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Abstract

Spoken Language Understanding (SLU)

mainly involves two tasks, intent detection

and slot filling, which are generally modeled

jointly in existing works. However, most

existing models fail to fully utilize co-

occurrence relations between slots and intents,

which restricts their potential performance.

To address this issue, in this paper we propose

a novel Collaborative Memory Network

(CM-Net) based on the well-designed block,

named CM-block. The CM-block firstly cap-

tures slot-specific and intent-specific features

from memories in a collaborative manner,

and then uses these enriched features to

enhance local context representations, based

on which the sequential information flow

leads to more specific (slot and intent) global

utterance representations. Through stacking

multiple CM-blocks, our CM-Net is able to

alternately perform information exchange

among specific memories, local contexts and

the global utterance, and thus incrementally

enriches each other. We evaluate the CM-Net

on two standard benchmarks (ATIS and

SNIPS) and a self-collected corpus (CAIS).

Experimental results show that the CM-Net

achieves the state-of-the-art results on the

ATIS and SNIPS in most of criteria, and

significantly outperforms the baseline models

on the CAIS. Additionally, we make the CAIS

dataset publicly available for the research

community 1.

1 Introduction

Spoken Language Understanding (SLU) is a core

component in dialogue systems. It typically aims

to identify the intent and semantic constituents

∗ This work was done when Yijin Liu was interning at
Pattern Recognition Center, WeChat AI, Tencent Inc, China

† Jinan Xu is the corresponding author of the paper.
1Code is available at: https://github.com/Adaxry/CM-

Net.
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Figure 1: Statistical association of slot tags (on the left)

and intent labels (on the right) in the SNIPS, where col-

ors indicate different intents and thicknesses of lines

indicate proportions.

for a given utterance, which are referred as in-

tent detection and slot filling, respectively. Past

years have witnessed rapid developments in di-

verse deep learning models (Haffner et al., 2003;

Sarikaya et al., 2011) for SLU. To take full ad-

vantage of supervised signals of slots and intents,

and share knowledge between them, most of ex-

isting works apply joint models that mainly based

on CNNs (Xu and Sarikaya, 2013; Gupta et al.,

2019), RNNs (Guo et al., 2014a; Liu and Lane,

2016), and asynchronous bi-model (Wang et al.,

2018). Generally, these joint models encode words

convolutionally or sequentially, and then aggre-

gate hidden states into a utterance-level represen-

tation for the intent prediction, without interac-

tions between representations of slots and intents.

Intuitively, slots and intents from similar fields

tend to occur simultaneously, which can be ob-

served from Figure 1 and Table 1. Therefore, it is

beneficial to generate the representations of slots

and intents with the guidance from each other.

Some works explore enhancing the slot filling task
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# Utterance Slot tag Intent

1 play Roy Orbison tunes now artist PlayMusic

2 add this Roy Orbison song onto Women of Comedy artist AddToPlaylist

3 book a spot for seven at a bar with chicken french served dish BookRestaurant

4 book french food for me and angeline at a restaurant cuisine BookRestaurant

Table 1: Examples in SNIPS with annotations of intent label for the utterance and slot tags for partial words.

unidirectionally with the guidance from intent rep-

resentations via gating mechanisms (Goo et al.,

2018; Li et al., 2018), while the predictions of in-

tents lack the guidance from slots. Moreover, the

capsule network with dynamic routing algorithms

(Zhang et al., 2018a) is proposed to perform in-

teractions in both directions. However, there are

still two limitations in this model. The one is that

the information flows from words to slots, slots to

intents and intents to words in a pipeline manner,

which is to some extent limited in capturing com-

plicated correlations among words, slots and in-

tents. The other is that the local context informa-

tion which has been shown highly useful for the

slot filling (Mesnil et al., 2014), is not explicitly

modeled.

In this paper, we try to address these issues,

and thus propose a novel Collaborative Memory

Network, named CM-Net. The main idea is

to directly capture semantic relationships among

words, slots and intents, which is conducted si-

multaneously at each word position in a collabora-

tive manner. Specifically, we alternately perform

information exchange among the task-specific fea-

tures referred from memories, local context rep-

resentations and global sequential information via

the well-designed block, named CM-block, which

consists of three computational components:

• Deliberate Attention: Obtaining slot-

specific and intent-specific representations

from memories in a collaborative manner.

• Local Calculation: Updating local context

representations with the guidances of the re-

ferred slot and intent representations in the

previous Deliberate Attention.

• Global Recurrence: Generating specific

(slot and intent) global sequential represen-

tations based on local context representations

from the previous Local Calculation.

Above components in each CM-block are con-

ducted consecutively, which are responsible for

encoding information from different perspectives.

Finally, multiple CM-blocks are stacked together,

and construct our CM-Net.

We firstly conduct experiments on two popu-

lar benchmarks, SNIPS (Coucke et al., 2018) and

ATIS (Hemphill et al., 1990; Tur et al., 2010). Ex-

perimental results show that the CM-Net achieves

the state-of-the-art results in 3 of 4 criteria (e.g.,

intent detection accuracy on ATIS) on both bench-

marks. Additionally, trials on our self-collected

dataset, named CAIS, demonstrate the effective-

ness and generalizability of the CM-Net.

Our main contributions are as follows:

• We propose a novel CM-Net for SLU,

which explicitly captures semantic correla-

tions among words, slots and intents in a

collaborative manner, and incrementally en-

riches the specific features, local context rep-

resentations and global sequential represen-

tations through stacked CM-blocks.

• Our CM-Net achieves the state-of-the-art re-

sults on two major SLU benchmarks (ATIS

and SNIPS) in most of criteria.

• We contribute a new corpus CAIS with man-

ual annotations of slot tags and intent labels

to the research community.

2 Background

In principle, the slot filling is treated as a sequence

labeling task, and the intent detection is a clas-

sification problem. Formally, given an utterance

X = {x1, x2, · · · , xN} with N words and its cor-

responding slot tags Y slot = {y1, y2, · · · , yN},
the slot filling task aims to learn a parameterized

mapping function fθ : X → Y from input words

to slot tags. For the intent detection, it is designed

to predict the intent label ŷint for the entire utter-

ance X from the predefined label set Sint.

Typically, the input utterance is firstly encoded

into a sequence of distributed representations X =
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{x1,x2, · · · ,xN} by character-aware and pre-

trained word embeddings. Afterwards, the follow-

ing bidirectional RNNs are applied to encode the

embeddings X into context-sensitive representa-

tions H = {h1,h2, · · · ,hN}. An external CRF

(Lafferty et al., 2001) layer is widely utilized to

calculate conditional probabilities of slot tags:

p(yslot|H) =
eF (H,yslot)

∑
ỹslot∈Yx

eF (H,ỹslot)
(1)

Here Yx is the set of all possible sequences of

tags, and F (·) is the score function calculated by:

F (h,y) =
N∑

i=1

Ayi,yi+1
+

N∑

i=1

Pi,yi (2)

where A is the transition matrix that Ai,j indicates

the score of a transition from i to j, and P is the

score matrix output by RNNs. Pi,j indicates the

score of the jth tag of the ith word in a sentence

(Lample et al., 2016).

When testing, the Viterbi algorithm (Forney,

1973) is used to search the sequence of slot tags

with maximum score:

ŷslot = argmax
ỹslot∈Yx

F (H, ỹslot) (3)

As to the prediction of intent, the word-level

hidden states H are firstly summarized into a

utterance-level representation vint via mean pool-

ing (or max pooling or self-attention, etc.):

vint =
1

N

N∑

i=1

ht (4)

The most probable intent label ŷint is predicted by

softmax normalization over the intent label set:

ŷint = argmax
ỹ∈Sint

P (ỹ|vint)

P (ỹ = j|vint) = softmax(vint)[j]
(5)

Generally, both tasks are trained jointly to min-

imize the sum of cross entropy from each individ-

ual task. Formally, the loss function of the join

model is computed as follows:

L = (1− λ) · Lslot + λ · Lint

Lint = −

|Sint|∑

i=1

ŷinti log(yinti )

Lslot = −
N∑

j=1

|Sslot|∑

i=1

ŷsloti,j log(ysloti,j )

(6)
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Figure 2: Overview of our proposed CM-Net. The in-

put utterance is firstly encoded with the Embedding

Layer (bottom), and then is transformed by multiple

CM-blocks with the assistance of both slot and intent

memories (on both sides). Finally we make predictions

of slots and the intent in the Inference Layer (top).

where yinti and ysloti,j are golden labels, and λ is hy-

perparameter, and |Sint| is the size of intent label

set, and similarly for |Sslot| .

3 CM-Net

3.1 Overview

In this section, we start with a brief overview of

our CM-Net and then proceed to introduce each

module. As shown in Figure 2, the input utterance

is firstly encoded with the Embedding Layer, and

then is transformed by multiple CM-blocks with

the assistance of slot and intent memories, and fi-

nally make predictions in the Inference Layer.

3.2 Embedding Layers

Pre-trained Word Embedding The pre-trained

word embeddings has been indicated as a de-facto

standard of neural network architectures for vari-

ous NLP tasks. We adapt the cased, 300d Glove2

(Pennington et al., 2014) to initialize word embed-

dings, and keep them frozen.

Character-aware Word Embedding It has

been demonstrated that character level informa-

tion (e.g. capitalization and prefix) (Collobert

et al., 2011) is crucial for sequence labeling. We

use one layer of CNN followed by max pooling to

generate character-aware word embeddings.

3.3 CM-block

The CM-block is the core module of our CM-Net,

which is designed with three computational com-

2https://nlp.stanford.edu/projects/glove/
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ponents: Deliberate Attention, Local Calculation

and Global Recurrence respectively.

Deliberate Attention

To fully model semantic relations between slots

and intents, we build the slot memory Mslot and

intent memory Mint, and further devise a collab-

orative retrieval approach. For the slot memory,

it keeps |Sslot| slot cells which are randomly ini-

tialized and updated as model parameters. Simi-

larly for the intent memory. At each word position,

we take the hidden state ht as query, and obtain

slot feature hslot
t and intent feature hint

t from both

memories by the deliberate attention mechanism,

which will be illustrated in the following.

Specifically for the slot feature hslot
t , we firstly

get a rough intent representation h̃int
t by the word-

aware attention with hidden state ht over the in-

tent memory Mint, and then obtain the final slot

feature hslot
t by the intent-aware attention over

the slot memory Mslot with the intent-enhanced

representation [ht; h̃
int
t ]. Formally, the above-

mentioned procedures are computed as follows:

h̃int
t = ATT (ht,M

int)

hslot
t = ATT ([ht; h̃

int
t ],Mslot)

(7)

where ATT (·) is the query function calculated by

the weighted sum of all cells mx
i in memory Mx

(x ∈ {slot, int}) :

ATT (ht,M
x) =

∑

i

αim
x
i

αi =
exp(u⊤si)∑
j exp(u

⊤sj)

si = h⊤
t Wmx

i

(8)

Here u and W are model parameters. We name

the above calculations of two-round attentions

(Equation 7) as “deliberate attention”.

The intent representation hint
t is computed by

the deliberate attention as well:

h̃slot
t = ATT (ht,M

slot)

hint
t = ATT ([ht; h̃

slot
t ],Mint)

(9)

These two deliberate attentions are conducted

simultaneously at each word position in such

collaborative manner, which guarantees adequate

knowledge diffusions between slots and intents.

The retrieved slot features Hslot
t and intent fea-

tures Hint
t are utilized to provide guidances for the

next local calculation layer.

···
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Figure 3: The internal structure of our CM-Block,

which is composed of deliberate attention, local cal-

culation and global recurrent respectively.

Local Calculation

Local context information is highly useful for se-

quence modeling (Kurata et al., 2016; Wang et al.,

2016b). Zhang et al. (2018b) propose the S-LSTM

to encode both local and sentence-level informa-

tion simultaneously, and it has been shown more

powerful for text representation when compared

with the conventional BiLSTMs. We extend the S-

LSTM with slot-specific features Hslot
t and intent-

specific features Hslot
t retrieved from memories.

Specifically, at each input position t, we take the

local window context ξt, word embedding xt, slot

feature hslot
t and intent feature hint

t as inputs to

conduct combinatorial calculation simultaneously.

Formally, in the lth layer, the hidden state ht is

updated as follows:

ξl−1
t = [hl−1

t−1,h
l−1
t ,hl−1

t+1]

îlt = σ(Wi
1ξ

l−1
t +Wi

2xt +Wi
3h

slot
t +Wi

4h
int
t )

ôlt = σ(Wo
1ξ

l−1
t +Wo

2xt +Wo
3h

slot
t +Wo

4h
int
t )

f̂ lt = σ(Wf
1ξ

l−1
t +W

f
2xt +W

f
3h

slot
t +W

f
4h

int
t )

l̂lt = σ(Wl
1ξ

l−1
t +Wl

2xt +Wl
3h

slot
t +Wl

4h
int
t )

r̂lt = σ(Wr
1ξ

l−1
t +Wr

2xt +Wr
3h

slot
t +Wr

4h
int
t )

ul
t = tanh(Wu

1ξ
l−1
t +Wu

2xt +Wu
3h

slot
t

+Wu
4h

int
t )

ilt, f
l
t , l

l
t, r

l
t = softmax(̂ilt, f̂

l
t , l̂

l
t, r̂

l
t)

clt = f lt ⊙ cl−1
t + llt ⊙ cl−1

t−1 + rlt ⊙ cl−1
t+1

+ ilt ⊙ ul−1
t

hl
t = olt ⊙ tanh clt

(10)
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where ξlt is the concatenation of hidden states

in a local window, and ilt, f lt , olt, llt and rlt are

gates to control information flows, and Wx
n (x ∈

{i, o, f, l, r, u}, n ∈ {1, 2, 3, 4}) are model pa-

rameters. More details about the state transition

can be referred in (Zhang et al., 2018b). In the

first CM-block, the hidden state ht is initialized

with the corresponding word embedding. In other

CM-blocks, the ht is inherited from the output of

the adjacent lower CM-block.

At each word position of above procedures, the

hidden state is updated with abundant information

from different perspectives, namely word embed-

dings, local contexts, slots and intents represen-

tations. The local calculation layer in each CM-

block has been shown highly useful for both tasks,

and especially for the slot filling task, which will

be validated in our experiments in Section 5.2.

Global Recurrence

Bi-directional RNNs, especially the BiLSTMs

(Hochreiter and Schmidhuber, 1997) are regarded

to encode both past and future information of a

sentence, which have become a dominant method

in various sequence modeling tasks (Hammerton,

2003; Sundermeyer et al., 2012). The inherent na-

ture of BiLSTMs is able to supplement global se-

quential information, which is insufficiently mod-

eled in the previous local calculation layer. Thus

we apply an additional BiLSTMs layer upon the

local calculation layer in each CM-block. By tak-

ing the slot- and intent-specific local context rep-

resentations as inputs, we can obtain more spe-

cific global sequential representations. Formally,

it takes the hidden state hl−1
t inherited from the

local calculation layer as input, and conduct recur-

rent steps as follows:

hl
t = [
−→
hl
t;
←−
ht

l]
−→
hl
t =
−−−−→
LSTM(hl−1

t ,
−→
h l

t−1;
−→
θ )

←−
hl
t =
←−−−−
LSTM(hl−1

t ,
←−
h l

t+1;
←−
θ )

(11)

The output “states” of the BiLSTMs are taken as

“states” input of the local calculation in next CM-

block. The global sequential information encoded

by the BiLSTMs is shown necessary and effective

for both tasks in our experiments in Section 5.2.

3.4 Inference Layer

After multiple rounds of interactions among lo-

cal context representations, global sequential in-

formation, slot and intent features, we conduct

Dataset SNIPS ATIS CAIS

Vocab Size 11241 722 2146

Average Length 9.15 11.28 8.65

# Intents 7 18 11

# Slots 72 128 75

# Train Set 13084 4478 7995

# Validation Set 700 500 994

# Test Set 700 893 1012

Table 2: Dataset statistics.

predictions upon the final CM-block. For the pre-

dictions of slots, we take the hidden states H along

with the retrieved slot Hslot representations (both

are from the final CM-block) as input features, and

then conduct predictions of slots similarly with the

Equation (3) in Section 2:

ŷslot = argmax
ỹslot∈Yx

F ([H;Hslot], ỹslot) (12)

For the prediction of intent label, we firstly aggre-

gate the hidden state ht and the retrieved intent

representation hint
t at each word position (from

the final CM-block as well) via mean pooling:

vint =
1

N

N∑

t

[ht;h
int
t ] (13)

and then take the summarized vector vint as input

feature to conduct prediction of intent consistently

with the Equation (5) in Section 2.

4 Experiments

4.1 Datasets and Metrics

We evaluate our proposed CM-Net on three real-

word datasets, and statistics are listed in Table 2.

ATIS The Airline Travel Information Systems

(ATIS) corpus (Hemphill et al., 1990) is the most

widely used benchmark for the SLU research.

Please note that, there are extra named entity fea-

tures in the ATIS, which almost determine slot

tags. These hand-crafted features are not gener-

ally available in open domains (Zhang and Wang,

2016; Guo et al., 2014b), therefore we train our

model purely on the training set without additional

hand-crafted features.

SNIPS SNIPS Natural Language Understanding

benchmark 3 (Coucke et al., 2018) is collected in a

crowsourced fashion by Snips. The intents of this

3https://github.com/snipsco/nlu-
benchmark/tree/master/2017-06-custom-intent-engines
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Models
SNIPS ATIS

Slot (F1) Intent (Acc) Slot (F1) Intent (Acc)

Joint GRU (Zhang and Wang, 2016) – – 95.49 98.10

Self-Attention, Intent Gate(Li et al., 2018) – – 96.52 98.77

Bi-model (Wang et al., 2018) – – 96.89 98.99

Attention Bi-RNN (Liu and Lane, 2016) * 87.80 96.70 95.98 98.21

Joint Seq2Seq (Hakkani-Tür et al., 2016) * 87.30 96.90 94.20 92.60

Slot-Gated (Intent Atten.) (Goo et al., 2018) 88.30 96.80 95.20 94.10

Slot-Gated (Full Atten.) (Goo et al., 2018) 88.80 97.00 94.80 93.60

CAPSULE-NLU(Zhang et al., 2018a) 91.80 97.70 95.20 95.00

Dilated CNN, Label-Recurrent (Gupta et al., 2019) 93.11 98.29 95.54 98.10

Sentence-State LSTM (Zhang et al., 2018b) † 95.80 98.30 95.65 98.21

BiLSTMs + EMLoL (Siddhant et al., 2018) 93.29 98.83 95.62 97.42

BiLSTMs + EMLo (Siddhant et al., 2018) 93.90 99.29 95.42 97.30

Joint BERT (Chen et al., 2019) 97.00 98.60 96.10 97.50

CM-Net (Ours) 97.15 99.29 96.20 99.10

Table 3: Results on test sets of the SNIPS and ATIS, where our CM-Net achieves state-of-the-art performances

in most cases. “*” indicates that results are retrieved from Slot-Gated (Goo et al., 2018), and “†” indicates our

implementation.

dataset are more balanced when compared with

the ATIS. We split another 700 utterances for val-

idation set following previous works (Goo et al.,

2018; Zhang et al., 2018a).

CAIS We collect utterances from the Chinese

Artificial Intelligence Speakers (CAIS), and an-

notate them with slot tags and intent labels. The

training, validation and test sets are split by the

distribution of intents, where detailed statistics are

provided in the supplementary material. Since

the utterances are collected from speaker systems

in the real world, intent labels are partial to the

PlayMusic option. We adopt the BIOES tag-

ging scheme for slots instead of the BIO2 used in

the ATIS, since previous studies have highlighted

meaningful improvements with this scheme (Rati-

nov and Roth, 2009) in the sequence labeling field.

Metrics Slot filling is typically treated as a se-

quence labeling problem, and thus we take the

conlleval 4 as the token-level F1 metric. The in-

tent detection is evaluated with the classification

accuracy. Specially, several utterances in the ATIS

are tagged with more than one labels. Following

previous works (Tur et al., 2010; Zhang and Wang,

2016), we count an utterrance as a correct classifi-

cation if any ground truth label is predicted.

4https://www.clips.uantwerpen.be/conll2000/chunking/
conlleval.txt

4.2 Implementation Details

All trainable parameters in our model are initial-

ized by the method described in Glorot and Ben-

gio (2010). We apply dropout (Srivastava et al.,

2014) to the embedding layer and hidden states

with a rate of 0.5. All models are optimized by

the Adam optimizer (Kingma and Ba, 2014) with

gradient clipping of 3 (Pascanu et al., 2013). The

initial learning rate α is set to 0.001, and decrease

with the growth of training steps. We monitor the

training process on the validation set and report the

final result on the test set. One layer CNN with

a filter of size 3 and max pooling are utilized to

generate 100d word embeddings. The cased 300d

Glove is adapted to initialize word embeddings,

and kept fixed when training. In auxiliary experi-

ments, the output hidden states of BERT are taken

as additional word embeddings and kept fixed as

well. We share parameters of both memories with

the parameter matrices in the corresponding soft-

max layers, which can be taken as introducing su-

pervised signals into the memories to some extent.

We conduct hyper-parameters tuning for layer size

(finally set to 3) and loss weight λ (finally set to

0.5), and empirically set other parameters to the

values listed in the supplementary material.

4.3 Main Results

Main results of our CM-Net on the SNIPS and

ATIS are shown in Table 3. Our CM-Net achieves

the state-of-the-art results on both datasets in

terms of slot filling F1 score and intent detection
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Figure 4: Investigations of the collaborative retrieval

approach on slot filling (on the left) and intent detection

(on the right), where “no slot2int” indicates removing

slow-aware attention for the intent representation, and

similarly for “no int2slot” and “neither”.

# Models
SNIPS

Slot (F1) Intent (Acc)

0 CM-Net 97.15 99.29

1 – slot memory 96.64 99.14

2 – intent memory 96.95 98.84

3 – local calculation 96.73 99.00

4 – global recurrence 96.80 98.57

Table 4: Ablation experiments on the SNIPS to in-

vestigate the impacts of various components, where

“- slot memory” indicates removing the slot memory

and its interactions with other components correspond-

ingly. Similarly for the other options.

accuracy, except for the F1 score on the ATIS.

We conjecture that the named entity feature in the

ATIS has a great impact on the slot filling result as

illustrated in Section 4.1. Since the SNIPS is col-

lected from multiple domains with more balanced

labels when compared with the ATIS, the slot fill-

ing F1 score on the SNIPS is able to demonstrate

the superiority of our CM-Net.

It is noteworthy that the CM-Net achieves

comparable results when compared with models

that exploit additional language models (Siddhant

et al., 2018; Chen et al., 2019). We conduct aux-

iliary experiments by leveraging the well-known

BERT (Devlin et al., 2018) as an external resource

for a relatively fair comparison with those models,

and report details in Section 5.3.

5 Analysis

Since the SNIPS corpus is collected from multiple

domains and its label distributions are more bal-

anced when compared with the ATIS, we choose

the SNIPS to elucidate properties of our CM-Net

and conduct several additional experiments.

5.1 Whether Memories Promote Each

Other?

In the CM-Net, the deliberate attention mecha-

nism is proposed in a collaborative manner to per-

form information exchange between slots and in-

tents. We conduct experiments to verify whether

such kind of knowledge diffusion in both memo-

ries can promote each other. More specifically, we

remove one unidirectional diffusion (e.g. from slot

to intent) or both in each experimental setup. The

results are illustrated in Figure 4.

We can observe obvious drops on both tasks

when both directional knowledge diffusions are

removed (CM-Net vs. neither). For the slot filling

task (left part in Figure 4), the F1 scores decrease

slightly when the knowledge from slot to intent is

blocked (CM-Net vs. “no slot2int”), and a more

evident drop occurs when the knowledge from in-

tent to slot is blocked (CM-Net vs. “no int2slot”).

Similar observations can be found for the intent

detection task (right part in Figure 4).

In conclusion, the bidirectional knowledge dif-

fusion between slots and intents are necessary and

effective to promote each other.

5.2 Ablation Experiments

We conduct ablation experiments to investigate the

impacts of various components in our CM-Net.

In particular, we remove one component among

slot memory, intent memory, local calculation and

global recurrence. Results of different combina-

tions are presented in Table 4.

Once the slot memory and its corresponding

interactions with other components are removed,

scores on both tasks decrease to some extent, and

a more obvious decline occurs for the slot filling

(row 1 vs. row 0), which is consistent with the

conclusion of Section 5.1. Similar observations

can be found for the intent memory (row 2). The

local calculation layer is designed to capture bet-

ter local context representations, which has an ev-

ident impact on the slot filling and slighter effect

on the intent detection (row 3 vs. row 0). Opposite

observations occur in term of global recurrence,

which is supposed to model global sequential in-

formation and thus has larger effect on the intent

detection (row 4 vs. row 0).

5.3 Effects of Pre-trained Language Models

Recently, there has been a growing body of works

exploring neural language models that trained on
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Models
SNIPS

Slot (F1) Intent (Acc)

BiLSTMs + EMLoL 93.29 98.83

BiLSTMs + EMLo 93.90 99.29

Joint BERT 97.00 98.60

CM-Net + BERT 97.31 99.32

Table 5: Results on the SNIPS benchmark with the as-

sistance of pre-trained language model, where we es-

tablish new state-of-the-art results on the SNIPS.

Models
CAIS

Slot (F1) Intent (Acc)

BiLSTMs + CRF 85.32 93.25

S-LSTM + CRF † 85.74 94.36

CM-Net 86.16 94.56

Table 6: Results on our CAIS dataset, where “†” indi-

cates our implementation of the S-LSTM.

massive corpora to learn contextual representa-

tions (e.g. BERT (2018) and EMLo (2018)). In-

spired by the effectiveness of language model em-

beddings, we conduct experiments by leveraging

the BERT as an additional feature. The results

emerged in Table 5 show that we establish new

state-of-the-art results on both tasks of the SNIPS.

5.4 Evaluation on the CAIS

We conduct experiments on our self-collected

CAIS to evaluate the generalizability in different

language. We apply two baseline models for com-

parison, one is the popular BiLSTMs + CRF ar-

chitecture (Huang et al., 2015) for sequence label-

ing task, and the other one is the more powerful

sententce-state LSTM (Zhang et al., 2018b). The

results listed in Table 6 demonstrate the generaliz-

ability and effectiveness of our CM-Net when han-

dling various domains and different languages.

6 Related Work

Memory Network Memory network is a gen-

eral machine learning framework introduced by

Weston et al. (2014), which have been shown

effective in question answering (Weston et al.,

2014; Sukhbaatar et al., 2015), machine transla-

tion (Wang et al., 2016a; Feng et al., 2017), aspect

level sentiment classification (Tang et al., 2016),

etc. For spoken language understanding, Chen

et al. (2016) introduce memory mechanisms to en-

code historical utterances. In this paper, we pro-

pose two memories to explicitly capture the se-

mantic correlations between slots and the intent in

a given utterance, and devise a novel collaborative

retrieval approach.

Interactions between slots and intents Consid-

ering the semantic proximity between slots and in-

tents, some works propose to enhance the slot fill-

ing task unidirectionally with the guidance of in-

tent representations via gating mechanisms (Goo

et al., 2018; Li et al., 2018). Intuitively, the slot

representations are also instructive to the intent de-

tection task and thus bidirectional interactions be-

tween slots and intents are benefical for each other.

Zhang et al. (2018a) propose a hierarchical cap-

sule network to perform interactions from words

to slots, slots to intents and intents to words in a

pipeline manner, which is relatively limited in cap-

turing the complicated correlations among them.

In our CM-Net, information exchanges are per-

formed simultaneously with knowledge diffusions

in both directions. The experiments demonstrate

the superiority of our CM-Net in capturing the se-

mantic correlations between slots and intents.

Sentence-State LSTM Zhang et al. 2018b pro-

pose a novel graph RNN named S-LSTM, which

models sentence between words simultaneously.

Inspired by the new perspective of state transi-

tion in the S-LSTM, we further extend it with

task-specific (i.e., slots and intents) representa-

tions via our collaborative memories. In addition,

the global information in S-LSTM is modeled by

aggregating the local features with gating mecha-

nisms, which may lose sight of sequential infor-

mation of the whole sentence. Therefore, We ap-

ply external BiLSTMs to supply global sequential

features, which is shown highly necessary for both

tasks in our experiments.

7 Conclusion

We propose a novel Collaborative Memory

Network (CM-Net) for jointly modeling slot fill-

ing and intent detection. The CM-Net is able to

explicitly capture the semantic correlations among

words, slots and intents in a collaborative manner,

and incrementally enrich the information flows

with local context and global sequential informa-

tion. Experiments on two standard benchmarks

and our CAIS corpus demonstrate the effective-

ness and generalizability of our proposed CM-Net.

In addition, we contribute the new corpus (CAIS)

to the research community.
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