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This is a joint work with Jan Bruinier, and is a generalization of the well-known work
of Gross and Zagier on singular moduli [GZ]. Here is the main result. For detail, please
see [BY].

Let p ≡ 1 (mod 4) be a prime number and F = Q(
√

p). We write OF for the ring of
integers of F , and x 7→ x′ for the conjugation in F . Let Γ = SL2(OF ) be the Hilbert
modular group associated to F . The corresponding Hilbert modular surface X = Γ\H2 is
a normal quasi-projective algebraic variety defined over Q.

Let K = F (
√

∆) be a non-biquadratic quartic CM number field (containing F ) with
discriminant dK = p2q for some prime q ≡ 1 mod 4 (technical condition). Let σ and σ′ be

the complex embeddings of K given by σ(
√

∆) = σ(
√

∆′), and σ(
√

∆) = −√∆′. Then Φ =
{1, σ} and Φ′ = {1, σ′} are two CM types. Let CM(K, Φ) be the (formal) sum of CM points
in X of CM type (K, Φ) by OK . Then CM(K) = CM(K, Φ)+CM(K, Φ′) is an 0-cycle on
X defined over Q. If Ψ is a rational modular function on X, then Ψ(CM(K)) is a rational
number. An interesting and in general very hard question is to find a factorization formula
for this number. We did it successfully when Ψ is a Borcherds product or equivalently has
its divisor supported on the Hirzebruch-Zagier divisors, which were constructed in their
seminar work in 1970’s [HZ].

Let K̃ be the reflex field of (K, Φ) with real quadratic subfield F̃ . For a nonzero element
t ∈ d−1

K̃/F̃
(relative discriminant) and a prime ideal l of F̃ , we define

(0.1) Bt(l) = (ordl t + 1)ρ(tdK̃/F̃ l−1) log |l|

and

(0.2) Bt =
∑

l

Bt(l).

Here |l| is the norm of l, and ρ(a) = ρK̃/F̃ (a) is defined as

(0.3) ρ(a) = #{A ⊂ OK̃ : NK̃/F̃ A = a}.
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We mention that there are at most one Bt(l) 6= 0 if t is not totally positive (negative). Let

(0.4) bm =
∑

t=
n+m

√
q

2p
∈d−1

K̃/F̃

|n|<m
√

q

Bt.

Then a special case of our main result is

Theorem 0.1. Let the notation and assumption be as above. Let Ψ be a ‘normalized
integral’ Hilbert modular function (of weight 0) for the group Γ such that

div(Ψ) =
∑
m>0

c̃(−m)Tm,

with integral coefficients c̃(−m) ∈ Z. Then

log |Ψ(CM(K))| = WK̃

4

∑
m>0

c̃(−m)bm,

where WK̃ is the number of roots of unity in K̃.

The case for a similar Hilbert modular form of weight non-zero, we have a similar formula
for its Petersson norm (with another term equals to the weight times a transcendental term
related to the Faltings height of CM(K)).

Corollary 0.2. Let the notation and assumption be as in Theorem 0.1. Then

(0.5) Ψ(CM(K)) = ±
∏

l rational prime

lel

with

el =
WK̃

4

∑
m>0

c̃(−m)bm(l),

and

bm(l) log l =
∑

l|l

∑

t=
n+m

√
q

2p
∈d−1

K̃/F̃

|n|<m
√

q

Bt(l).

Moreover, when K/Q is cyclic, the sign in (0.5) is positive.

Corollary 0.3. Let the notation and assumption be as in Corollary 0.2. Then el = 0
unless 4pl|m2q − n2 for some m ∈ M := {m ∈ Z>0 : c̃(−m) 6= 0} and some integer

|n| < m
√

q. In particular, every prime factor of Ψ(CM(K)) is less than or equal to N2q
4p

,

where N = max(M).

We remark that the basic quantity bm should be the arithmetic intersection number of
arithmetic Hirzebruch-Zagier cycle Tm and arithmetic CM cycle CM(K) in the arithmetic
Hilbert modular surface X (over Z). I am currently working on this problem and has made
some progress.
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