CM-VALUES OF HILBERT MODULAR FUNCTIONS

TONGHAI YANG

(October 31, 2006)

This is a joint work with Jan Bruinier, and is a generalization of the well-known work of Gross and Zagier on singular moduli [GZ]. Here is the main result. For detail, please see [BY].

Let $p \equiv 1 \pmod{4}$ be a prime number and $F = \mathbb{Q}(\sqrt{p})$. We write \mathcal{O}_F for the ring of integers of F, and $x \mapsto x'$ for the conjugation in F. Let $\Gamma = \mathrm{SL}_2(\mathcal{O}_F)$ be the Hilbert modular group associated to F. The corresponding Hilbert modular surface $X = \Gamma \setminus \mathbb{H}^2$ is a normal quasi-projective algebraic variety defined over \mathbb{Q} .

Let $K = F(\sqrt{\Delta})$ be a non-biquadratic quartic CM number field (containing F) with discriminant $d_K = p^2 q$ for some prime $q \equiv 1 \mod 4$ (technical condition). Let σ and σ' be the complex embeddings of K given by $\sigma(\sqrt{\Delta}) = \sigma(\sqrt{\Delta'})$, and $\sigma(\sqrt{\Delta}) = -\sqrt{\Delta'}$. Then $\Phi =$ $\{1, \sigma\}$ and $\Phi' = \{1, \sigma'\}$ are two CM types. Let $\mathcal{CM}(K, \Phi)$ be the (formal) sum of CM points in X of CM type (K, Φ) by \mathcal{O}_K . Then $\mathcal{CM}(K) = \mathcal{CM}(K, \Phi) + \mathcal{CM}(K, \Phi')$ is an 0-cycle on X defined over \mathbb{Q} . If Ψ is a rational modular function on X, then $\Psi(\mathcal{CM}(K))$ is a rational number. An interesting and in general very hard question is to find a factorization formula for this number. We did it successfully when Ψ is a Borcherds product or equivalently has its divisor supported on the Hirzebruch-Zagier divisors, which were constructed in their seminar work in 1970's [HZ].

Let \tilde{K} be the reflex field of (K, Φ) with real quadratic subfield \tilde{F} . For a nonzero element $t \in d_{\tilde{K}/\tilde{F}}^{-1}$ (relative discriminant) and a prime ideal \mathfrak{l} of \tilde{F} , we define

(0.1)
$$B_t(\mathfrak{l}) = (\operatorname{ord}_{\mathfrak{l}} t + 1)\rho(td_{\tilde{K}/\tilde{F}}\mathfrak{l}^{-1})\log|\mathfrak{l}|$$

and

(0.2)
$$B_t = \sum_{\mathfrak{l}} B_t(\mathfrak{l}).$$

Here $|\mathfrak{l}|$ is the norm of \mathfrak{l} , and $\rho(\mathfrak{a}) = \rho_{\tilde{K}/\tilde{F}}(\mathfrak{a})$ is defined as

(0.3)
$$\rho(\mathfrak{a}) = \#\{\mathfrak{A} \subset \mathcal{O}_{\tilde{K}} : N_{\tilde{K}/\tilde{F}}\mathfrak{A} = \mathfrak{a}\}.$$

Date: October 31, 2006.

We mention that there are at most one $B_t(\mathfrak{l}) \neq 0$ if t is not totally positive (negative). Let

(0.4)
$$b_m = \sum_{\substack{t = \frac{n+m\sqrt{q}}{2p} \in d_{\tilde{K}/\tilde{F}}^{-1} \\ |n| < m\sqrt{q}}} B_t.$$

Then a special case of our main result is

Theorem 0.1. Let the notation and assumption be as above. Let Ψ be a 'normalized integral' Hilbert modular function (of weight 0) for the group Γ such that

$$\operatorname{div}(\Psi) = \sum_{m>0} \tilde{c}(-m)T_m,$$

with integral coefficients $\tilde{c}(-m) \in \mathbb{Z}$. Then

$$\log |\Psi(\mathcal{CM}(K))| = \frac{W_{\tilde{K}}}{4} \sum_{m>0} \tilde{c}(-m)b_m,$$

where $W_{\tilde{K}}$ is the number of roots of unity in \tilde{K} .

The case for a similar Hilbert modular form of weight non-zero, we have a similar formula for its Petersson norm (with another term equals to the weight times a transcendental term related to the Faltings height of $\mathcal{CM}(K)$).

Corollary 0.2. Let the notation and assumption be as in Theorem 0.1. Then

(0.5)
$$\Psi(\mathcal{CM}(K)) = \pm \prod_{l \text{ rational prime}} l^e$$

with

$$e_l = \frac{W_{\tilde{K}}}{4} \sum_{m>0} \tilde{c}(-m) b_m(l),$$

and

$$b_m(l)\log l = \sum_{\mathfrak{l}|l} \sum_{\substack{t = \frac{n+m\sqrt{q}}{2p} \in d_{\tilde{K}/\tilde{F}}^{-1} \\ |n| < m\sqrt{q}}} B_t(\mathfrak{l})$$

Moreover, when K/\mathbb{Q} is cyclic, the sign in (0.5) is positive.

Corollary 0.3. Let the notation and assumption be as in Corollary 0.2. Then $e_l = 0$ unless $4pl|m^2q - n^2$ for some $m \in M := \{m \in \mathbb{Z}_{>0} : \tilde{c}(-m) \neq 0\}$ and some integer $|n| < m\sqrt{q}$. In particular, every prime factor of $\Psi(\mathcal{CM}(K))$ is less than or equal to $\frac{N^2q}{4p}$, where $N = \max(M)$.

We remark that the basic quantity b_m should be the arithmetic intersection number of arithmetic Hirzebruch-Zagier cycle \mathcal{T}_m and arithmetic CM cycle $\mathcal{CM}(K)$ in the arithmetic Hilbert modular surface \mathcal{X} (over \mathbb{Z}). I am currently working on this problem and has made some progress.

References

- [BY] B. H. Bruinier and T.H. Yang CM-values of Hilbert modular functions, Invent. Math, 163(2006), 229-288.
- [GZ] B. Gross and D. Zagier, On singular moduli, J. Reine Angew. Math. 355 (1985), 191–220.
- [HZ] F. Hirzebruch and D. Zagier, Intersection Numbers of Curves on Hilbert Modular Surfaces and Modular Forms of Nebentypus, Invent. Math. **36** (1976), 57–113.

Department of Mathematics, University of Wisconsin Madison, Van Vleck Hall, Madison, WI 53706, USA

E-mail address: thyang@math.wisc.edu