the potential without 

the minimum. The results of a direct test of this prediction in simulations are shown in Figure 4(c) for ܶ ൌ 273 and 298ܭ. The potential with the minimum indeed begins to yield lower energy starting at ܿ ൌ 150 ݉݃/݈݉ for ܶ ൌ ܿ and at ܭ298 ൌ 50 ݉݃/݈݉ for ܶ ൌ  .in full agreement with Figure 2(b) ,ܭ273

Cluster statistics 

In the proposed model ݇௠௔௫ corresponds to the distance between cluster edges,  not their centers as 

suggested earlier1. Since that distance does not change for ܿ ൐ ்ܿ, a pertinent question to ask is this: 

“How can clusters accommodate ever more particles at the growing density, while keeping a constant 

distance to their neighbors? ” The only reasonable answer is that they must shrink. A detailed analysis of 

the clusters’ dimensions, measured by the radius of gyration ܴ݃, is presented in Figure 5(a) for ܶ ൌ  ܭ273

and varying cluster size ݏ. Scaling properties are extracted by fitting the simulation data to the function ݂ሺݏሻ ൌ ܽሺݏ െ 1ሻ௕, where ݏ is the cluster size, ܾ is the scaling exponent and ܽ is the gyration radius of 

the dimer.  It is instructive to draw comparisons with the statistics of polymers46 in order to better 

understand the scaling properties of clusters. Polymers with constitutive units that are able to penetrate 

each other experience an entropic collapse, which leads to the so-called ideal chain statistics. The size of 

ideal-chain globules scales with the exponent b=0.5. Polymer units with finite size experience repulsion, 

which causes the chain to increase its size as it performs a self-avoiding walk.  The corresponding scaling 

constant, known as the Flory exponent, has been evaluated at b=0.58846. Adding sufficiently strong 

attraction to the interaction energy triggers a collapse of the polymer chain into the minimum-size 

conformations, permitted by the excluded volume of the monomers. The size of the resulting maximally 

compact globule scales with the exponent b=0.33.   

We find that at low concentrations the scaling constant is larger than the Flory exponent. At  ܿ ൌ49.5 ݉݃/݈݉, for instance, ܾ ൌ 0.68  and the typical cluster observed at this concentration has an 
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expanded shape. As an illustration,  Figure 5(b) shows a pentamer which has the radius of gyration  

3.0nm. In agreement with our prediction, the clusters undergo collapse, while the scaling constant goes 

down, as the density of the solution is increased. At ܿ ൌ 346 ݉݃/݈݉ the size of small clusters drops by 

a factor of 2, as data in Figure 5(b) for the pentamer illustrate. Simultaneously, the scaling constant ܾ 

declines to 0.36, which is close to the exponent of the maximally compact object 0.33. Interestingly, 

large clusters at high concentrations obey a different statistics from the small ones. Figure 5(a) shows 

that for ݏ ൐ 20 the simulation data can be well reproduced by the following function ܴ݃ሺݏሻ ൌ1.5ሺݏ െ 1ሻ଴.ହ. The two scaling regimes in ܴ݃ሺݏሻ are separated by an inflection point  at some 

intermediate ݏ௜, which, as Figure 5(a) shows, depends on protein concentration. The higher the 

concentration, the larger the size ݏ௜.The emergence of two different scaling laws, defined by one small 

and one large exponent ܾ, suggests a hierarchical organization of the clusters, in which small clusters are 

used as building blocks for the assembly of the larger clusters. This model is confirmed by the visual 

inspection of the trajectories. Figure 5(b) shows a decamer observed in our simulations at  ܿ ൌ346 ݉݃/݈݉ . Its radius of gyration ܴ݃ ൌ 3.5݊݉ is much greater than the value of 2.5nm expected 

according to the small-s scaling function, see extrapolation data in Figure 5(a) for ݏ ൌ 10 and ൌ346 ݉݃/݈݉ , indicating an expanded shape. It is easy to see that this cluster is built from two small 

pentamers joined together. This model of cluster organization was reported by us earlier 45. Its key 

feature - the large-cluster exponent of 0.5, that corresponds to the ideal-chain statistics and implies no 

excluded volume interactions, can be explained by the ability of clusters to “pass through“ each other 

via the exchange of particles mechanism. 

Nature of the cluster fluid 

The initial solution with individually dispersed proteins (monomers) effectively turns into a cluster fluid 

at large ܿ, where the population of monomers is low. The nature of this fluid can be gleaned from the 
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cluster distribution function ܲሺݏሻ, shown in Figure 6. At ܿ ൌ 178 ݉݃/݈݉,  ܲሺݏሻ has a broad shape 

indicating the presence of clusters in a wide range of sizes, 2 ൏ ݏ ൏ 20, with a maximum observed for 

dimers, ݏ ൌ 2.   An increase in the concentration has two effects. First, the distribution becomes more 

sharply peaked. The distribution half-width ∆ݏ, defined as ∆ݏ ൌ ௢ݏ െ  ௠௔௫ is the positionݏ ௠௔௫, whereݏ

of the maximum in ܲሺݏሻ and ݏ௢  is the size, where the distribution falls 50% off of its maximum, ܲሺݏ௢ሻ ൌ 0.5ܲሺݏ௠௔௫ሻ, is seen to decline from 2, observed for ܿ ൌ 178 ݉݃/݈݉, to 1.7, observed for ܿ ൌ 456 ݉݃/݈݉.  Second, the distribution maximum ݏ௠௔௫ shifts to higher values: while ݏ௠௔௫=2 for ܿ ൌ 178 ݉݃/݈݉  it increases to 6 for ܿ ൌ 456 ݉݃/݈݉. An additional feature emerges at ܿ௦~300 ݉݃/݈݉, see Figure 6, where a second maximum (first as a shoulder) appears in the distribution function, 

located at the position double that of the main maximum. For ܿ ൌ 291.6 ݉݃/݈݉ the maximum is at ݏ ൌ 8, while for ܿ ൌ 456.1 ݉݃/݈݉ - at ݏ ൌ 12. Note that, according to the analysis of the radius of 

gyration,  small clusters begin to self-associate into larger clusters starting at a much lower 

concentration. Indeed Figure 5(a) shows that two scaling regimes are present in ܴ݃ሺݏሻ starting from ܿ ൌ 178 ݉݃/݈݉ onwards. So ܿ௦ must signal a different transformation. What happens specifically at 

this concentration is that, out of the sea of clusters of different sizes, a cluster of preferred size emerges. 

The specific cluster, and its assemblies, begin to dominate the ensemble, in a sign of the structural phase 

transition. 

Structural relaxation 

Structural dynamics can be probed directly by neutron spin-echo (NSE) scattering, a technique that 

measures intermediate scattering function ܨሺ݇,  is time. For the ݐ ሻ, where  ݇ is the wave vector andݐ

purpose of the cluster discussion, we are interested in the short-time dynamics, where the following 

approximation applies ܨሺ݇, ሻݐ ൌ ܵሺ݇ሻ݁ି௞మ஽ೞሺ௞ሻ௧. Here ܦ௦ሺ݇ሻ is a transport quantity that has the 

meaning of generalized diffusion coefficient for density fluctuations at wave vector ݇ and can be 
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extracted from experimental data by fitting. Dimensionless quantity ܦ଴/ܦ௦ሺ݇ሻ, the inverse of this 

coefficient multiplied by the diffusion constant in the free diffusion limit, ܦ଴, can be used as a 

generalized relaxation time; for lysozyme it has a minimum9 at the location where a maximum in ܵሺ݇ሻ is 

seen, the so-called de Gennes narrowing47. At ݇ ൌ ݇௠௔௫, ܦ଴/ܦ௦ሺ݇௠௔௫ሻ undergoes a rapid growth with 

protein concentration that can be attributed to a kinetic phase transition9. Interestingly, earlier 

theoretical models fail to predict this transition9, finding only a moderate increase in the relaxation time. 

We used the same stochastic dynamics (SD) simulations as for the structural studies, see “Methods” 

section, to compute ܨሺ݇௠௔௫, ሻ for ݇௠௔௫ݐ ൌ 0.118Åିଵ and ܶ ൌ  Fitting over the time domain .ܭ278

where clear exponential decay is observed permitted the calculation of ܦ௦ሺ݇௠௔௫ሻ. We applied the same 

analysis to the experimental data9, to make that sure that comparison between theory and experiment 

is consistent. Figure 7(a) shows our results, scaled to match the experiment at ܿ ൌ 50݉݃/݈݉, in 

comparison with the experimental data. The simulations significantly overestimate the rate of structural 

relaxation. For ܿ ൐ 200݉݃/݈݉, the theoretical ܦ଴/ܦ௦ሺ݇௠௔௫ሻ is more than twice smaller than its 

experimental counterpart. In agreement with prior work9,  we see here that direct protein-protein 

interactions are not sufficient to provide a proper description for the slowdown of structural relaxation 

taking place in the simulated system at increasing concentration.  

If not direct then, perhaps, it is interactions mediated by the solvent that are missing? Note that solvent 

is present implicitly in stochastic dynamics through friction force designed to keep the temperature 

constant. It is assumed to be the same for all particles and independent of their positions or velocities. 

This approximation ignores viscous forces created by solvent flows due to the movements of particles 

with respect to one another, or the so-called hydrodynamic interactions48. Earlier studies of colloidal 

suspensions indicate that hydrodynamic interactions may cause slow dynamics49. To investigate their 

effect in the context of lysozyme solutions we employed the dissipative particle dynamics (DPD) 

method, as discussed in detail in the “Methods” section. The method contains one free parameter ݂, 
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which controls the strength of the friction force. We varied that parameter systematically to determine 

its influence on structural relaxation. Two main effects were revealed in these studies: a) ܦ଴/ܦ௦ሺ݇௠௔௫ሻ 

curve grows steeper with ݂, and b) it becomes strongly non-linear. By treating ݂as an adjustable 

parameter, it is possible to achieve a very good agreement between theoretical and experimental ܦ଴/ܦ௦ሺ݇௠௔௫ሻ. Figure 7(a) shows our DPD data for ൌ 0.4 . Deviations on the order of 0.1 from this value 

do not lead to noticeable differences in the dynamics. It is seen that the experimental function can be 

reproduced very well for ܿ ൏ 300݉݃/݈݉. At ܿ~300݉݃/݈݉ our model slightly underestimates the 

relaxation time. For higher concentrations, experimental data are missing, where it is concluded9 that 

the system undergoes a kinetic arrest. In the same limit our simulations show that ܦ଴/ܦ௦ሺ݇௠௔௫ሻ has 

large but finite values. We note that in an unrelated study50, viscosity - another property that can detect 

kinetic transitions, grows rapidly with concentration, but nevertheless lacks a mathematical singularity 

for ܿ ൐ 300݉݃/݈݉. So the precise nature of the observed kinetic transition seems to be unclear at the 

moment.  

To learn more about the dynamics in the high- ܿ  regime we carried out tests designed to determine 

whether the system remains ergodic in that limit, on the simulation time scale. Specifically,  we 

computed the mean-square particle displacements ൏ ∆ ሬܴԦଶሺݐሻ ൐as a function of time and fitted them to 

the following template ݂ሺݐሻ ൌ ߙ ൅ ,ߙ is time and ݐ ఉ, whereݐߜ  are certain adjustable ߚ and ߜ

parameters. When the system is ergodic, the displacement is described by the diffusion law: ߚ ൌ 1 and  ߜ ൌ  is the diffusion coefficient. Fitting has to be done for sufficiently long times as the ܦ  where ,ܦ6

linear regime is preceded by a short ballistic phase where ൏ ∆ ሬܴԦଶሺݐሻ ൐  ଶ. The point separating theݐ~

two types of  dynamics, ݐௗ, was determined for ܿ ൌ 49.5 ݉݃/݈݉. For consistency, fitting was performed 

over the same time interval for all concentrations. The computed exponent ߚ is shown in Figure 7(b). 

Five independent simulations were carried out to test whether the results are reproducible. The error 

bars in the figure were computed from the analysis of these trajectories. It is seen that ߚ ൌ 1 for small 
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concentrations, where ergodic (on the simulation time scale) behavior is observed. Statistically 

meaningful deviations begin at ܿ௖௥~300݉݃/݈݉, which is close to ܿ௦. Since the exponent ߚ is less than 

unity, it indicates a confinement of particles, similarly to supercooled and glassy liquids, where the cage 

effect is observed51.In our case, the steric effects due to the protein size can be ruled out as the source 

of the confinement. It is known that lysozyme is able to transition into high-density states52, 53 with ܿ ൌ 400݉݃/݈݉ and higher  and still remain an ergodic  fluid. The confinement, therefore, must be due 

to a different mechanism. In one likely scenario, one can argue that particles are expected to diffuse 

much more slowly as part of a cluster than when they are in the monomeric state. It is reasonable to 

expect then that low ߚ values  are a direct consequence of cluster formation.  There is one problem with 

this explanation, however. Clusters start forming at ܿ ൏ 50݉݃/݈݉ and at ܿ ൐ 100݉݃/݈݉ (see Figure 

3(b)) they represent the most populated species in the system. It is not clear then why there is no 

confinement at 100݉݃/݈݉ ൏ ܿ ൏ 300݉݃/݈݉, despite preponderance of clusters. Perhaps, it is not the 

clusters but their dynamics that leads to non-ergodicity? If clusters are allowed to make and break 

multiple times on the simulation time scale, their constituent particles should exhibit the same dynamics 

as that of the monomers. Clusters that do not change in the course of the simulations, on the other 

hand, should experience the slow down. To test this hypothesis we examined the autocorrelation 

function ߮ሺݐሻ ൌ൏ ௖ܰሺ0ሻ ௖ܰሺݐሻ ൐/൏ ௖ܰଶ ൐, where ௖ܰሺݐሻ is the number of clusters at time ݐ.  The 

function reports the time scale on which clusters assemble and fall apart.  The characteristic time 

constant, or relaxation time, for this process, ߬, was extracted from ߮ሺݐሻ by fitting it to an exponential 

template. The results, plotted in the inset of Figure 7(b), show that ߬  remains flat for low concentrations 

but begins to rise sharply at ܿ~300݉݃/݈݉, in a clear sign of the kinetic transition. The transition leads 

to the creation of clusters that are unable to exchange particles among themselves and, thus, can be 

considered permanent. As specific cluster distributions are unable to equilibrate over the available 

simulation time, they can be considered frozen, or non-ergodic. As any collective or phase-change 
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phenomena, the transition is expected to be strongly influenced by the size of the simulation cell. To 

assess that influence, we repeated our simulations for boxes in which the number of particles was 

increased more than three-fold, from 512 to 1728. The results, shown in  Figure 7(b), demonstrate that 

the transition becomes much sharper. This trend is likely to continue for larger systems. A careful finite-

size analysis is needed to determine the exact transition density.  Our estimate based on the present 

simulations is ܿ௖௥~300݉݃/݈݉. Since at ܿ ൐ ܿ௖௥  the system is non-ergodic, relaxation times in that limit 

can not be determined reliably. For that reason the relevant non-converged data in Figure 7(a) are shown 

by different symbols from those used for other data, specifically, full circles with white squares inside.  

Whether the hydrodynamic interactions provide the only feasible mechanism for the kinetic slowdown 

remains to be seen. At least two other models have been discussed in the literature9. The first is the 

Wigner glass, which relies on the repulsive interactions. We mentioned earlier that steric interactions 

are unlikely to cause kinetic arrest at the studied densities. The same is true for the electrostatic 

repulsion, as in that case stochastic dynamics simulations, lacking the hydrodynamic forces, would also 

uncover non-ergodic behavior, which they did not. The other model is attractive glass, in which protein-

protein attraction causes slow dynamics. Here again sufficiently strong attraction would reveal itself in 

stochastic dynamics simulations and it did not. Nevertheless, either model may still apply if the inter-

protein potential depends strongly on protein density. That dependence is ignored in the present paper. 

In the case of repulsive glass, electrostatic interactions may gain strength at high densities, although it is 

not clear to us at the moment what mechanism could cause this effect. For attractive glass, protein-

protein attraction may become stronger at high ܿ. This could happen because of specific density 

dependence of the hydrophobic interactions. Or, alternatively, strong counter-ion mediated attraction 

between proteins may arise. Clearly, more research is needed to assess the likelihood of these different 

scenarios. 
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Conclusions 

In this paper we report the formation of equilibrium clusters in aqueous solutions of protein lysozyme. 

Proteins are modeled as soft spherical particles for which interaction potential is derived directly from 

experimental structure factor. The potential is overall repulsive but contains a local minimum at short 

distances. Computer simulations reveal that this potential leads to the formation of clusters at varying 

protein concentration ܿ. Clusters are small, mostly dimers and trimers, and only weakly populated at 

small concentrations.  They grow in size as the concentration goes up, while their population is steadily 

increasing.  At some point clusters become more populous than monomers, signaling a structural 

transition into the cluster-fluid phase.  

Structure factor of lysozyme solutions studied in this paper has a secondary maximum at short wave 

vectors. The specific dependence of the position of this maximum on concentration ݇௠௔௫ሺܿሻ has been 

used previously1, 9  to characterize clusters at the quantitative level. This dependence can be correctly 

reproduced by our simulations, which lead to the following clustering scenario.  At small concentrations 

most of the proteins are found at maximal distances from another one, since such configurations are the 

lowest-energy states in systems interacting via repulsive potentials. There are only a few clusters in the 

solution and their assembly is favored by entropy. The wave vector ݇௠௔௫ corresponds to the average 

distance between proteins. When the protein concentration is increased the solution undergoes 

uniform compression. This causes the average distance to shrink, leading  to an upward shift in ݇௠௔௫ሺܿሻ, 

in excellent agreement with experiment1. As the concentration is increased beyond a certain threshold 

value ܿ ൒ ்ܿ the assembly process becomes driven by enthalpy. It then becomes energetically beneficial 

for the monomers to join an existing cluster (or make a new one) instead of continuing to approach 

other proteins at ever shorter distances, as happens in the compression scenario. As a consequence, the 
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average inter-protein distance stops shrinking while ݇௠௔௫ሺܿሻ stops shifting at high concentrations, again 

in excellent agreement with experiment1. Our simulations produce quantitatively accurate estimates for ்ܿ: 50݉݃/݈݉ at ܶ ൌ ܶ and 150݉݃/݈݉ for ܭ273 ൌ  .ܭ298

At low concentrations the radius of gyration of the observed clusters ܴ݃ሺݏሻ can be well described by a 

single scaling function. The scaling exponent obtained from fitting indicates that the clusters occupy 

mostly expanded, or stretched, configurations.  As the concentration grows, clusters begin to collapse. 

For sufficiently large ܿ their scaling exponent approaches 0.33, which is characteristic for maximally 

compact objects. At the same time, large clusters develop a distinct statistics. Their scaling exponent 

increases in comparison with the small clusters and approaches 0.5, the ideal-chain value. Two separate 

regimes in ܴ݃ሺݏሻ suggest that clusters obey a hierarchical structural model, according to which large 

clusters are assembled from the small ones as building blocks. At high concentrations cluster fluid is 

composed of a large variety of small and large clusters. At ܿ ൌ ܿ௦ a structural transition is seen into a 

state in which a cluster of specific size, and its assemblies, begin to dominate the entire ensemble. The 

transition is manifested in the appearance of multiple peaks in the cluster-size distribution.  At ܶ ൌ  .݈݉/we estimate that ܿ௦ is approximately 300݉݃ ܭ273

In agreement with experiment, the studied system experiences a kinetic phase transition at sufficiently 

high concentrations. Our simulations find that for ܿ ൒ ܿ௥, where ܿ௥ is a certain critical concentration, 

clusters are unable to exchange particles among themselves, which leads to the breakdown of 

ergodicity. The transition is accompanied by a strong growth in the relaxation time of various processes, 

including density fluctuations. Our simulations find that hydrodynamic interactions are critical for the 

kinetic slow down. The parameter controlling the strength of these interactions, ݂, is seen to strongly 

influence the value of ܿ௥. Greater ݂’s lead to lower ܿ௥’s and vice versa. The kinetic transition is not 

observed when the hydrodynamic interactions are switched off, ݂ ൌ 0. When this parameter is 
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calibrated against experimental data for low protein concentrations, we find that ܿ௥ ൎ 300݉݃/݈݉ at ܶ ൌ   .ܭ278
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Figure 1 Panel a) shows structural data for lysozyme solutions: pair distribution function, main figure, and the 
static structure factor, the inset. Both experimental28 and theoretical data are shown. Panel b): inter-protein 
potential obtained for T=298K. For comparison, a model potential is also shown, see main text for details. The 
inset shows ݒݎሺݎሻ which highlights the exponential decay of the potential  
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Figure 2 Panel a): inter-protein potentials obtained for lysozyme at three temperatures, T=298, 278 and 273K. 

Panel b): position of the cluster maximum ݇௠௔௫ computed for the chosen temperatures as a function of protein 

concentration ܿ. Data for the purely repulsive model potential from Figure 1(b) are shown by filled triangles. 
Experimental data of Cardinaux at al9 are shown for comparison. 
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Figure 3 Results of the clustering analysis for T=273K. Panel a) shows the fraction of particles P(s) involved in 
clusters of size s for varying concentration c. Arrows indicate concentrations at which, first, the population of the 
monomers drops below 50% and then, second, the distribution develops a non-monomeric peak. Population of four 
smallest clusters over a concentration range is shown in panel b).
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Figure 4 Graphical illustration of structural changes taking place in the system interacting via a purely repulsive 
potential, a), and a potential that contains a local minimum, b). Dotted lines represent average distances between 
particles. Panel c) shows potential energy computed for the two systems at two temperatures. The data for the lower 
temperature are shifted for better readability. 
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Figure 5 Panel a): Statistics of clusters at varying concentration and ܶ ൌ  The radius of gyration is shown as .ܭ273
a function of the cluster size. Broken lines with symbols denote simulation data for varying concentration c. Solid 
lines display scaling functions obtained for the simulation data by fitting. Two concentrations are considered: 
49.5mg/ml and 346mg/ml. Panel b):  illustration of clusters with different shapes and sizes observed in our 
simulations at varying protein concentration. A pentamer with Rg=3.0nm is shown for c=49.5mg/ml. A smaller 
pentamer with Rg=1.5nm is observed at a higher  c=346mg/ml. A decamer at the same concentration is seen to 
consist of two small pentamers joined together.  
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Figure 6 Cluster-size distribution ܲሺݏሻ, shifted appropriately for better readability, for varying concentration and ܶ ൌ  Arrows indicate the position of the side peak/shoulder in the distribution, signaling cluster-cluster .ܭ273
association. 
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Figure 7 Panel a): Quantity ܦ଴/ܦ௦ሺ݇௠௔௫ሻ characterizing  the rate of structural relaxation at wave vector ݇௠௔௫, 
where ܦ଴ is  the diffusion coefficient in the free diffusion limit  and ܦ௦ሺ݇௠௔௫ሻ is the generalized diffusion 
coefficient, see main text for definition. Experimental data9 and the results of two simulation methods, DPD and 
SD, are shown. The parameter controlling the strength of the hydrodynamic interactions in the DPD simulations 
was calibrated against experimental data.  Data points obtained from non-converged simulations are shown by 
full circles with white squares inside. Panel b):  the exponent extracted from the mean squared displacement as 
a function of time. The inset plots the relaxation time extracted from the time auto-correlation function of the 

total number of clusters. Data for two system sizes are shown. All data are shown for ܶ ൌ  .ܭ278


