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Clutter Rejection Filters in Color Flow
Imaging: A Theoretical Approach

Hans Torp, Member, IEEE

Abstract—A general class of linear clutter rejection fil-
ters is described, covering the commonly used filter types
including FIR/IIR filters with linear initialization, as well as
regression filters, where the clutter component is estimated
by least square curve fitting. The filter can be described by a
complex valued matrix, and a frequency response is defined.
However, in contrast to a time invariant filter, the general
linear filter may create frequency components which are
not present in the input signal. This produces bias in the
velocity and velocity spread estimates. It is shown that the
clutter filter effect on the autocorrelation estimates can be
described by a frequency domain transfer function, but un-
like time invariant filters, the transfer function is different
for each temporal lag of the autocorrelation function. Using
a two dimensional (axial and temporal dimension) model of
the received signal, the bias in velocity and velocity spread
is quantified, both for the autocorrelation algorithm and
the time shift crosscorrelation estimator. Theoretical ex-
pressions, as well as numerical examples are given.

I. Introduction

Clutter rejection filters are known from radar
applications, where the signals from stationary (or

fixed) targets, commonly referred to as “ground clutter”,
must be suppressed in order to detect moving targets, like
aircrafts etc. In the simplest form of this technique, the re-
ceived back scattered signals from two consecutive pulses
are subtracted so that the signals from stationary targets
are removed. This is called a fixed target canceller (FTC)
[1] . In ultrasound Doppler blood flow measurements, the
blood signals are corrupted with clutter signals from mus-
cular tissue, vessel walls etc. which are much stronger than
the blood signals; the clutter-to-signal ratio may in some
cases exceed 100 dB. Unlike in ground based radar, there is
always a relative movement between the ultrasonic probe
and the unwanted tissue targets due to the operator mov-
ing the hand held probe, and blood vessel wall pulsation.
Tissue velocities are highest in the cardiac muscle where
the peak velocity may exceed 10 cm/sec, whereas normal
intracardiac blood velocities are in the range 0–60 cm/sec.
In patients with valvular disease, the blood velocities in
the jet stream can exceed 5 m/sec. For continuous and
pulsed wave Doppler, a conventional highpass filter can be
used for clutter rejection with sufficiently high stop-band
damping, and steep slope between the stopband and the
passband, to obtain optimal separation between the clut-
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ter and the blood signals. Both FIR and IIR filters are
used, the latter is often preferred, because a steep filter
edge can be obtained with less computation power.

Clutter filters for 2D color flow imaging require different
solutions, depending on the scanning principle. Mechani-
cal scanning systems have a continuous movement of the
beam. The signal from each range gate gives a relatively
long signal sequence as the beam sweeps over the image.
A similar filter as that used for CW/PW Doppler may be
used; one filter for each range gate. The only difference is
that the beam movement gives an additional transit-time
effect for the clutter signal, giving a slightly higher clut-
ter bandwidth in the clutter signal. With phased array
and linear array technique, the beam is moved stepwise
over the image, transmitting a limited number of pulses
in each direction. Each time the beam is moved to a new
position, a discontinuity in the clutter signal occurs, which
means that the clutter filter has to operate separately on
the samples in each beam direction. The number of tempo-
ral samples available for the clutter filter is therefore equal
to the number of transmitted pulses per beam, which must
be kept low (typical values are 6–16 samples) in order to
obtain a frame rate which is sufficient to follow the dy-
namic behavior in arterial, and intracardiac bloodflow.

A number of different approaches has been proposed for
clutter rejection filtering operating on a small number of
signal samples. A FIR filter with short impulse response
is a possible solution, the number of output samples is
then reduced according to the filter order. The simplest
FIR clutter filter is the first order FTC filter, which is
analyzed in [2]. IIR filters may also be used, if special pre-
caution is taken to initialize the filter, in order to reduce
the ring-down time. A simple IIR initialization technique
is described in [3], but more sophisticated methods based
on prediction of the clutter signal outside the observation
interval have also been proposed [3]. A novel approach was
taken by Hoeks [4], where the clutter signal was estimated
by linear regression, and then subtracted from the input
signal. The advantage of this technique is that the number
of output samples is not reduced. Higher order polynomial
regression filters have also been analyzed in [3].

The performance of a linear time invariant filter is ade-
quately described by its frequency transfer function, which
changes the shape of the Doppler spectrum. However, the
effect of time variant filters, like the polynomial regression
filter, is more complicated to describe. For applications in
color flow imaging, the output of the filter undergoes auto-
correlation analysis. The correlation both in time (pulse-
to-pulse) and in space (along the ultrasonic beam) have
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been used for the estimate of velocity and velocity spread
[5], [6]. Therefore, the effect of the clutter filter on the
estimates of the two-dimensional (axial and temporal) au-
tocorrelation function should be considered. The aim of
this work is to give a theoretical basis for the practical
design of optimum clutter rejection filters. The paper is
organized as follows:

Part II describes a model of the received ultrasonic sig-
nal after complex demodulation, including blood signal,
clutter signal, and thermal noise. The signal is modeled as
a two dimensional complex Gaussian process, described by
the signal correlation function in depth-range, as well as
correlation in time (from pulse to pulse). Two dimensional
clutter rejection filters are discussed briefly, but in the rest
of the work, only one-dimensional filters are analyzed. In
part III the general one-dimensional linear clutter filter
operating on a finite, time discrete complex valued sig-
nal is described mathematically. The frequency response
is defined, and expressed by the filter matrix elements.
In part IV the clutter filter effect on the two dimensional
autocorrelation function estimate is described. Analytical
expressions for the bias in estimates of velocity and veloc-
ity spread are derived, and some numerical examples are
given.

II. Model for the Received Ultrasonic Signal

A signal model which includes both temporal (pulse-to-
pulse) correlation, as well as spatial correlation is needed in
order to analyze the behavior of the large variety of veloc-
ity estimators proposed [5], [6]. Stochastic models for ul-
trasound color flow imaging have been presented by a num-
ber of authors [7]–[9]. Here, the model description is taken
from a previous work [10], where the received signal after
complex demodulation is described as a two-dimensional
complex Gaussian process x(t, k). In this notation t is the
elapsed time from pulse transmission k, corresponding to
a depth range r = ct/2. In a practical implementation, the
signal in digital form is only available for discrete samples
in range, however the sampling frequency can be arbitrary
high. If the baseband signal is sampled with a frequency
higher than the bandwidth, any value in between can be
found by interpolation. In the following analysis, the sig-
nal is assumed to be a continuous function of t, the elapsed
time after pulse transmission, and discrete in the second
parameter k. The pulse repetition time is denoted T . As
a stationary, complex Gaussian process, the signal is com-
pletely characterized by its autocorrelation function, or its
power spectrum which are defined as

Rxx(τ,m) ≡ 〈x(t, k)∗x(t+ τ, k +m)〉

Gxx(ω1, ω2) ≡
∑
m

∫
dτRx(τ,m)eiω1τeiω2mT . (1)

The angular frequency variables ω1 and ω2 are the ultra-
sound frequency (in the MHz range), and the Doppler fre-
quency (in the kHz range). The autocorrelation function

is defined by a statistical ensemble average. In a practical
estimator, ensemble averaging must be replaced by radial
and/or temporal (pulse-to-pulse) averaging, to reduce vari-
ance. The stationary assumption in (1) is only valid in a
limited depth range, and for short observation times.

When all scatterers within the sample volume move
with the same velocity, the two-dimensional autocorrela-
tion function and power spectrum takes on the form [11]

Rxx(τ,m; vr, vt) = s2

(
τ − 2vrT

c
m

)
e−iω0τb2(vtTm)

Gxx(ω1, ω2; vr, vt) = |S(ω1 + ω0)|2
∑
n

∣∣∣∣B( 1
vt

×
(
ω2 −

2vr
c

(ω1 + ω0) +
2π
T
n

))∣∣∣∣2 .
(2)

S(ω1) andB(ω2) are the Fourier transform of the transmit-
ted pulse, and the transversal beam profile, respectively,
and ω0 is the angular demodulation frequency. The blood
velocity vector is described by the radial (along the ultra-
sonic beam) component vr, and the transversal component
vt. Frequency dependent attenuation and scattering are in-
cluded in the pulse response S(ω1). Note that the power
spectrum G(ω1, ω2) is periodic in the second frequency pa-
rameter, with period 2π/T .

Both the clutter signal and the blood signal may con-
sist of several independent components, moving with dif-
ferent velocities, each of them contributing with a power
spectrum having the form described in (2). Significant ac-
celeration during the observation time, or turbulence will
increase the bandwidth further in the ω2 direction. Ther-
mal noise from the transducer and receiver front end am-
plifier adds an independent white noise component to the
signal. In order to optimize the signal-to-noise ratio, the
receiver bandwidth is usually matched to the pulse band-
width, by a bandpass filter centered around ω0, and/or a
lowpass filter after the complex demodulation stage. The
total receiver filter is here described by a bandpass im-
pulse response h(τ). The autocorrelation function and the
power spectrum for the received signal will be a sum of
these independent components:

Rxx(τ,m) =
∑
n

AnR(τ,m; vn) +N0h2(τ)e−iω0τδ(m)

Gxx(ω1, ω2) =
∑
n

AnG(ω1, ω2; vn) +N0|H(ω1 + ω0)|2.
(3)

The last term in (3) accounts for the thermal noise, which
is a lowpass process, with spectral energy density N0, and
spectral shape given by the transfer function H(ω1 + ω0).
An illustration of a typical 2D power spectrum, including
blood signal, clutter signal, and thermal noise is shown
in Fig. 1. Note that the signal spectrum is concentrated
along straight lines in the (ω1, ω2)-plane, intersecting the
ω1 axis at ω1 = −ω0, each with a slope proportional to the
velocity. These lines are referred to as iso-velocity lines.
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Fig. 1. Two dimensional power spectrum including components from
blood signal, tissue signal, and receiver noise.

An ideal clutter rejection filter should therefore suppress
all frequency components below the iso-velocity line given
by the highest tissue velocity. This means that the filter
cut-off frequency should increase with ω1. However, the
difference in frequency dependent scattering from blood
and clutter will alter this: Raleigh scattering from blood
[7] gives increased intensity in the higher frequency compo-
nents, which means that the blood/clutter level increases
with the frequency ω1. This means that the stopband re-
jection requirement is less, and a lower cutoff frequency
can be used for the higher frequency components. Thus
the optimum 2D frequency response for the clutter filter,
depends on the actual blood/clutter level. A one dimen-
sional clutter filter, for which the cutoff frequency is inde-
pendent of ω1, seems to be a useful compromise. This is
also preferred for real-time processing, since the compu-
tation requirements are much higher for a 2D filter. The
following analysis is restricted to one dimensional clutter
rejection filters.

III. The General Linear

Clutter Rejection Filter

In this section, the filter effect on each range sample
of the received signal is analyzed separately. The input
and output of the filter is a sequence of N complex sig-
nal samples, from one selected range gate of the received
signal. A general clutter rejection filter can be described
mathematically as a transform on the N dimensional com-
plex vector space CN . To avoid intermodulation between

the different clutter and blood components in the output
signal, the transform should be linear, and can therefore
be performed by a matrix multiplication. Note that the
general linear transform includes all types of conventional
time invariant filters. IIR filters can also be described in
this way, if the initialization of the filter is performed by a
linear combination of the input signal samples. The filter
matrix A = {a(n,m)} may have complex entries, when a
skewed (non symmetric) frequency response is required.

Input vector: x = (x(1), . . . , x(N))T

Output Vector: y = (y(1), . . . , y(N))T = Ax (4)

y(k) =
N∑
n=1

a(k, n)x(n); k = 1, . . . , N.

A time invariant FIR filter with an impulse response h(n),
n = 0, 1, . . . ,M will have a filter matrix given by:

a(k, n) =
{
h(k − n) for k ≥ n and k > M
0 elsewhere.

Note that the first M samples in the output signal are zero.
The frequency response of the FIR filter can be defined by
the Fourier transform of the impulse response h(n). This
definition can not be applied to the general linear filter
(4). However, a frequency response function H0(ω) can be
defined as the power of the output signal when the input
is a complex harmonic signal.

x(k) = eikω; k = 1, 2, . . . , N

yω(k) =
N∑
n=1

a(k, n)e−inω ≡ Ak(−ω) (5)

H0(ω) ≡ 1
N

N∑
k=1

|yω(k)|2 =
1
N

N∑
k=1

|Ak(−ω)|2.

The quantity Ak(ω) is the Fourier transform of row num-
ber k in the filter matrix. Since the transform is linear, a
constant phase shift of the input signal will give a factor eiφ

with unit length, and will therefore not influence the out-
put power. This means that the frequency response in (5)
is well defined. This is a unique property for complex base-
band signals. For real valued signals, an ensemble average
over all possible phases is necessarily in order to obtain a
well defined frequency response [4]. In the complex case,
the power of the real- and imaginary parts both vary with
the phase of the input signal in such a way that the sum is
constant. Note that for FIR filters, the frequency response
defined in (5) coincide with the usual definition; i.e., the
squared Fourier transform of the impulse response h(n).
However, unlike the linear convolution filter, the output
will not in general be a complex harmonic sequence, but
may contain frequency components which are not present
in the input signal. This property can cause severe prob-
lems in color flow imaging, where strong clutter signals
may generate higher frequency components which affect
both the center frequency and the bandwidth estimate.
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This frequency distortion is only absent for FIR-filters,
where the number of non-zero output samples must be
reduced to N −M , where M is the FIR filter order. A re-
duction of the number of output samples will increase the
variance in the velocity parameter estimates, and should
therefore be minimized. Several methods have been pro-
posed for reducing the “ring-down time” in the filter [3].
The basic idea is to extend the signal interval by some
sort of prediction, followed by a FIR or IIR convolution
filter. As long as the predicted values are formed by linear
combinations of the original input signal, the total filter
operation will still be linear, and thus included in the gen-
eral class of filters (4), which can be performed by a matrix
multiplication.

Another approach was taken by Hoeks et. al [4], where
the clutter signal was estimated by least square fitting of
the signal to a straight line, and then subtracted from the
input signal. This is one example from a class of filters
which here will be referred to as regression filters. If we
assume that the clutter signal is contained in a subspace
κ of CN , the projection transform Pκ from CN onto κ
gives the least square fit to the clutter component. The
clutter filter will then have the form A = I − Pκ , which
is a projection into the orthogonal complement of κ. If
{b0, b1, . . . , bP } is an orthonormal basis for κ, the filter
operation can be performed by calculating the projection
along each basis vector, and subtract the projections from
the original signal. The filter matrix {a(n,m)} and the
frequency transfer function for the regression filter have
the following form:

a(n,m) = δ(n−m)−
P∑
p=0

bp(n)∗bp(m)

H0(ω) = 1− 1
N

P∑
p=0

|Bp(ω)|2 (6)

Bp(ω) ≡
N∑
n=1

bp(n)e−inω.

The choice of basis functions {b0, b1, . . . , bP } determines
the regression filter properties. The Legendre polynomials
form a set of basis functions which is suitable for clut-
ter rejection filters, due to the high stopband rejection.
The Legendre polynomials can be obtained by applying the
Gram-Schmidt orthonormalization process to the series of
polynomials {1, n, n2, . . . , nP }. In Fig. 2 the frequency re-
sponses for the Legendre polynomials and the resulting
regression filter are shown, for N = 10, and p = 0, 1, 2, 3.
The corresponding clutter rejection filter is equivalent to a
least square polynomial fit of order P to the clutter compo-
nent. Note that the basis functions are real valued, giving a
symmetric frequency response. Fig. 3 shows the frequency
responses for the polynomial regression filter, for different
orders P .

It is interesting to see how the clutter filter affects the
power spectrum estimate of the output signal. A smooth
weighting function on the output signal can be included

Fig. 2. Frequency spectra for the Legendre polynomials, |Bp|2 for
p = 0, 1, 2, 3 and the frequency response for the 3rd order polynomial
regression filter. N = 10. All frequencies in the figures are represented
as fractions of the sampling rate.

Fig. 3. Frequency response for the Legendre polynomial regression
filter, with order P = 0, 1, 2, 3, and 4. N = 10.

in the filter matrix coefficients. If the input signal power
spectrum is Gxx(ω), the expected output spectrum is

〈Ĝyy(ω)〉 =
∫
dζ|A(ζ, ω)|2Gxx(ζ)

A(ζ, ω) ≡
∑
k,m

a(k,m)e−i(kζ+mω). (7)

This equation shows that the two-dimensional Fourier
transform A(ζ, ω) of the filter matrix can be interpreted
as a power spectrum transfer function. A single frequency
input Gxx(ω) = δ(ω − ω1), gives the output spectrum
Gyy(ω) = |A(ω1, ω)|2. In Fig. 4 the spectrum transfer func-
tion for a 4th order polynomial regression filter with Han-
ning window, N = 20 is shown. Note the increase in side
lobe level, when the input frequency is close to the filter
cut-off frequency. This example illustrates that frequency
distortion in polynomial regression filters is only signifi-
cant for input frequencies at and below the filter cutoff
frequency.
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Fig. 4. The spectrum transfer function |A(ω1, ω2)|2 for N = 20 point
Hanning window, and 4th order regression filter. The contours are
drawn at 3 dB distance over 40 dB dynamic range.

IV. Clutter Rejection Filter Effect on the

Autocorrelation Estimate

In color flow imaging applications, the output signal
from the clutter filter is used for autocorrelation analysis
to derive blood velocity information. In this section, the
behavior of the autocorrelation estimate for the output of a
general linear filter is studied. The unbiased sample mean
autocorrelation estimate of the received Doppler signal de-
scribed in section II is given by

R̂yy(τ,m) = k(τ,m)
∫ t0+T0−τ

t=t0
dt
∑
k

y(t, k)∗y(t+ τ, k +m)

y(t, k) =
N∑
n=1

a(n, k)x(t, n); k(τ,m) ≡ 1
T0 − τ

1
N −m.

(8)

By combining the two equations in (8), the expected value
for the autocorrelation estimate can be expressed by the
input autocorrelation function and the filter matrix coef-
ficients {a(m,n)}. Details can be found in the appendix.
Note that the output signal is not in general a station-
ary process, even though the input signal is assumed to be
stationary.

〈R̂yy(τ,m)〉 =
∑
n

a2(n,m)Rxx(τ, n)

a2(n,m) ≡
∑
m′,n′

a(n′,m′)∗a(n′ + n,m′ +m).
(9)

Equation (9) shows that the autocorrelation functions
{R(τ,m)}m=0,±1,...±N for the input signal and the output
signal are related by a linear transformation, and that the

Fig. 5. Magnitude of the frequency transfer functions Hm for m = 0,
1, and 5. Third order polynomial filter, with N = 10.

transformation matrix is the (two-dimensional) autocor-
relation of the filter matrix. The autocorrelation function
for y can also be expressed by the power spectrum of the
input signal, Gxx(ω1, ω2)

〈R̂yy(τ,m)〉 =
∫∫

dω1dω2Gxx(ω1, ω2)Hm(ω2)eiτω1+imω2

Hm(ω2) ≡ 1
|N −m|

∑
n

a2(n+m,m)einω2 . (10)

This shows that the filter can be described by a set of
transfer functions, {Hm(ω)}, one for each temporal lag m
in the autocorrelation estimate. In general, the transfer
functions Hm(ω) are different for each value of the tem-
poral lag parameter m, and attain complex values when
m 6= 0. The transfer functions may also be expressed by
the Fourier transform of the filter matrix elements

Hm(ω2) =
1

|N −m|
∑
k

Ak(ω2)∗Ak+m(ω2)e−imω2

Ak(ω2) ≡
∑
n

a(n, k)e−inω2 . (11)

The function Ak(ω) is the Fourier transform of row num-
ber k in the filter matrix. In Fig. 5, the magnitude of the
transfer functions H0, H1, and H5 are plotted for a 3rd
order polynomial regression filter.

For time invariant filters, Ak(ω) = H(ω)e−ikω, where
H(ω) is the ordinary filter transfer function, and the trans-
fer functions for the different lags coincide.

Hm(ω) =
1

|N −m|
∑
k

(H(ω)eikω)∗H(ω)ei(k+m)ωe−imω

= |H(ω)|2. (12)

For applications in color flow imaging, the signal power,
velocity and velocity spread are usually calculated from the
autocorrelation estimates with temporal lags m = 0 and
m = 1. By normalizing the autocorrelation function with
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temporal lag m = 1, a correlation coefficient is obtained.

Signal power: R̂yy(0, 0)

Correlation coefficient: ρ̂(τ, 1) =
R̂yy(τ, 1)
R̂yy(0, 0) (13)

The most commonly used method, the “autocorrelation
method” [12] utilizes only spatial lag τ = 0; the velocity
and velocity spread are given by the phase and magnitude
of ρ(0, 1).

Velocity: v =
c

2ω0T
arg{ρyy(0, 1)}

Velocity spread: 1− |ρyy(0, 1)| (14)

The velocity can also be calculated from the pulse-to-pulse
time delay shift [5], which can be found by the peak in
the RF signal correlation function with temporal lag m =
1. The RF signal correlation function is obtained by up-
mixing of the baseband correlation function [13]

peakτ (real{Ryy(τ, 1)eiω0τ}) (15)

The effect of the clutter filter on both these color flow algo-
rithms is determined by the transfer functions H0(ω2) and
H1(ω2). Magnitude variation in the transfer functions over
the Doppler signal bandwidth will give bias in all three
velocity parameters. This is a well known effect, which
is also present for time invariant filters. However, a non-
zero phase value of H1(ω2) will give an additional bias in
the velocity estimate. If the magnitude of the two trans-
fer functions H0 and H1 are different, this will give an
additional bias in the velocity spread estimate.

To evaluate these effects in more detail, the autocorre-
lation model (3) from section II is inserted in (10). Due to
the linear relationship between the input and output au-
tocorrelation function (10), each component in (3) can be
treated separately. The signal component from blood mov-
ing with velocity v = (vr, vt) gives the following expected
autocorrelation function

〈R̂yy(τ,m)〉 = e−iω0τ
∑
k

s2

(
τ − 2vrT

c
k

)
b2(vtTk)a2(k,m)

=
∫
dω1|S(ω1)|2eiτ(ω1−ω0)

∫ 2π

0
dω2

∑
n∣∣∣∣B( 1

vt
×
(
ω2 −

2vrT
c

ω1 + 2πn
))∣∣∣∣2Hm(ω2)eimω2

(16)

When the transversal velocity components is zero, the B()
function (which is the Fourier transform of the ultrasound
beam profile) approaches a delta function, and (16) sim-
plifies to

〈R̂yy(τ,m)〉 = e−iτω0

∫
dω1|S(ω1)|2Hm

(
2vrT
c

ω1

)
× ei(τ+m 2vrT

c )ω1

≈ Hm

(
2vrT
c

ω0

)
eim

2vrT
c ω0 (17)

Fig. 6. Magnitude and phase of H1(ω)/H0(ω) as a function of ω/2π.
Polynomial regression filter with N = 10, P = 3.

The last approximation in (17) is valid when the trans-
mitted pulse bandwidth is much lower than the center fre-
quency. In this case, the expected velocity and velocity
spread are given purely by the clutter filter transfer func-
tions. The normalized autocorrelation estimate takes on
the simple form

〈ρ̂yy(0, 1)〉 ≈ 〈R̂yy(0, 1)〉
〈R̂yy(0, 0)〉

≈ H1(ω)
H0(ω)

eiω

=
|H1(ω)|
H0(ω)

eiω+i arg{H1(ω)}

ω =
2vrT
c

ω0 (18)

Observe that the phase of H1(ω) determines the bias of
the velocity estimate, whereas the fraction |H1/H0| deter-
mines the bias of the velocity spread estimate. In Fig. 6
the magnitude and phase of H1(ω)/H0(ω) is plotted for a
polynomial regression filter of order 3. Note that the es-
timator bias is substantial in the stop band and in the
transition region for both estimators.

For the time delay estimation algorithm, the RF auto-
correlation function with temporal lag m = 1 is used, see
(15). The expected value for the RF-correlation function,
for uniform velocity fields in the presence of noise, is found
from (2) and (16)

〈R̂yy(τ, 1)eiτω0〉 =
∑
k

s2

(
τ − 2vr

c
kT

)
b2(vtkT )a2(k, 1)

+N0h2(τ)a2(0, 1) (19)

Fig. 7 shows the effect of the clutter filter on the RF cor-
relation function for a velocity at 0.35 times the Nyquist
limit. The clutter filter changes both the waveform, and
the position of the peak in the correlation function. The
main correlation peak has been moved to the right, and the
peak amplitude has been reduced, so that the subsidiary
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Fig. 7. The effect of polynomial regression filter to the RF crosscor-
relation function. Upper plot is without filter, and lower plot is with
a 3rd order filter. N = 8. SNR = 10 dB, v = 0.35∗Nyquist limit.

peak to the left is higher. This will give an error in the
velocity estimate equal to double the Nyquist velocity. In
Fig. 8, the RF correlation function for three different ve-
locities are compared. The correlation length is increased
due to the clutter filter for all three velocities, but this
gives no bias for the v = 1.5 case. The worst case situation
occurs when the Doppler shift is at a multiple of the PRF,
giving a destroyed waveform, and substantial bias in the
velocity estimate.

V. Discussion and Conclusions

In this work, linear clutter filters applied to time dis-
crete Doppler baseband signals of short duration have been
described by a filter matrix, which can be complex in gen-
eral. By using the complex signal formalism, the frequency
response for the signal power is well defined, even for time
variant filters.

The two-dimensional Fourier transform of the filter ma-
trix gives the relation between the expected power spec-
trum of the input and the output signal of the filter. In-
creased side lobe level is observed for frequencies close to
the filter cutoff frequency.

For autocorrelation analysis of the filter output signal,
the filter effect is described by a sequence of (frequency
domain) transfer functions, one for each temporal lag in
the autocorrelation function. In general, the transfer func-
tions may attain complex values for nonzero time lag. For
time invariant filters, the transfer functions are all real val-
ued, and equal to the squared frequency response, defined

Fig. 8. The effect of polynomial regression filter to the RF cross-
correlation function, for three different velocities: 0.35 (upper), 1.5
(middle), and 2.0 (lower). The spike shows the correct peak position.
Same filter as in Fig. 7.

in the usual way as the Fourier transform of the impulse
response.

Most color flow imaging algorithms are based on center
frequency and bandwidth estimates derived from the first
two temporal lags (m = 0 and m = 1) of the autocorre-
lation function. A non-zero phase of the transfer function
H1 gives a center frequency bias, whereas a difference in
magnitude between H0 and H1 gives a bias in the esti-
mated bandwidth. The example in Fig. 5 shows that the
bandwidth estimate has substantial positive bias for fre-
quency components below the filter cutoff frequency. This
may give severe artifacts in a color flow image, in that low
frequency clutter signals which have not been completely
removed by the clutter filter, give high values in the band-
width estimate, and may be interpreted as turbulent blood
flow. Clutter filter design should therefore include the fol-
lowing optimization criteria:

a. The phase of H1 should be as small as possible in the
filter pass band.

b. The magnitude of the ratio H1/H0 should be close to
unity in the transition band and the pass band.

Crosscorrelation time shift estimators have also been
analyzed with respect to clutter filter effects. Generally,
the clutter filter tends to increase the length of the cross-
correlation function in the range direction. Severe distor-
tion of the correlation waveform has been observed when
part of the signal bandwidth coincide with the stop band
or transition band of the filter.
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Appendix

Here the development of equation (9) and (10) are
shown, which give the relation between the autocorrela-
tion function for the filter input and output signal. The
sample mean autocorrelation estimate of the filter output
can be expressed by the input signal and the filter coeffi-
cients by combining the two expressions in (8)

R̂yy(τ,m) =

∫
dt
∑
k

y(t, k)∗y(t+ τ, k +m)

=

∫
dt
∑
k

∑
n,m′

a(k, n)∗x(t, n)∗a(k +m,m′)x(t+ τ,m′)
(A1)

=

∫
dt
∑
m′

∑
n,k

a(k, n)a(k +m,n+m
′)∗x(t, n)∗

× x(t+ τ, n+m
′)

Taking the expected values of (A1), equation (9) is ob-
tained

〈R̂yy(τ,m)〉 =

∫
dt
∑
m′

∑
n,k

a(k, n)a(k +m,n+m
′)∗

× 〈x(t, n)∗x(t+ τ, n+m′)〉

=
∑
m′

Rxx(τ,m′)
∑
n,k

a(k, n)a(k +m,n+m
′)∗

(A2)

=
∑
m′

Rxx(τ,m′)a2(m′,m)

The frequency domain version of this equation is obtained
by substituting Rxx with the 2-D Fourier transform of the
power spectrum, equation (1) in paragraph II, in (A2)

〈R̂yy(τ,m)〉 =
1

|N −m|

∑
n

∫ ∫
dω1dω2Gxx(ω1, ω2)eiτω1+inω2

× a2(n,m)

=

∫ ∫
dω1dω2Gxx(ω1, ω2)

1
|N −m|

∑
n

a2(n,m)

× ei(n−m)ω2eiτω1+imω2 (A3)

=

∫ ∫
dω1dω2Gxx(ω1, ω2)Hm(ω2)eiτω1+imω2

Hm(ω2) ≡
1

|N −m|

∑
n

a2(n,m)ei(n−m)ω2

=
1

|N −m|

∑
n

a2(n+m,m)einω2
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