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ABSTRACT

The performance of moving target indication (MTI) systems for combat
surveillance radars depends to a large extent on the clutter spectrum. The
clutter spectrum is especially impo:tant when the radar attempts to detect
slowly moving ground targets. This spectrum has long been assumed to be
Gaussian shaped. However, MI'T system performance predicted by this assump=~
tion was not achieved in practice. This report describes the results of an
investigation conducted to determine the performance to be expected from an
MTI system. .

The approath was to measure the clutter rejection ratios afforded by
various high-pass filters. The signal was taken from the boxcar iemodulator
of an X-band radar observing different clutter tergets under varying wind
conditions. Clutter rejection ratios of 1C to 40 db were measured. These
results were then used to obtain a theoretical expression for the clutter
pover spectrum. This expression differs from the usual Gaussian assumption.
Some credence is given to the results by a direct spectral amalysis performed
on a clutter signal. :

Two methods of filtering ciutter signals which will result in acceptable
MTI performance are suggested in this report.

The results of this investigation are significant in thst they have led
to establishing criteria for a better MII system design.
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CLUTTER ATTENUATION ABALYSIS

INTRODUCTIOR

The purpose of MIT systems for combat surveillance radars is to process
the rader video output to elimimate all undesired signals And have an output
only for moving target input signals. The primary source of undesired signals
which limit the performance of an MII system is the spectrum resulting from
wind blown natursl clutter targets. A problem arises in that this spectrum
contains doppler freguencies which overlap those resulting from slowly moving
targets of interest, e.g., a walking man.

The clutter epectrum was long assumed to be Gaussian shaped. However,
MTI system performance predicted by this assumption was not achieved in prac-
tice. An investigation was conducted to determine the system performance to
be expected. This investigation led to the establishment of criteria for a
better MTI system design.

The approach used was to measure the clutter rejection ratios afforded by
various high-pass filters. The clutter signal was taken from the boxcer de-
modulator of an X-band noncoherent radar observing different clutter targets
under varying wind conditions. A theoretical expression for the clutter spec-
trum wvas obtained from these data. The results of a direct spectral analysis
performed on a clutter signal gave some credence to the theoretical expression
obtained from the measurements. Comparisons with a Gaussian clutter spectrum
were made and the error obtained with this assumption was calculated.

This report discusses the results of the investigation and the signifi-
cance of the results.

BACKGROUND

An important function of certain combat surveillance radars is to provide
infermation which will enable one to distinguish between fixed and moving
ground-based targets. These radars are designed to make use of the doppler
effect, 1.e., to huve as an output a signal which contains the frequencies
resulting from target motion.

The most prevalent class of radar in use for combat surveillance is a
Fulse doppler noncohereat system. Noncoherent means that a fixed target ref-
erence must exist within the same range resolution cell as a moving target if
movir ; target information is to be recovered. The output signal of such a
radar is a video pulse train amplitude modulated according to the doppler fre-
quency. The doppler modulation can be recovered by means of a circuit called
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& boxcar demodulator. The boxcar is a sample-and-hold device, usually gated
at the radar pulse repetition frequency. The boxcar output contains the dop-
Pler frequency. Thie audio signal 18 processed and fed to an indicator. The
indicator in many MTI combat surveillance radars is a simple aural display.
An operator notes the presence of a moving target by the sounds he hears.

Video Proceasgg_g

While the operator does an excellent Jjob of detecting moving targets, he
cén observe only a small area at a time. To increase the information rate of
a radar and aiso to reduce operator fatigue, modern radar systems employ video
processors.® A video processor provides an output only for moving target in-
put sigmals in a form suitable for a visual display. This is accoamplished by
recovering the doppler frequencies via a boxcar demodulator, filtering to re-
move all undesired frequencies, rectifying, integrating, and gating the re-
maining signal. The final output is a video pulse occurring at the correct
range.

Filtering Need

The basic sourcesof undesired frequencies that must be eliminated (or at
least reduced) in the video processor are the returns from wind blown natural
clutter targets. Conventional processors employ high-pass filters for this
task. These filters must be critically designed. One which gives maximum
MIT sensitivity on calm days would be ineffective on windy days. On the other
hand, a filter that eliminated all clutter signals on & windy day would result
in a needless loss of information on caimer days. A compromise is needed if
this type of filtering is used. The nature of the cluiter target suggests
that a different type of filtering might be employed. The clutter anmalysis
described in this report yields the information required to arrive at some
filter design suggestions.

Hature of a Clucter Target

Foliage is the primary cause of doppler signals that compete with those
from slovly moving targets in an MTI receiver. The detection cell size of a
radar at a typical opereting range might be 75 meters in both range and azi-
muth. If an area fairly dense in trees were under observation, the clutter
return would comsist of a complex addition of the returns from several trees.
The total return will consist of a large d-c component plus a fluctuating
coxponcat. The d-c¢ return is due to the trunks of the trees and the large
branches (plus any other fixed targets that fall within the detection cell).
The a-c component is due to many small individual scatterers. These are the
leaves and small branches of the trees. The a-c component varies according
to the wind conditions.

# See Appendix I
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CLUTTER ATTENUATION MEASUREMENTS

The original effort in this work was to experimentally determine the per-
formance of various high-pass filters in attenuating cliiter signals. The
procedure used was to measure the clutter rejection ratios afforded by five
filters when attenuating the signal provided by a radar observing several dif-
ferent clutter targets.

Clutter Re  Jection Ratio

A method of describing the performance of a filter in attenuating clutter
signals is by its clutter rejection ratio. This is defiped as:

R= Clutter RejJection Ratio

= [m B(f) af (1)
j’r'»(r) |5(2)|® ar

where P(f) = clutter power specirum

H(p) = filter voltage transfer function.

R is thus the ratio of the total clutter power into the filter to the
total power out.

Test Procedure

The clutter rejection ratios of five high-pass filters were obta.ineg by
means of an extensive series of measurements. An AN/TPS-25 radar system
was used to collect date for the measurements. This radar is of the® noncoher-
ent pulse doppler type. It operates at a 3-cm wave length (X-band). Target
information was taken from the boxcar demodulator cutput of the radar. This
output contains the clutter spectrum when the radar is observing a natural
clutter site.

Figure 1 is a block diagram of the experimental equipment used. The
radar boxcar output was fed into five parallel filter chammels and a refer-
ence channel. The filter output was amplified, rectified, and integrated
viae a thermocouple, chopped, and fed into a pen recorder. The thermocouple
output was chopped to eliminate any errors due to bias drifts and to provide
a more sensitive input to the pen recorder. The output of each filter chan-
nel was compared with the output of the reference (unfiltered) charmel on the
recorder. The ratio of these two values is the clutter rejection ratio.

The high-pass filters™ for which clutter rejection ratios were measured
are described in Table I below.

*  Characteristics of Radar Set AN/TPS-25 are given in Appendix IX.
**  Frequeucy response plots of the filters are given in Appendix III.
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TABLE I

CLUTTER FILTER CHARACTERISTICS

ATTENUATION CUTOFF
SLOPE FREQUERCY TYPE
db/octave Hz
6 50 passive
6 100 passive
12 100 active
40 50 rassive
4o 100 passive

8ix different clutter targets were observed by the radar. The range to
the targets was always such that many trees fell within the radar detection
cell. The procedure used was to measure the clutter rejection ratio (R) ob-
tained with each filter vwhen operating on the spectrum provided by a particu-
lar clutter site. Observations on different days provided a value of R as a
function of the wind conditions to which each target was subjected. Finally,
the rejection ratios obtained with the six targets were averaged. The results
are summarized in Table II below.

TABLE II
MEASURED CLUTTER REJECTION

RATIOS

50 100 100 59 ~100 | & £y

v 6 6 12 4o 4O | ¢ o
3 24 26 37 36 Lo
6 21 26 36 33 38

9.5 17 17 30 27 3|\ g
13.5 15 18 26 - 29
18 1 16 21 - 23
20 9 13 18 - 19

f, = Filter low-frequency cutoff (Bz)

Filter attenuation per octave below f (ap)

< 9
it

= Average wind velocity (knots)

R = Clutter rejection ratio (db)
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Clutter Spectrum Expression

An attexpt was made to find an expression for the clutter power spectm
vhich would yleld calculated values for the clutter rejection ratio in agree-~
ment with Table II. An expression that gives good agreement is

P(t) = L (2)
14 (L3
fc
wvhere fc = clutter spectrum characteristic frequency
= k exp [GV] (Hz) (3)
k = 1.33 (Hz)
A

V = wind velocity (knots) .

0.1356 (knots)-l

The expression for f, is plotted in Figure 2. Calculated values® of R
using (2) and (3) are compared with the measured values in Tatle III below.
TABIE III

COMPARISON OF MEASURED AND CALCUIATED
CLUTTER REJECTION RATIOS

50 100 100 50 s0 I
6 6 12 4o Lo e~ of
' 38 M C M C M e M C )
3 2 24 24 26 29%*| 37 38 36 35 4o 41
| 6 3 21 21 26 26 36 35 33 31%*| 38 38 |
9.5 5 17 17 17 22%*| 36 30 27T 27 3% 33 R
13.5 8 15 14 18 19 26 26 29 29
18 15 11 10 16 15 21 21 23 24
20 20 9 9 13 13 18 19 19 21**/

filter low-frequency cutoff (Hz)

filter attenuation per octave below fy (av)

average wind veioccity (knots)

clutter spectrum characteristic frequency (Hz)
clutter rejection ratio (db)

measured value

calculated value

denotes a difference of more than one db between the
measured and calculated values.

bown gy g

2
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* B8ee Appendix III




It can be seen in the table that, ot 27 values compared, 23 differ by one
db or less. Two of the remaining four differ by 2 db. The measured and cal-
culated values are thus seen to be in very good agreement.

The results of the experimentzl program are summarized by Equations (2)
and (3). The performance of any filter in attenuating the clutter spectrum
provided by an X-band radar can be predicted {rom these expressions.

GAUSSIAN COMPARISON

The clutter spectrum has long been assumed to be Gaussian shaped. How=-
ever, MTT system performance predicted by this assumption was not achieved in
practice. A comparison will be made here between the cubic power spectrum
described by Equation (2 and the long assumed Gaussian spectrum.

Gaussian Spectrum

Kerr:L and lit:i.rlow2 , in early work, stated that the power spectrum of fluc=
tuating clutter targets can be approximated by

P(f) = exp [- a.f2] (k)

where a = a constant determined by the type °£ target, radar
frequency, and wind conditions (sec<).

Skolnik3 quotes a value of a = 2.3 x 10-3 for the spectrum obtained with a

radar operating at a frequency of 10 GHz observing a heavily wooded area sub=

jected to a wind velocity of 20 mph.

Gaussian Comparison

One method of comparing the spectra described by Equations (2) and (L)
is to assume that the two spectia have equal total powers. Then*

(-1.]
df o 2
/————j——3'= exp [-af] arf
1+ (<5
f ©

1/2
- .3_ i .
and fo = 5 [ ﬂa] (5)

Substituting the value of a given above into Equation (5) results in an f,
of 15.3 Hz. -

It 1is to be noted that a value for f, of 1k Hz can be found from Equa-
tion (3) for a 20 m.p.h. (17.4 knot) wind. This is in good agreement with
the 15.3 Hz value when one considers the two were obtained {hrough completely

* Bee Appendix IV 6




independent inves:igations. For this comparison, f, is taken equal to 15.3 Hz.
The two spectra are plotted in Figure 3. The curves are seen to be similar.
The main diffeseuce is that the Gaussian spectrum decays more quickly beyond
30 Mz, This difference is emphasized by comparing the clutter rejection
ratios obtained when the spectra are attenuated by 12-db-per-octave active
100-Ez high-pass filters. R for the Gaussian case is calculated (Appendix V)
to be 28.5 db. From Table II, R for the cubic spectrum is seen to be 21 db.
The 7.5 db difference is attributed to the difference in energy available in
the two spectra at the higher frequencies. It 1s seen then that assumption
of & Gaussian spectrum gives a more optimistic prediction of clutter attenua-
tion and thus MTI performance than is aztually achieved. The difference in
the rejection ratios increases with increasing wind corditions.

SPECTRAL ANALYSIS

The process described up to this point has been to measure the clutter
attenuation afforded by various filters and then find a theoretical expression
for the clutter spectrum based on these measurements. One might ask why a
different approach was not used, i.e., why not perform a direct analysis on a
clutter signal? This would yield the clutter power spectrum from which the
performance of the selected filters cculd be determined. The answer to the
question of methods is that filter performance can be determined with signi-
ficantly less effort by making attenuation measurements. A spectral analysis
would result in meaningful data only after many clutter samples were observed
for lengthy intervals. An extensive analysis on these samples would then have
to be made; finally, the attenuation afforded by the various filters would
have to be calculated.

A spectral analysis for the clutter return from a single target and sin-

gle wind condition was performed in an attempt to verify the cubic clutter
power spectrum expression derived previously.

Procedure and Results

The boxcar demodulator output of the radar was recorded while the radar
was observing a clutter target subjected to a wind velocity of 12 knots. A
one seccnd length of the recording was sampled 200 times (6t ® 5 millisec-
onds). A computeﬁ was programmed to determine the power spectrum via a direct
Fourier analysis.

The power spectra for six one-second samples of the recorded clutter data
were obtained. A mean was taken of the six values for each freguency. The
data points are plotted in Figure 4. A plot of the spectrum for a 12-knot
wind given by Equations (3) and (4) is also shown in Figare 4. The question
is, how well does the curve fit the data points? The curve is seen to be a
good approximation above 10 Hz. In fact, above 20 Hz, the curve is probably
the best possible approximation to the data points.

The good agreement between the data points and the curve at the higher
frequencies gives strong credence to the accuracy of assuming a cubic clutter
spectrum. Also plotted in Figure 4 is a Gaussian-shaped spectrum having the
same total power as the cubic spectrum. It can te seen that this curve is a




poorer approximetion for the data points at the higher frequencies. A linear
plot of the two curves is seen in Figure 5. It again shows the similarity
between the two curves, the main difference being that the Gaussian spectrum
decays more guickly.

FILTER SUGGESTIONS

The results or*~1rr 4+ up to this point can now be used to suggest filters
which will give . 1w performance in an MIT video processor. What is
sought is a filtev i+ will sufficiently attenuate clutter signals with a
minimum loss of si, _..«s8 from slowly moving targets of interest. The clutter
filter may be repeated up to a few hundred times in some video processors.
This fact dictates that the filter be of simple design in order that resulting
sizes and weights be reasonable.

Two types of filtering are discussed in the sections that follow.

Conventional Filtering

Typical video processors (Appendix I) employ high-pass filtering to re-
duce signals resulting from clutter targets. A filter having a clutter rejec-
tion ratio of at least 20 db will usually give satisfactory MTI performance.
An active filter with an attenuation slope of 12 db per octave meets this re-
quirement. The clutter rejection ratios afforded by these types of filters
baving cutoff frequencies of 50 and 100 Hz are plotted in Figure 6. The re-
Jection ratios for the 50-Hz filter were calculated: those of the 100-Hz fil=-
ter are repeated from Table II. The rejection ratio provided by the 50-Hz
filter is greater than 20 db for wind velocities up to 10 knots. The 100-Hz
filter provides an attenuation of at least 20 db for nearly all wind condi-
tions.

A circult dilagrem of the active filter is shown in Figure 7. It contains
two active and six passive elements. The two transistors may be replaced by
a single high input impedance device such as a field-effect transistor. The
filter can be packaged so that its conmtribution in size and weight compared
to that of an overall MTI system is small.

The active elements in the filter sharpen the break point of the fre-
quency response of the filter, rlso shown in Figure 7. The filter attenuates
an input signal at a frequency of 1‘/fp = 1 by less than 1 db; a passive dual
RC filter, while having the same attenuation slope as the active filter for
£/, << 1, would attenuate a signal by 6 db at the break point. The sharp
break point allows a good approximation of the frequency response of the
active filter, e.g.

e

i
—
l
-
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-
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Th: filter has no insertion loss in the pass band.
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Because of its simplicity, small size and weight, and performance, a 12-
db-per-octave active filter has been selected for use in several MII systems.
A filter having a cutoff frequency of 50 Hz is used in most applications; one
system offers a choice between a 50-Hz and a 100-Hz cutoff. The 50-Hz cutoff
is preferred, since it allows a greater range of target frequencies to pass.

A 6-db-per-octave passive filter having a cutoff frequency of 100 Hz also
meets the requirements of performance and simplicity. However, the 50-Ez
active filter discussed above is preferred because of its lower cutoff fre-
quency. A 6~db-per-octave passive filter does not provide sufficient clutter
attenuation.

Although the 4Q-db-per-octave filter meets attenvation requirements, the
complexity of the filter circuit results in excessive size and weight.

Rarrowv Band Filtering

The preceding section indicates that a 12-db-pe._-octave active filter
with a cutoff frequency of 50 Hz will give adequate performance in an MTI
video processor. This filter still has the basic limitation that its fre-
quency response 1s fixed while the signal it is designed to attenuate, i.e.,
the clutter spectrum, varies significantly according to the wind conditions
to which the clutter target is subjected. On a calm day, the suggested filter
would do a good Job in eliminating clutter sigmals. For a calm condition, it
would be possible (and desirable) to lower the cutoff frequency of the filter
to allow a greater range of target frequencies to pass. On windy days, 1i.e.,
with winds above 10 knots, the filter will not provide sufficient clutter
attenuation. It would be desirable under these conditions to raise the cutoff
frequency of the filter.

A method of overcoming the limitations imposed by a single high-pass
filter is to divide the entire audio bandwidth over which frequencies result-
ing from any target motion occur into several narrow band filters. This
scheme allows the gain of the lower frequency bands to be adjusted according
to the clutter conditions. A further improvemeat would be a system in which
the gain of the low frequency bands would vary simultaneously with changing
clutter conditions. An example of how this might be accomplished is shown in
Figure 8. The outside boxes in the block diagram illustrate the method by
vhich doppler information is processed. The boxcar output contains clutter
and target signals.

A narrow band filter follows an amplification stage; the purpose of this
filter is to pass only target signals. After further processing, the signal
is threshold detected. The threshold level might be set by the signal level
out of a clutter sampler. The sampler could be a narrow band filter centered
at a frequency below that of the target filter, i.e., the filter designed to
rass target frequencies. Under calm conditions, little energy would enmter
the clutter sampler and the threshold level would be at a minimum level. As
the wind increases, clutter signals will be passed by the target filter.
However, the energy in the clutter sampler will also increase, thus reising
the threshold level which a signal passed by the target filter must exceed.
No output signal due to clutter signals will exist at the threshold detector
output.




Use of this echeme will yield the maximum signal-to-clutter level aldow-
able under all conditions, thus obtaining a considerable enhancement in the
performance of MTI systems.

CONCLUSIONS

The clutter spectrum received by a noncoherent X-band radar observing a
group of natural ciutter targets can be approximated by

1

£ \3
il

P(r) =

where fc-: k exp [v] Pz
kE = 1.33 Hz
=2
@ = .1356 knots

v

wind velocity (knots) .

Tais equation 1s significant in that the performance of any filter in
attenuating clutter signals can now be predicted. The cubic expression glves
& more accurate prediction of filter performance than the long assumed
Gaussian spectrm.

A 12-db-per-octave active high-pass filter having a cutoff frequency of
50 Hz will provide a clutter attenuation of at least 20 db for winds up to 10
knots, which will afford satisfactory MTI performance under most conditionms.

MTI system performance can be improved by covering the audio spectrum
with several nmarrow band filters. Applying adaptive filtering techniques to

the lower frequency bands will result in the maximum MTI sensitivity possible
under all wind conditioms.

RECOMMENDATIONS

Future effort should be expended in three areas. Firstly, the variations
in the clutter spectrum with changes in the operating frequency of the radar
should be determined. The return from coherent radars should also be anal-
yzed.

Secondly, work should be done in developing a suitable adaptive filtering
technique to yleld maximum MTI sensitivity.

Fipally, a study should be made to see if moving target signalr of inter-

est can be separated from clutter signmals by using the statistical properties
of clutter. '

10
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RELATIVE POWER
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|
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WIND VELOCITY 20 KNOTS

h_-h
i 1 1 _L\ e
0 10 20 30'“_‘ 40 50 60 70
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FIG. 3 APPROXIMATIONS OF THE CLUTTER SPECTRA OBTAINED
WiITH AN X-BAND RADAR
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APPENDIX I

A VIDEO PROCESSOR

Video |Boxcar PRF _’J Clutter| [Rect.| |Threshold And
———*,n Demod. [ Filter Filter [ & Detect. Gate
- Int.

Range | J L

Gate

—

MTI Video Out

FIGURE I-1

RANGE-GATED FILTER CHANNEL

The basic building block of a video processor for pulsed radar systems
is & range-gated filter channel. Figure I-1 shows & block diagram of a range
channel. A boxcar demodulator is used to recover the doppler modulation in-
formation present in the video output of a radar system. The boxcar is a
sample-and-hold device. It is usually gated at the radar PRF, with a pulse
width equal to that of the transmitted pulse.

The delay of the gating pulse in relation to the transmitted pulse de-
termines the range of the target being sampled. The boxcar output is a com-
plex audio signal. Ambiguous signals, Ligh frequency noise, and components of
the PRF are removed by a low-pass filter. This filter has a high frequency
cutoff of one~half the radar pulse repetition frequency. D-c signals result-
ing from fixed targets and other undesired low-frequency signals are elimin-
ated by a highepass filter. These latter signals result primarily from wind-
blown netural clutter targets. The remaining signal is rectified, integrated,
and threshold detected. The detector cutput is regated with the same pulse
that gated the boxcar. The final output is a video pulse occurring at the
correct radar range. A pulse will appear only for moving target inputs.

It is possible to use several range channels, each corresponding to a
specific radar range iuterval. In this manner, moving targets appearing any-
vhere within the antenna beamwidth can be displayed simultaneously on a radar
indicator.
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APPENDIX II

RADAR SET AN/TPS-25 CHARACTERISTICS

The Radar Set AN/'I’PS-25 is a long-range noncoherent pulse doypler combat
surveillance radar. The radar characteristics are as follows:

Frequency 9375 megahertz

Pulse Width 0.5 microsecsnds

PRF 1850 pulses per second
Peak Power 65 kilowatts

Azimuth Beamwidth 2 degrees

Elevation Beamwidth L degrees

Sector Scan : 30 degrees in 22 seconds
Maximum Range 20,000 yards
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APPENDIX III

CLUTTER REJECTION RATIO COMPUTATIONS

A method of calculating the clutter rejection ratios provided by various
filters when attenuating the clutter spectrum is discussed here. The clubter
rejection ratio is defined by

R = Clutter Rejection Radio

:[ P(f) ar (III-1)

f?(f) Jue)| ® ae

vhere P(f) = clutter power spectrum
and H(P) = filter voltage transfer function.
The clutter spectrum can be approximated by
1
P(f) = WERY (III-2)
e

where f, = clutter spectrum characteristic frequency (Hz).

The numerator of (III-1) can then be expressed as

df

3
A1+ (%-)

This integral can be evaluated directly.

Let X L
fo

Then o 00
df - dx
~ 3 fc 3 ‘
7
4 14+ (-f-,-;— 4 14+ x
2l




The substitution s = x3 results in

” ax fe ~gt/3-L
fo = as ,
/ 1+ 3 1+8

Evalugtion of the right-hand integral requires the use of Beta and Gamma
functions.® The result is given in many handbocks of definite integrals.
From Burington,7

00
nel
[-Ldy= T o5 B€n=<1,

4 14y sin nx
Using this,
o0
ar - 2 ﬁ-ﬂ fc . (III-3)
3 .
14+ () 9
c

The denominator of (III-1) cannot usually be evaluated by direct integra-
tion. Evalustion requires uce of a form of the fundamentel theorem of inte-
gral calculus, i.e.

2 1lim t 2
[oe) [me)® ar = 1= 2__ Bz ense) |8 (6= nan)| ar. (qu)

4 Af")° nel

For all clutter spectra and filters used to attenuate clutter signals,
the values Af = 1 Hz and N = 200 are sufficient for the summation to be
a good approximation to the integral.

The clutter rejection ratios of six filters acting on the clutter spec=-
trum were obtained by programming a computer to perfcrm the computations
shown in Equations (III-3) and (III-k). Values of f, the clutter spectrum
characteristic frequency, of from one to twenty Hz were taken in one Hz incre=-
ment. Magnitudes of the filter transfer functions H(p) were taken directly
from f1)~equency response plots of the filters. The plots are shown in Figure
III-1).

The calculated clutter rejection ratios are given in Table III-1.
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CAICUIATED CLUTTER REJECTICN RATIOS

TABIE III-1

50 300 50 100 50 100
6 6 12 12 Lo 4o
29 35 36 Ly b1 47
2L 29 30 38 35 bl
21 26 26 35 31 38
19 2L 24 32 29 35
17 22 22 30 27 33
16 21 20 29 25 32
15 20 19 27 24 30
14 19 18 26 23 29
13 18 17 25 22 28
13 17 16 24 21 o7
12 17 15 24 20 26
12 16 14 23 19 26
11 16 14 22 19 25
n 15 13 22 18 2L
10 15 13 21 17 24
10 14 12 0 17 23
10 14 12 20 16 23
9 13 11 19 16 22
9 13 n 19 15 22
9 13 10 19 15 21
fp = filter low-frequency cutoff

of = filter attenuation slope

fc = clutter spectrum characteristic frequency
R = clutter rejection ratio

24
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APFENDIX IV

CUBIC AND GAUSSIAN SPECTRA COMPARISON

Two approximations to the clutter power spectrum are

“(f) = exp [- a.f2]

1
and P(f) =

f
1+ ()
( c
where a and f_ are constants determined by the frequency of the radar

Observing £he clutter target and wind velocity to which the clut-
ter target is subjected.

The constants a and f, can be related by assuming that the two spectra
have equal total powers. Then,

L — =f;; [- af2] af . (Iv-1)

1+(;f—)

The right-hand integral can be written as

00
% /‘T%: exp [--]2-'- (\/Ea'f)z] 2a df o

This integral is the normalized Gaussian function and has a value of 1/2.

o [e::) [- a.fz] ars L.

2va

The lgft‘ha.nd iptegral in IV-1l can be evaluated from tables of definite
integrals. The result is

00
af = 2 Yfg-ﬂ fo .
£ \3

ol+(§) )

* See Appendix III
25




Equating the results of these two integrals,

2«3_1tfc \/n
9 B 2,/8.

andfcz. 2 .
by J3na
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APFENDIX V

CLUTTER REJECTION RATIO CAICUIATION FOR
A GAUSSIAN SPECTRUM

The clutter rejection ratio obtained wher a 12-db-per-octave active high-
pass filter attenuates a Gaussian-shaped clutter power spectrum is calculated
nere. The rejection ratio is defined by

- :[:» P(f) df
[3) Jrwl? e

where P(f) = clutter power spectrum

and H(p) = filter voltage transfer function.

A Geussian spectrum may be expressed by

P(f) = exp [- afa]

where a is a constant determined by the frequency of the radar
vhen observing the clutter target and wind velocity to which
the clutter target is subjected.

A good approximation of the transfer function of a 12-db-per-octave high-
pass filter is
P 2
H(p) = (—) £<f
P

1 £f>f

i
o]

where fp is the filter cutoff frequency.

Then 5
exp [— af af
R = ,+ . (V-l)
f c0
2 2
[P (%E'_) exp [- af:ldf+/ exp [— af} ar
P f
P
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The numerator of this expression can be written as follows:

fa:p [-afe] ar = 2% e exp - -L‘/g—ff—»@;df.

vaa 4 v 2n 2
This integral is the normal function and has a value of 1/2.
2Ja !

The first integral in the denominator of (V-1) can be expanded through suc-
cessive integration by parts into

£
P
2 2 [ 2]
- . ..1 1 e - af ex - af af .
ot B | = [ TS f "

The second integral in the denominator of (V-1) can be written as

(% e e [ o [

The left-hand integral has been evaluated above. The denominator of (V-1)
can now be written aa

v p 2,3 1 2 o 3 ] - ,
- + exp |-afp |+ -1} (v-3)
2Va [P 2] |ear ¥ (2ar ?) 2 |

wherem-.-.[fp exp [—afz] df
(-4

m can be put in the form of the normal function by making the substitu-
tion x =V 28 f into the above integral.

£ \/2afp ’
Then [ o exp [- af2 = - f = exp |- L] dx
va 4 v 2n 2

_ V=
= n
Va e,
Ea.fp x2
vhere n = exp | - -—2- dx is the normal function.
(-} ]

Values for n as a function of the limits of the integral are given in many i
mathematical handbooks.* i

* For example, Burington, R.S., op. cit. See Reference T.

i
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(V-3) is now written as

2
Vs b 2
~ I 1+2n(3b—2-1) -b 1-#-‘1,L exp |- afy (v-4)
2Va fp P
h - .
where b oaf
P
Substituting (V-2) and (V-4) into (V-l),
-1
2
b 2yab 3b 2
R={l-n+6n -2 - 1% exp |- af . (V=5)
{ T £ Tp E

Evaluation of this expression gives the attenuation of a Gaussian approx-
imation to a clutter spectrum, when a 12-db-per-octave active high-pass filter
is used. Consider the case when a filter having a cutoff frequency of 100 Hz
attentates the spectrum provided by a radar operating at 10 GHz observing a
clutter target subjected to a wind having a veloclty of 20 m.p.h.

* -
Skolnik gives a value of a for the conditions cited of 2.3 x 10 3. The
constants in (V-5) are now as follows:

fp = 100 Hz
a = 2.3 x 1073 sec®

_ JEEfn x2
n = Toexp (=% ax = 0.5
o

- 1
b = 2afp = 2.17

Substituting these values into the last term of (V-5) reveals this term
to have a magnitude of the order of 1011, This value is negligible compared

to that of the 6 n b‘?/fp‘2 term. Hence, if this term is disregarded, (V-5)
can be written simply as

:

Finally, R

[}]

705

28.5 db.

* Bkolnik, M.I., op. cit. See Reference 3.
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