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A total angular momentum representation simplifies the radiation transport problem for temperature and
polarization anisotropy in the cosmic microwave backgro(@MIB). Scattering terms couple only the quad-
rupole moments of the distributions and each moment corresponds directly to the observable angular pattern on
the sky. We develop and employ these techniques to study the general properties of anisotropy generation from
scalar, vector, and tensor perturbations to the metric and the matter, both in the cosmological fluids and from
any seed perturbatior(e.g., defectsthat may be present. The simpler, more transparent form and derivation
of the Boltzmann equations brings out the geometric and model-independent aspects of temperature and
polarization anisotropy formation. Large angle scalar polarization provides a robust means to distinguish
between isocurvature and adiabatic models for structure formation in principle. Vector modes have the unique
property that the CMB polarization is dominated by magnetic-type parity at small at@lestor of 6 in
power compared with O for the scalars and 8/13 for the tehsord hence potentially distinguishable inde-
pendent of the model for the seed. The tensor modes produce a different sign from the scalars and vectors for
the temperature-polarization correlations at large angles. We explore conditions under which one perturbation
type may dominate over the others including a detailed treatment of the photon-baryon fluid before recombi-
nation.[S0556-282(97)00614-0

PACS numbd(s): 98.70.Vc, 98.80.Es

[. INTRODUCTION By applying this principle from beginning to end, we obtain
a substantial simplification of the radiation transport problem

The cosmic microwave backgrouf@MB) is fast becom- underlying anisotropy formation. Scattering terms couple
ing the premier laboratory for early universe and classicabnly the quadrupole moments of the temperature and polar-
cosmology. With the flood of high-quality data expected inization distributions. Each moment of the distribution corre-
the coming years, most notably from the new MER and  sponds to angular moments on the sky which allows a direct
Planck Surveyof?2] satellite missions, it is imperative that relation between the fundamental scattering and gravitational
theoretical tools for their interpretation be developed. Thesources and the observable anisotropy through their integral
corresponding techniques involved should be as physicallgolutions.
transparent as possible so that the implications for cosmol- We study the means by which gravitational perturbations
ogy will be readily apparent from the data. of the scalar, vector, or tensor type, originating in either the

Toward this end, we reconsider the general problem ofosmological fluids or seed sources such as defects, form
temperature and polarization anisotropy formation in thetemperature, and polarization anisotropies in the CMB. As is
CMB. These anisotropies arise from gravitational perturbawell established3,4], scalar perturbations generate only the
tions which separate into scal@ompressiona) vector(vor-  so-called electric parity mode of the polarization. Here we
tical), and tensor(gravity wave modes. In previous treat- show that conversely the ratio of magnetic to electric parity
ments, the simple underlying geometrical distinctions and)ower is a factor of 6 for vectors, compared with 8/13 for
physical processes involved in their appearance as CMBensors,ndependendf their source. Furthermore, the large
anisotropies has been obscured by the choice of representigle limits of polarization must obey simple geometrical
tion for the angular distribution of the CMB. In this paper, constraints for its amplitude that differ between scalars, vec-
we systematically develop a new representation, tdtal  tors, and tensors. The sense of the temperature-polarization
angular momentunrepresentation, which puts vector and cross correlation at large angle is also determined by geomet-
tensor modes for the temperature and all polarization modeic considerations which separate the scalars and vectors
on an equal footing with the familiar scalar temperaturefrom the tensorg9]. These constraints are important since
modes. For polarization, this completes and substantialjarge-angle polarization unlike large-angle temperature
simplifies the ground-breaking work ¢8,4]. Although we anisotropies allow one to see directly scales above the hori-
consider only flat geometries here for simplicity, the frame-zon at last scattering. Combined with causal constraints, they
work we establish allows for straightforward generalizationprovide robust signatures of causal isocurvature models for
to open geometriels—8] unlike previous treatments. structure formation such as cosmological defects.

The central idea of this method is to employ only observ- In Sec. Il we develop the formalism of the total angular
able quantities, i.e., those which involve the total angulaTmomentum representation and lay the groundwork for the
dependence of the temperature and polarization distributiongeometric interpretation of the radiation transport problem
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and its integral solutions. We further establish the relation- TABLE I. Commonly used symbolsn=0,=1,+2 for the sca-
ship between scalars, vectors, and tensors and the orthogoriais, vectors, and tensors. For the fluid variatflesy for the pho-
angular modes on the sphere. In Sec. lll, we treat the radidons, f—B for the baryons, and/B for the photon-baryon fluid.
tion transport problem from first principles. The total angularX=9, E, B for the temperature-polarization power spectra.

momentum representation simplifies both the derivation and

the form of the evolution equations for the radiation. We Symbol Definition Eq.
presgnt the differeptial form (_Jf t_hese equa}tions, their integral V. P Scalar metric (36)
solutions, and their geometric interpretation. In Sec. IV we e AT/T moments (55)

specialize the treatment to the tight-coupling limit for the

photon-baryon fluid before recombination and show how Bffn’)ﬁ ’Jm) Ra dliz:llsrs ?Srﬁion ((12)
acoustic waves and vorticity are generated from metric per- o . . .
turbations and dissipated through the action of viscosity, po- o Fluid density perturbation (39
larization, and heat conduction. In Sec. V, we provide spe- 7 Conformal time (39
cific examples inspired by seeded models such as sks Clebsch-Gordan coefficient  (59)
cosmological defects. We trace the full process that transfers P :Ps Fluid, seed density (39
seed fluctuations in the matter through metric perturbations m{™ ™ Fluid, seed anisotropic stress  (39)
to observable anisotropies in the temperature and polariza- 0,¢ Spherical coordinates ik frame ~ (10)
tion distributions. For reference, Table | provides a list of T Thomson optical depth (49
commonly used symbols. B(m B-pol. moments (55
cé Collision term (50
CXX(m) XX power spectrum fronm (56)
In this section, we introduce the total angular momentum G Gravitational redshift term (54)
representation for the normal modes of fluctuations in a flat GV Temperature basis (10
universe that are used to describe the CMB temperature and +2GY Polarization basis (11
polarization as well as the metric and matter fluctuations. H Tensor metric (39
This representation greatly simplifies the derivation and form M. (Paul) matrix basis 1)
of the evolution equations for fluctuations in Sec. Ill. In par- p(m) Anisotropic scattering source (62
ticular, the angular structure of modes corresponds directly QO Scalar basis (26)
to the angular distribution of the temperature and polariza- QW Vector basis (29)
tion, whereas the radial structure determines how distant Q@ Tensor basis (32)
sources contribute to this angular distribution. R B/y momentum density (67)
The new aspect of this approach is the isolation of the S(m Temperature source 61)
total angular dependence of the modes by combining the \// Vector metric 37)
intrinsic angular structure with that of the plane-wave spatial ym Spins harmonics 2
dependence. This property implies that the normal modes _S/,/ P )
correspond directly to angular structures on the sky as op- jrm Radial temp function (19
posed to the commonly employed technique that isolates K Wavenumber (10
portions of theintrinsic angular dependence and hence a lin- k{m Damping wavenumber (99
ear combination of observable modd$)]. Elements of this / Multipole 2
approach can be found in earlier worlesg.,[6,7,11] for the Mett Effective mass * R (81
temperature andi3] for the scalar and tensor polarizatjon A Propagation direction (12)
We prowde here a systematic ;tudy pf th|s technique wh|ch D1 P Fluid, seed pressure (39)
also provides for a substantial simplification of the evolution (M Fluid velocity (39
equations and their integral solution in Sec. Il C, including v{m) Seed momentum density (39)
the terms involving the radiation transport of the CMB. We \;f o /p, 66)

discuss in detail how the monopole, dipole, and quadrupole
sources that enter into the radiation transport problem project

as anisotropies on the sky today. +i M (kr)] (for /=2) isolate the total angular dependence

Readers not interested in the formal details may skip thig,,, o mpining the intrinsic and plane wave angular momenta.
section on first reading and simply note that the temperature

and polarization distribution is decomposed into the modes A. Angular modes

m > o m 2O\ oy _
Yyexp(k-x) and ., Y /exp(k-x) with m=0,=1,=2 for sca- In this section, we derive the basic properties of the an-

lar, vectors, and tensor metric perturbations, respectively. Iyjar modes of the temperature and polarization distributions
this representation, the geometric distinction between scalaghat will be useful in Sec. Il to describe their evolution. In

vector, and tensor contributions to the anisotropies is clear asarticular, the Clebsch-Gordan relation for the addition of
is the reason why they do not mix. Here theY}' are the  angular momentum plays a central role in exposing the sim-
spin-2 spherical harmonidd2] and were introduced to the plicity of the total angular momentum representation.

study of CMB polarization by3]. The radial decompositions A scalar, or spin-0 field on the sky such as the tempera-
of the modes YT,j(//,m)(kr) and iZYT,[E(/”,‘)(kr) ture can be decomposed into spherical harmoWlEs Like-
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TABLE Il. Quadrupole ¢’=2) harmonics for spin-0 and 2. A8,
m Y3 2Y2 ©,0)
2 1 . 1 . TN
Z\/15/27rsin26e2'¢ é\/SITr(l— cosH)’e??
4 (0,07
1 V15/8msinfcospe? 1 . \
! Z\/S/wsina(l—cosﬂ)é‘f’ u/éz'

1 3 .

5\/5/477(300§0— 1) Z\/5/67T8|n20 é,
-1 —/15/8msindcosge ¢ FIG. 1. Addition theorem and scattering geometry. The addition

1 )
.y i —ig
4 5/msing(1+cosd)e theorem for spirs harmonics Eq(7) is established by their relation

1 1 to rotations Eq.(2) and by noting that a rotation fromé(,¢’)
; —2i¢ 2,-2i¢ . : ; ; ;
Z\/15/27TS|I'\209€ é\/5/7'r(1+cos9) € through the originpole) to (6, ¢) is equivalent to a direct rotation
by the Euler anglesd,3,vy). For the scattering problem of Eq.
(48), these angles represent the rotationabfrom theR=é3 frame
to the scattering frame, by the scattering angleand by y back

wise a spins field on the sky can be decomposed into theinto thek frame.
spin-weighted spherical harmonicy” and a tensor con-

structed out of the basis vectegg=ie,, € [12]. The basis _ _L(f
for a spin-2 field such as the polarization.isY?M .. [3,4], sinfg ¢
where

Y7, )

By virtue of their relation to the rotation matrices, the spin
1. . N harmonics satisfy the compatibility relation with spherical
M.=5(ey+ie,)®(epxiey), (D harmonics (YT=YT, the conjugation relation Y™ =
(—1)™*s_.Y, ™M, the orthonormality relation

since it transforms under rotations as &2 symmetric
traceless tensor. This property is more easily seen through f dQ(Y™)NY™N=6, ,/ Smm (4)
the relation to the Pauli matricdd . = 03*io; in spherical ' T

coordinates ¢, #). The spins harmonics are expressed in

terms of rotation matricésas[12] the completeness relation

2/+1\12 > YT (6,)1[YN(6' 6]
SYT(G,d’):(?) Dl $,6,0 #, V7 (8. D)LsYs

2/+1 (/+m)l(/—m)]2 =8(¢p— ¢’)5(cosh—co’), 5)

A7 (/+s)(/—s)!

the parity relation
/+s
r+s—m

P (—1)7 Y7, (6)

/—s
X (sing/2)%" Y, ( .
r

. the generalized addition relation
X (—1) """SeiM(cotg/2)Z tsm. (2) g

The rotation matrix ; [s,Y7*(0",¢")]s,Y7(6,9)]
D’ 0,0 =\Aml(2/+1)Y™( 0, p)e s 2/ - ,
s,m(¢ l//) T ( + ) /( ¢)e _ 22; 1[SZY/ Sl(ﬁ,a)]e_|82yy (7)

represents rotations by the Euler anglégs 4, ). Since the

spin-2 harmonics will be useful in the following sections, we which follows from the group multiplication property of ro-

give their explicit form in Table Il for/'=2; the higher/  tation matrices which relates a rotation fromd’(¢’)

harmonics are related to the ordinary spherical harmonics agrough the origin to ¢, ¢) with a direct rotation in terms of
the Euler anglesd, B, y) defined in Fig. 1, and the Clebsch-

(/—=2)! Gordan relation

m__
277\ (75 2)

1/2] 2i
2_ i — —
[(99 cotfdy*+ sina(ag coth)d

V(27 1+1)(2/,+1)
A

m m:
(SlY/i)(SzY/:) =
ISee e.g., Sakurdil3], but note that our conventions differ from

those of JacksofiL4] for Y7 by (—1)™. The correspondence [d] % 2 (/1. 2y Mol /1, 95/ M)
is izY/m:[(//_2)'/(/+2)']l/q:W(/m)i|X(/m):| /,IT],S
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(1.7 2:=81,— 8|/ 1./ 23/, —S)

41 m
m( sY /). (8)

It is worthwhile to examine the implications of these
properties. Note that the orthogonality and completeness re-
lations Eqs(4) and(5) do not extend to different spin states.
Orthogonality betweers=+2 states is established by the
Pauli basis of Eq(l) M¥XM.=1andM*M+=0. The parity
equation(6) tells us that the spin flips under a parity trans- ¢ , Projection effects. A plane wave eikp§) can be de-
folrmatlon.so that, u'nllke the=0 SPhe”,Ca' harmonics, the composed intoj/(kr)Y9 and hence carries an “orbital” angular
higher spin harmonics are not parity eigenstates. OrthOnordependence. A plane wave source at distandbus contributes
mal parity states can be constructed 3] angular power to/~kr at #=w/2 but also to larger angles

/<kr at #=0 which is encapsulated into the structurejof(see
9) Fig. 3). If the source has an intrinsic angular dependence, the dis-
tribution of power is altered. For an aligned dipai&xcoss (“fig-
ure eights’) power atd= /2 or /~kr is suppressed. These argu-
which have “electric-type” (—1)/ and “magnetic-type” ments are generalized for other intrinsic angular dependences in the
(—1)"** parity for the (+) states, respectively. We shall text.
see in Sec. lll C that the polarization evolution naturally
separates into parity eigenstates. The addition property will
be useful in relating the scattering angle to coordinates on  exp(ik-x)= >, (—i)’Vam(2/+1)j ,(kr)Y%(n),
the sphere in Sec. Il B. Finally the Clebsch-Gordan relation 4
Eq. (8) is central to the following discussion and will be used
to derive the total angular momentum representation in Sec.

Il B and evolution equations for angular moments of the ra- A n - ~ . . .
diation in Sec. Ill Cq 9 wherees=k andx=—rn (see Fig. 2 The sign convention

for the direction is opposite to direction on the sky to be in
accord with the direction of propagation of the radiation to
the observer. Thus the extra factor 6f {)” comes from the

We now complete the formalism needed to describe th¢arity relation Eq.(6).
temperature and polarization fields by adding a spatial de- The separation of the mode functions into an intrinsic
pendence to the modes. By further separatingréitbal de-  angular dependence and plane-wave spatial dependence is
pendence of the modes, we gain insight on their full angulaessentially a division into spinY”,) and orbital % an-
structure. This decomposition will be useful in constructinggular momentum. Since only the total angular dependence is
the formal integral solutions of the perturbation equations irobservable, it is instructive to employ the Clebsch-Gordan
Sec. Il C. We begin with its derivation and then proceed torelation of Eq.(8) to add the angular momenta. In general

1
E[ZYr/nMJri*ZYTM*]i

(12

B. Radial modes

its geometric interpretation. this couples the states betwegfi— /| and/+ /. Corre-
o spondingly a state of definite total will correspond to a
1. Derivation weighted sum of|,_, to j, ., in its radial dependence.

The temperature and polarization distribution of the radia-This can be reexpressed in terms of fheusing the recur-
tion is in general a function of both spatial positianand ~ Sion relations of spherical Bessel functions:
angleﬁ defining the propagation direction. In flat space, we
know that plane waves form a complete basis for the spatial i () 1
dependence. Thus a spin-0 field, as with the temperature, ’x =m[j/,1(x)+j/+l(x)],
may be expanded in )

m_,_i\/ Am m, S 1
Cr=(D" N g YA mexpik-x), - (10 100= 57 [/l 00 = (Z4Di (0] (13

where the normalization is chosen to agree with the standard
Legendre polynomial conventions fan=0. Likewise a e can then rewrite
spin-2 field, as with the polarization, may be expanded in

4

=2G7'= (=) 5 g2 Y2 (M Jexplik-x). (1) GY,=2 (=) \am(2/+ D}y (k0 YXR), (14

The plane wave itself also carries an angular dependence,
of course, where the lowestA’,m) radial functions are
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i) =j,(x), 3 =jLx),

1
i7200=35[3iL00+],(0],

: [/ (7 +1)jAX)
(11) v\ —

3/(/+1)/J'/(X))'
2 | x

j22 3(/+2)1j(x)
(x)= 8 (/-2 &

i =

(19

with primes representing derivatives with respect to the ar-
gument of the radial functior=kr. These modes are shown

in Fig. 3.
Similarly for the spin+2 functions withm>0 (see Fig.
4)!

L ,G= E (=) Vam(2/+1)[ ™ (kr)

+i 8™ (kr)].,YT(R), (16)

where

3(/+2)'j(X)
8(/—2) x?

e9(x)=

)
X

J/(X)

eM(x)= \/(/ 1)(/+2)

J/(X)

| 200
20=5| 1,00+ L0 +2 4t 2 )

which corresponds to the'=/,/+2 coupling and

B (x)=0,

1
0= 7DD,

j /(%)
vt (18

1
BP (=5

which corresponds to theg’=/=*1 coupling. The corre-
sponding relation for negative involves a reversal in sign
of the B8 functions:

M= el

B M==p".

These functions are plotted in Fig. 4. Note tleift =) is
displayed in Fig. 3.

19

2. Interpretation
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FIG. 3. Radial spin-Qtemperaturemodes. The angular power
in a plane wave(left panel, top is modified due to the intrinsic
angular structure of the source as discussed in the text. The left
panel corresponds to the power in scalar=(0) monopoleGJ,
dipole G2, and quadrupoleeg sources(top to botton); the right
panel to that in vectorni=1) dipole G;'* and quadrupoles;*
sources and a tensom& 2) quadrupoler12 source(top to bot-
tom). Note the differences in how sharply peaked the power is at
/~kr and how fast power falls ag'<kr. The argument of the
radial functionskr=100 here.

to a range of angular scales frofi=kr at 6= 7/2 to larger
angles/<kr as 6— (0,7), wherek-n=cos (see Fig. L
The power in/ of a single plane wave shown in Fig(a3
(top panel drops to zero/=kr, has a concentration of
power around”’=kr, and an extended low amplitude tail to
/<Kkr.

Now if the plane wave is multiplied by an intrinsic angu-
lar dependence, the projected power changes. The key to
understanding this effect is to note that the intrinsic angular
behavior is related to power if as

09— (0,77) &/ <kr,

The structure of these functions is readily apparent from

geometrical considerations. A single plane wave contributes

0— /2 / ~Kr. (20)
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r L H Secondly, even if there are no contributions from long
061_ e .'\ E wavelength sources witk</_/r, there will still be large
T £ [ef] no angle anisotropies at<<kr which scale as
04 Lo ELBVTE 1 ,

o e [/} ™ 2o 202, (22
o i ,\m'l,,”'.,: V] This scaling puts an upper bound on how steeply the power

I A——— can rise with/ thatincreaseswith |m| and hence a lower
oz b E bound on the amount of large relative to small angle power

F—— 2@ : that decreasesvith |m|.

015 2[BO) g The same arguments apply to the spin-2 functions with
o1 B ¢ 3 the added complication of the appearance of two radial func-
: A | tions €, and B,. The addition of spin-2 angular momenta
0.05 ,.a"' - introduces g3 contribution frome'™¢ except form=0. For
E e L,m, 3 m==*1, the 8 contribution strongly dominates over the

10 100 contributions; whereas fom==*=2, e contributions are
slightly larger thang contributions(see Fig. 4. The ratios

FIG. 4. Radial spin-2(polarization modes. Displayed is the reach the asymptotic values of

angular power in a plane-wave spin-2 source. The top panel shows -

that vector (n=1, upper panél sources are dominated by z:/[///,5’</nn)]2 _ 6, m==1,

B-parity contributions, whereas tensan€ 2, lower panel sources 2/[/6(/m)]2 ~1 8/13, m==*2, (23
have comparable but less power in Bi@arity. Note that the power
is strongly peaked at’=kr for the B-parity vectors andE-parity

tensors. The argument of the radial functiss 100 here. for fixed kr>1. These considerations are closely related to

the parity of the multipole expansion. Although the orbital
angular momentum does not mix states of different spin, it
Thus factors of sifl in the intrinsic angular dependence sup- does mix states of different parity since the plane wave itself
press power at’<kr (“aliasing suppression), whereas fac-  does not have definite parity. A state with “electric” parity
tors of co® suppress power at~kr (“projection suppres- in the intrinsic angular dependenfsee Eq.(9)] becomes
sion”). Let us consider first =0 dipole contributionY?
«cos (see Fig. 2 The co® dependence suppresses power

m m — iV (m)
in j 19 at the peak in the plane-wave spectrdmkr [com- 262M 1+ GoM - Z (=) Vam(2/+ 1) e
pare Fig. 8a) top and middle pane]sThe remaining power . . o
is broadly distributed for’<kr. The same reasoning applies XYM+ oY M_]+iB)

for Y quadrupole sources which have an intrinsic angular
dependence of 3ct8—1. Now the minimum falls at

f=cos 1(14\/—) causing the double peaked form of the Thyg the addition of angular momentum of the plane wave
power inj ¥ shown in Fig. 3?3) (bottom panel This series  generates “magnetic’B-type parity of amplitude3, out of
can be continued to higheB? and such techniques have an intrinsically “electric” E-type source as well aB-type
been used in the free streaming limit for temperatureparity of amplitudee, . Thus the behavior of the two radial
anisotropieq 11]. functions has significant consequences for the polarization

Similarly, the structures of ™, [V andj?? are ap- calculation in Sec. Ill C and implies th&-parity polariza-
parent from the intrinsic angular dependences of Gﬁe tion is absent for scalars, dominant for vectors, and compa-
Gi, andG§ sources: rable to but slightly smaller than the parity for tensors.

Now let us consider the low’<kr tail of the spin-2
radial functions. Unlike the spin-0 projection, the spin-2 pro-

XYM = ,YIM T (24)

Yixsinge'®, Yjesingcosde'?,  Yixsir?9e?'?, jection allows increasingly more power ét-0 and/orr,
(21)  ie.,/<kr, as|m| increasegsee Table | and note the factors
of siné). In this limit, the power in a plane wave fluctuation
respectively. The sififactors imply that asn increases, low goes as
/ power in the sourlce decreasgompare Figs. @) _and [/6(/m)]20c/672\m\, [/'B(/m)]Z“/672|m|' (25)
3(b) top paneld G; suffers a further suppression at
6=m/2 (/~Kkr) from its cod factor. Comparing these expressions with E2R), we note that the

There are two interesting consequences of this behaviogpin-0 and spin-2 functions have an opposite dependence on
The sharpness of the radial function aroufid kr quantifies m. The consequence is that the relative power in large vs

how faithfully features in th&-space spectrum are preservedsmall angle polarization tends to decrease from rifve 2

in /7 space. If all else is equal, this faithfulness increases withensors to then=0 scalars.

|m| for G‘ m due to aliasing suppression from i On the Finally it is interesting to consider the cross power be-
other hand, features '@mﬂu are washed out in comparison tween spin-0 and spin-2 sources because it will be used to
due projection suppression from the édactor. represent the temperature-polarization cross correlation.
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T ' ' ' ' ] etries through the replacement &f with the curved three
1.5 | {2 j{mm)g(m) ] metric and ordinary derivatives with covariant derivatives
s 3 [6,7].
1 =
05 3 1. Scalar perturbations
of ] Scalar perturbations in a flat universe are represented by
E | | NEE plane waveQ(®) =exp(k-x), which are the eigenfunctions
—05 = e of the Laplacian operator
F /2 3(21)=(1) .
0.15 : 7 ;2 Ve; ] VQQ(o):_sz(o) (26)
01F - . . .
r 3 and their spatial derivatives. For example, vector and sym-
0.05 | = metric tensor quantities such as velocities and stresses based
o E 1 on scalar perturbations can be constructed as
E . [ B R 0 _ -1y A0
20 40 60 80 100 Qir=-kViQ",
{
QO k2v.v 125 [0© 27
FIG. 5. Spin-0X Spin-2 (temperaturex polarizationn modes. i ivit g :

Displayed is the cross angular power in plane wave spin-0 and

spin-2 sources. The top panel shows 'that a sc;alar monopolsinceV*XQ*(O)zo, velocity fields based on scalar perturba-
(m=0) source correlates with a scalar spifipdlarization quadru- tions are irrotational. Notice thﬂ(o)ng, niQi(O): GO, and

pole) source, whereas the tensor quadrupote=2) anticorrelates i i (0) 0 . . .
with a tensor spin-2 source. Vector dipola£ 1) sources oscillate [‘n Qii *G3, where the coordinate system is defined by

in their correlation with vector spin-2 sources and contribute negli-©3=K. From the orthogonality of the spherical harmonics, it
gible once modes are superimposed. One must go to vector quafbllows that scalars generate onty=0 fluctuations in the
rupole sourceglower panel for a strong correlation. The argument radiation.
of the radial functionkr=100 here.

2. Vector perturbations

Again interesting geometric eff(e(\)g;cs can be identifisee Vector perturbations can be decomposed into harmonic

. _ .. 0 .
Fig. 5. For m._O., the power inj ;" e® correlates_('i'lg- 15’ modesQi(il) of the Laplacian in the same manner as the
top panel solid line, positive defintefor m=1, j*Ye  goqiars,

oscillates(short dashed lineand form=2, j?2¢(?) anticor-

relates(long dashed line, negative definitdhe cross power V2Q(=Y=—k2Q!*V, (28
involves only ™j¥'™ due to the opposite parity of the . . L
I'B(\r/n) \r/nodes yeslz ) ppostie party which satisfy a divergenceless condition

/ .

These properties will become important in Secs. Il and vViQi=b=0. (29)
IV B and translates into cross power contributions o !
positesign between the scalar monopole temperature Crosa velocity field based on vector perturbations thus represents
polarization sources and tensor quadrupole temperature croggrticity, whereas scalar objects such as density perturba-

polarization sourcef9]. Vector dipole temperature and po- tions are entirely absent. The corresponding symmetric ten-
larization sources do not contribute strongly to the crossor is constructed out of derivatives as

power since correlations and anticorrelationg {Pe(™) will

cancel when modes are superimposed. The same is true of (+1)_
the scalar dipole temperature cross polarizafigfe®) as is i
apparent from Figs. 3 and 4. The vector cross power is domi-

nated by quadrupole temperature and polarization sources convenient representation is
j@VeM (Fig. 5, lower panel

1 .
~ S (ViQITV+ v, Q). (30

i~ A - -
QFV=— —(e,*ie,)explik-x). (31)
C. Perturbation classification ' \/E ! 2

As is well known(see, e.g.[7,15]), a general symmetric Notice thatn' Q* V=G> andniniQYecGEL. Thus vec-
tensor such as the metric and stress-energy perturbations c 4l erturbatior|13 stimullate the= +£ modezs in the radia-
be separated into scalar, vector, and tensor pieces throu i?(')np -

their coordinate transformation properties. We now review —
the properties of their normal modes so that they may be
related to those of the radiation. We find that the
m=0,+1,+2 modes of the radiation couple to the scalar, Tensor perturbations are represented by Laplacian eigen-
vector, and tensor modes of the metric. Although we confunctions

sider flat geometries here, we preserve a covariant notation 2(£2) 2 (£2)

that ensures straightforward generalization to open geom- VeQij 7= —-k*Qj 7, (32)

3. Tensor perturbations



56 CMB ANISOTROPIES: TOTAL ANGULAR MOMENTUM METHOD 603

which satisfy a transverse-traceless condition and the tensors
iin(z2_yig(2_
§"Qi=V'Qi =0, (33 hij=2HQ{?. (39

that forbids the construction of scalar and vector objects SUCRyqte that tensor fluctuations do not exhibit gauge freedom of
as density and velocity fields. The modes take on an explicify;q type.

representation of
2. Stress energy tensor

. 3. . A a -
(2=~ \[g(elilez)i@)(elilez)jeXp(lk'X)- (34) The stress energy tensor can be broken up into fléjd (
contributions and seeds) contributions(see e.g[18]). The
Notice thatn‘ani(jﬂ):Gztz and thus tensors stimulate the Ie}tter is distinguished b.y the fact that the net effect can be
m=+2 modes in the radiation. wewed_as a perturbation to the background. Specifically

In the following sections, we often only explicitly show Tu,=T.,+6T,,, where To=—p;, T)=T,=0, and
the positivem value with the understanding that its opposite T; = pfaij is given by the fluid alone. The fluctuations can be
takes on the same form except where otherwise n@tedin  decomposed into the normal modes of Sec. Il C as
the B-type polarization where a sign reversal ocgurs

8To=—[ps¢+ps]Q?,
lll. PERTURBATION EVOLUTION

o_ )4 (0700
We discuss here the evolution of perturbations in the nor- oTi=[(ps+ppvy +vg ]1Qi",

mal modes of Sec. Il. We first review the decomposition of

perturbations in the metric and stress-energy tensor into sca- 8To=—[(pr+ppoi”+vP1Q,
lar, vector, and tensor typéSec. Il A). We further divide . , .
the stress-energy tensor into fluid contributions, applicable to ST =[8ps+pss1Q 0+ [ pyme+ ps]Q'Y; (39

the usual particle species, and seed perturbations, applicable
to cosmological defect models. We then employ the techfor the scalar components,
nigues developed in Sec. Il to obtain a new, simpler deriva-

tion and form of the radiation transport of the CMB under 5Ti0: —[(ps+ pf)v(f1)+ps]Q(l)ia
Thomson scattering, including polarizatiggec. Il B), than
that obtained first bj16]. The complete evolution equations, ST =[(ps+pp) (0= V)+0oP QY

given in Sec. lll C, are again substantially simpler in form
than those of prior works where they overl&4,10,11 and . :
- ; . — (1) (1) 1)
treats the case of vector perturbations. Finally in Sec. Il D, N}_[pfwf T 1Q! ; (40
we derive the formal integral solutions through the use of the
radial functions of Sec. Il B and discuss their geometric in-for the vector components, and

terpretation. These solutions encapsulate many of the impor- , @)1 (D2
tant results. sTi=[pimi” + 72 1Q?) (41)

A. Perturbations for the tensor components.

1. Metric tensor B. Radiation transport

The ultimate source of CMB anisotropies is the gravita-
tional redshift induced by the metric fluctuation,, : 1. Stokes parameters
The Boltzmann equation for the CMB describes the trans-
Uur=2%(7,tN,), (35  port of the photons under Thomson scattering by the elec-
. trons. The radiation is described by the intensity matrix: the

where the zeroth component represents conformal timgme ayerage of the electric field tensBf E; over a time
dp=dt/a and, in the flat universe considered herg,, is  |ong compared to the frequency of the light or equivalently

the Minkowski r_netric. The metric perturbation can be fur- 5 the components of the photon density maee[19] for
ther broken up into the normal modes of scalar, vector, and

tensor types as in Sec. Il C. Scalar and vector modes exhibri?v'_ews' For radllatlon. propagaAtmgArad|aII&i €, so that
gauge freedom which is fixed by an explicit choice of thethe intensity matrix exists on they@ e, subspace. The ma-
coordinates that relate the perturbation to the backgroundrix can further be decomposed in terms of the 2 Pauli
For the scalars, we choose the Newtonian gaisge, e.g., Mmatriceso; and the unit matriXL on this subspace.

[15,17) For our purposes, it is convenient to describe the polar-
ization in temperature fluctuation units rather than intensity,
heo=2¥Q?, h;j=20Q s, (36)  where the analogous matrix becomes
where the metric is shear free. For the vectors, we choose T=01+Qoz+Uc;+Vos. (42

hoi=—-VQ (37  @=Tr(T1)/2=AT/T is the temperature perturbation
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summed over polarization states. Sir@Qe=Tr(To3)/2, itis ~ and outgoing polarization vectors, respectively, in the elec-
the difference in temperature fluctuations polarized in thdron rest frame. Radiation polarized perpendicular to the
&, and é¢ directions. SimilarlyU=Tr(To)/2 is the differ- scattering plane scatters isotropically, while that in the scat-

on A tering plane picks up a factor of ¢g& whereg is the scat-
ence along axes rotated by 45 eg(te¢)/\/_ and tering angle. If the radiation has different intensities or tem-

V=Tr(To,)/2 that between &,*ie,)/2. Q and U thus  peratures at right angles, the radiation scattered into a given
represent linearly polarized light in the north/south- east/wesgmg|e will be linearly polarized.

and northeast/southwest-northwest/southeast directions on Now let us evaluate the scattering term explicitly. The
the sphere, respectively represents circularly polarized angular dependence of the scattering gives

light (in this section only, not to be confused with vector

metric perturbations

Under a counterclockwise rotation of the axes through an o)\’ cogB 0 0 0
angle ¢ the intensityT transforms asT’=RTR 1. ® and o _ 0 1 0 0, (46)
V remain distinct whileQ andU transform into one another. * U '
Since  the Pauli matrices  transform as U 0 0 cos

oy+ioi=e"?¥(g3+i0,) a more convenient description is
where theU transformation follows from its definition in
T=01+Vo,+(Q+iU)M, +(Q—-iU)M_, (43) terms of the difference in intensities polarized45° from
the scattering plane. With the reIatior@—@HJr(BL and
Q+iU=0-0,*iU, the angular dependence in tﬁeep—
resentation of Eq(44) become$

where recall thatM . =(o3Fi0;)/2 [see Eq.(1)], so that
Q=iU transforms into itself under rotation. Thus E®)
implies thatQ+iU should be decomposed inse= =2 spin
harmonicq 3,4].

Since circular polarization cannot be generated by Thom- T/=gT
son scattering alone, we shall hereafter igngrdt is then

convenient to reexpress the matrix as a vector: 2341 _ E . _ } .
] cos B 25|n2,6’ 2S|n2,8
T=(0,Q+iU,Q—iU). (44 3 1 1 1
— gj - 2 = 12| =
The Boltzmann equation describes the evolution of the vec- =7 Zsmzﬂ 2 (coB+1) 2(C058 L T,
tor T under the Thomson collisional ter@ 7] and gravita- 1 1 1
tional redshifts in a perturbed metr@fh,,, |: - Esinzﬁ 5(0038—1)2 §(C0$3+ 1)2
d. .. d - e s o
ﬁT(n,x,n)E on +n'ViT=C[T]+G[h,,], (45 (47)

where the overall normalization is fixed by photon conserva-
) i . . tion in the scattering. To relate these scattering frame quan-
universe photons propagate in stra.|ght limes0. We_shall dtltles to those in the frame defined lky:e3, we must first
now evaluate the Thomson scattering and gravitational re
shift terms. perform a rotation from thé& frame to the scattering frame.
The geometry is displayed in Fig. 1, where the anglsepa-
2. Scattering matrix rates the scattering plane from the meridian plane at

The calculation of Thomson scattering including polariza-('9 .¢') spanned be, ande, . After scattering, we rotate by

tion was first performed by Chandrasekta6]; here we the angle between the scattering plane and the meridian
show a much simpler derivation employing the spin harmon®lane at 6, $) to return to thek frame. Equatiort43) tells us
ics. The Thomson differential scattering cross section dethese rotations transformT  as R(zp)T diag(1 %,

pends on angle d& -e|2, wheree’ ande are the incoming e 2% T. The net result is thus expressed as

where we have used the fact thgt=n; and that in a flat

3 3
Y3(B.a)+2V5Yg(B.a)  — \ﬁvgz(ﬁ,m - \ﬁYi(ﬂ,a)
1 /4w 2 2
R( Y)S(B)R(_ CY)ZE ? _ \/ngg(lB’a,)e—Ziy 32Y2—2(18’a/)e—2iy 32Y§(ﬂ,a)e—2i7 ’ (48)
—J6_,Y3(B.a)e? 3., %(B.a)e®” 3_,Y3(B.a)e’”

2Chandrasekhar employs a different sign conventiorifes — U.
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where we have employed the explict spin2s-2 forms in . . 1. 2 R

Table Il. Integrating over incoming angles, we obtain the C[T]:—Tl(ﬂ)"-E’Tf daqQ’ E PM(Q,Q")T(Q).
collision term in the electron rest frame m=-2 (50

- = . (dQ’ -
ClThes — 71(0) + 7 | SROISBR- T,
(490  The vectorl describes the isotropization of distribution in

the electron rest frame and is given by
where the two terms on the right-hand side account for scat-

tering out of and into a given angle, respectively. Here the
differential optical depthr=n.ora sets the collision rate in Lo aa’ ..
conformal time withn, as the free electron density ang as HQ)=TQ) = At ©'+n-vg,0,0). (5D)
the Thomson cross section.
The transformation from the electron rest frame into the
background frame vyields a Doppler shift JB in the tem-  The matrixP‘™ encapsulates the anisotropic nature of Th-

perature of the scattered radiation. With the help of the genemson scattering and shows that as expected polarization is
eralized addition relation for the harmonics K@), the full  generated through quadrupole anisotropies in the tempera-

collision term can be written as ture and vice versa
|
, 3 3
Y2z - \[Ezvgw;“ - \é_zvg"v;“
PIM=1 —JBYR YT 3YPoYD  3.,yuyl | (52

—JBYD YD 3Y5 oYE 3,Y5 LYY

where Y?'=YT*(Q') and YI'=.Y)*(Q') and the . 1. . . 1.

unprimed harmonics are with respect t@. These Glhu.]=| 5n'n’hij+n'hoi+ 5n'Vihe,0,0]  (54)
m=0,£1,=2 components correspond to the scalar, vector,

and tensor scattering terms as discussed in Sec. Il C and

I C. . - : -
in the T basis. We now explicitly evaluate the Boltzmann

o ] equation for scalar, vector, and tensor metric fluctuations of
3. Gravitational redshift Egs. (36)—(39).
In a perturbed metric, gravitational interactions alter the
temperature perturbatio®. The redshift properties may be

formally derived by employing the equation of motion for C. Evolution equations
the photon energp= —u*p,,, whereu” is the four-velocity ) ) ] )
of an observer at rest in the background frame phds the In this section, we derive the complete set of evolution

photon four-momentum. The Euler-Lagrange equations ofquations for the temperature and polarization distribution in

motion for the photon and the requirement thﬁﬂ —1 result the scalar, vector, and tensor decomposition of metric fluc-
in tuations. Though the scalar and tensor fluid results can be

found elsewhere in the literature in a different fofsee, e.g.,
[11,1Q), the total angular momentum representation substan-
p tially simplifies the form and aids in the interpretation of the

a . . 1
b a 5 N'n’hij—n'hoi — 5 n'Vihgo, (53)  results. The vector derivation is new to this work.

R 1. Angular moments and power

which differs from[20,7] since we taken to be the photon
propagation direction rather than the viewing direction of the The temperature and polarization fluctuations are ex-
observer. The first term is the cosmological reshift due to thgpanded into the normal modes defined in Sec. I B:
expansion of the spatial metric; it does not affect temperature
perturbationsST/T. The second term has a similar origin and
is due to stretching of the spatial metric. The third and fourth *Our  conventions ~differ from [3] as (2/+1)ASD
terms are the frame dragging and time dilation effects. =40P3/(27)%  and  similarlly  for  ASJ)  with

Since gravitational redshift affects the different polariza-0©?— — g2 —B®2 and soC&"= - Cc98(2 byt with other
tion states alike, power spectra the same.
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v M) — - (m)~m

®(7]1X!n) f (2,”_)32 mzz ®/ G/!

. d3k 2
(QiiU)(n,x,n)=JW2 m:E_Z (EM=iBI™).,G].
(55

A comparison with Egs(9) and (43) shows thatt!™ and
B(™ represent polarization with electric-type-()” and
magnetic-type € 1)’ ™! parities, respectivel{3,4]. Because
the temperature® ™ has electric-type parity, onlEg(™

couples directly to the temperature in the scattering sources.

Note thatB{™ andE!™ represent polarizations wit® and

WAYNE HU AND MARTIN WHITE

7 SK?
ar > N
\ /?vguw) =2/ +1)(2/ 1) (sYP-y)
ms m
- m(SY/)
sK/m+1

+N27+1)(2/43) (Y™, ), (59

which couples the” to /=1 moments of the distribution.
Here the coupling coefficient is

K= (/2 =m?) (/=) /2, (59)

U interchanged and thus represent polarization patterns ro-

tated by 45°. A simple example is given by time=0 modes.
In thek frame,E®) represents a pui®, or north/south-east/
west, polarization field whose amplitude dependsdoe.g.,
sirfg for /=2. B®) represents a puréJ, or northwest/

As we shall now see, the result of this streaming effect is an
infinite hierarchy of coupled” moments that passes power
from sources at low multipoles up th€ chain as time
progresses.

southeast-northeast/southwest, polarization with the same

dependence.

The power spectra of temperature and polarization

anisotropies today are defined as, e@>°=(|a, /) for
®=3a,,Y" with the average being over the {2-1) m

3. Boltzmann equations

The explicit form of the Boltzmann equations for the tem-
perature and polarization follows directly from the Clebsch-
Gordan relation of Eq(58). For the temperatures&0),

values. Recalling the normalization of the mode functions

from Eqgs.(10) and(11), we obtain

5 2(dk & <
(2/+1)%C7*=— f T2, KX (o O (o ),
(56)

whereX takes on the value®, E, andB. There is no cross
correlationC2® or CZ® due to paritysee Eqs(6) and(24)].
We also employ the notatio@?*(™ for the m contributions
individually. Note thatB(/O)=O here due to azimuthal sym-
metry in the transport problem so th@f®®=0.

As we shall now show, then=0,=-1,+2 modes are

stimulated by scalar, vector, and tensor perturbations in th
metric. The orthogonality of the spherical harmonics assure
us that these modes are independent, and we now discuss {HH

contributions separately.

2. Free streaming

As the radiation free streams, gradients in the distribution

m m
. 0K/ 0K/+1 :
OF =K =1y O gy O e[ O
+8M, (/=m). (60)

The term in the square brackets is the free streaming effect
that couples the” modes and tells us that in the absence of
scattering power is transferred down the hierarchy when
kn=1. This transferral merely represents geometrical pro-
jection of fluctuations on the scale correspondingktat
distancen which subtends an angle given bY~k». The

main effect of scattering comes through #@%™ term and
implies an exponential suppression of anisotropies with op-
ﬁcal depth in the absence of sources. The soBER ac-

nts for the gravitational and residual scattering effects:

SPO=700-¢, SPO=rO+kp, SP=rpO)

SP=rod+V, SP=rPW, (61

produce anisotropies. For example, as photons from different

temperature regions intersect on their trajectories, the tem-

SP =Py,

perature difference is reflected in the angular distribution.

This effect is represented in the Boltzmann equatiéb

gradient term,
A s A o 4
n-V—>in~k=i\/§kY§, (57)

which multiplies the intrinsic angular dependence of the tem-

perature and polarization distribution¥;’ and .,Y7', re-
spectively, from the expansion E5) and the angular basis

The presence o@éo) represents the fact that an isotropic
temperature fluctuation is not destroyed by scattering. The
Doppler effect enters the dipole’& 1) equation through the
baryon velocityv (™ term. Finally the anisotropic nature of
Compton scattering is expressed through

1
P(M = [O5"— VBES"], (62)

of Egs. (10) and (11). Free streaming thus involves the and involves the quadrupole moments of the temperature and

Clebsch-Gordan relation of E¢B)

E-polarization distribution only.
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The polarization evolution follows a similar pattern for momentum exchange. Note that for the photons
/=2,m=0 from* Eq. (58) with s=*2: 8,=400, v V=0, and7{"=*£ 6. Massless neutri-
nos obey Eq(60) without the Thomson coupling term.

m m
'E(/m):k ?‘_/Eam) —— 2m B(/m)_ 2K7+1 E(/m) Momentum exchange between the baryons and photons
' /-1t A7+ (27+3) due to Thomson scattering follows by noting that for a given
) m velocity perturbation the momentum density ratio between
—7EM+ 6P, 5, (63 the two fluids is
m m
: K/ 2m 2K/ 41 +ps 3p
B<m>:k{2_3<m> 4 pm_ 20741 gm _pPetPs_3ps
R (P e N VN e PV R 0, 5p, 4p, (67)
_ -Rp(m . . . .
B, CLAN comparison with photon Euler equati¢@0) (with /=1,
Notice that the source of polarizatiéf™ enters only in the m=0) gives the baryon equations as
E-mode quadrupole due to the opposite parity®f and 5 — ko0 — 30
B,. However, as discussed in Sec. Il B, free streaming or BT XUB '
projection couples the two parities except for the-0 sca- ) )
lars. ThusB(®’=0 by geometry regardless of the source. It is “0__ & (o T, 0 (0)
unnecessary to solve separately for the: —|m| relations vg =~ zus TK¥+ (07 —vg"). (68)

since they satisfy the same equations and solutions with
B(/‘\m\): —B(/|”‘|) and all other quantities equal. For a seed source, the conservation equations become
To complete these equations, we need to express the evo-

lution of the metric sources¥{,V,V,H). It is to this subject ) a ©
we now turn. ps= 37 (pstps) —kug™,
4. Scalar Einstein equations .
. . . . . a 2
The Einstein equation§,,,=87GT,, express the metric vO=—-4—pO+k ps— _7-,;0>) , (69)

evolution in terms of the matter sources. With the form of a 3
the scalar metric and stress energy tensor given in B6s. ) ) _ )
and (39), the “Poisson” equations become since the metric fluctuations produce higher order terms.

5. Vector Einstein equations

a
2 — 2 _ (0) (0) . . . L.
k*®d=47Ga (Pf5f+Ps)+3a[(Pf+ Prve +ug k|, The vector metric source evolution is similarly con-
structed from a “Poisson” equation

K2(¥+®)=—8rGa%(p;mi®+ ), (65)

. a
where the corresponding matter evolution is given by cova- V+ 25V= —8wGad(psmi! + wM)/k, (70
riant conservation of the stress energy terggy:

and the momentum conservation equation for the stress-

: . a .
5= —(1+Wf)(kv§°)+3d>)—35 Wy, energy tensor or Euler equation
d a z}§1>:\'/—(1—3cf2)é(v§1)—V)—Ek R EEY
a[(1+wf)U§°>]:(1+wf) k\I’—a(l—?:Wf)v%o)} a 2 1+w
2 : a 1
+wik 5pf/pf—§m> (66) 0= —4_vH—Skal”, (72)

for the fluid part, wherevi=p;/p; . These equations express \yhere we recall that?=p¢/p; is the sound speed. Again,
energy and momentum density conservation, respectivelyng first of these equations remains true for each fluid indi-
They remain true for each fluid individually in the absence Ofvidually save for momentum exchange terms. For the pho-

tonsv (V=0 and 7= 230" . Thus with the photon

uler equation(60) (with /=1, m=1), the full baryon
“The expressions above were all derived assuming a flat spati5 q (60) ( ) y

geometry. In this formalism, including the effects of spatial curva- quation becomes

ture is straightforward: the’=1 terms in the hierarchy are multi- 2 .

plied by factors (;f[l—(/z—m—l)K/kz]l’2 [6,7], where the cur- . vél)ZV— —(vgl)—V)-i- 1(®(11)_Uél)), (72)
vature isK=—Hg(1— Q. These factors account for geodesic a R

deviation and alter the transfer of power through the hierarchy. A

full treatment of such effects will be provided [8]. see Eq(68) for details.
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6. Tensor Einstein equations /zc(;)@(m)o(/2+2|m|’ /ZCEE(m)O(/6—2\m|’
The Einstein equations tell us that the tensor metric
source is governed by /2CEB Mo y62Iml - /2COR Mg /4, (79
a. due to the aliasing of plane-wave power A6<k(7o— 7)
H+2-H+k?H=8nGa [ p;m?+ 7?], (73)  [see Eq(25)] which leads to interesting constraints on scalar
a temperature fluctuationg22] and polarization fluctuations
Loy g (2) (see Sec. V¢
where we note that the photon contr|but|ormr§ =:05". Features irk space in the”=|m| moment atfixed time
are increasingly well preserved ifi space a$m| increases,
D. Integral solutions but may be washed out if the source is not well localized in

The Boltzmann equations have formal integral solutiondime. Only sources involving the visibility functiore™" are
that are simple to write down by considering the propertiegequired to be well localized at last scattering. However,
of source projection from Sec. Il B. The hierarchy equationseven features in such sources will be washed out if they
for the temperature distribution E¢0) merely express the occur in the/’=|m|+1 moment, such as the scalar dipole
projection of the various plane wave temperature sourcednd the vector quadrupoleee Fig. 3. Similarly features in
SIWG™ on the sky todaysee Eq.(61)]. From the angular the vectorE and tensoB modes are washed out. o
decomposition ofG™ in Eq. (14), the integral solution im- The geometric propgétles of the temperature-pqlarlzatlon
mediately follows: cross power spectrui@ /-~ can also be read off the integral
solutions. It is first instructive, however, to rewrite the inte-

O (70.k) w0 o gral solutions as(=2)

—5 = | dne 2 ST (i k(mo— ).
| 7 OV k) (m0
(74 —57 1 fo dpe T(rO + ¥ + ¥ — d)j 00

Here . .
+ v 010 4 7p(0)j (20

70.
7( n)Ef m(n')dy’ (75 OM(79,k)
" &ZJ"O —l o @y
571 . dpe™ 7| r(vg’—V)j,
is the optical depth between and the present. The combi-

nationre ™" is the visibility function and expresses the prob-
ability that a photon last scattered betwegn of » and
hence is sharply peaked at the last scattering epoch.
Similarly, the polarization solutions follow from the radial 0?(70.,k) 0 ) )
decomposition of the 241, dpe TrP@P-H]j?2, (79

+

. 1
PO+ —kv|j# |,
\/§ 1M

- \/ETP(m)[ZG?M ++2GEM_] (76)  \where we have integrated the scalar and vector equations by
parts noting thatle7/d = re~". Notice that® ")+ V¥ acts
as an effective temperature by accounting for the gravita-
EM (70 K) tional redshift from the potential wells at last scattering. We
7 (70, o i (1) i i

S = \/gf dyre” PM™(5)e™K( 70— 7)1, shall see in Sec. IV thaﬂ_‘:B V at last scattering which

/ 0 suppresses the first term in the vector equation. Moreover, as
discussed in Sec. Il B and shown in Fig. 5, the vector dipole
terms (V) do not correlate well with the polarization

source. From Eq(24), the solutions

B(/m)( 7o ,k) 70 - (m) (m)
o 1 \/Efo dypre” P (7)) B, [K(no—1)] (e, whereas the quadrupole termi$?t) do.
7 The cross power spectrum contains two pieces: the rela-
tion between the temperature and polarization souB,‘E%
immediately follow as well. andP(™, respectively and the differences in their projection

Thus the structures of’ ™, €™ and g™ shown in @S anisotropies on the sky. The latter is independent of the

Figs. 3 and 4 directly reflect the angular power of the source8'0del and provides interesting consequences in conjunction
S(/rr,]) and P(™. There are several general results that can bgVIth tight coupling and causal constraints on the sources. In

read off the radial functions. Regardless of the source beha\RartICUIar’ thesign of the correlation is determined 1]
ior in k, the B-parity polarization for scalars vanishes, domi- Sg,{CQEw)]: —sgri P(O)((“)E)O)JF‘I’)],

nates by a factor of 6 over the electric parity/at-2 for the '
vectors, and is reduced by a factor of 8/13 for the tensors at
/>2 [see Eq.(23)].

Furthermore, the power spectra ifi can rise no faster ; ) )
than sgriCoE ] =sgri P@ (7P —H)], (80)

sgrf C ] =—sgrf P (y37PM +kV)],
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where the sources are evaluated at last scattering and we o Ko k2 .
have assumed thé® )+ ¥|>|P(¥)] as is the case for stan- (Meg®”) " + §®5 )=~ 3 Merr'V — (M), (83
dard recombinatiorisee Sec. Y. The scalar Doppler effect
couples only weakly to the polarization due to differences inyhose solution in the absence of metric fluctuations is
the projection(see Sec. Il B The important aspect is that
relative to the sources, the tensor cross spectrum has an op- 00 = Am;Hcogks+ ¢),
posite sign due to the projectidaeee Fig. 5.

These integral solutions are also useful in calculations. a4
For example, they may be employed with approximate solu- 0" = J3Am,sin(ks+ ¢), (84)
tions to the sources in the tight coupling regime to gain T )
physical insight on anisotropy formatioisee Sec. IV and Where s=Jc,gdn=/(3mey)~“d7 is the sound horizon,
[22,23). Seljak and Zaldarriagh24] have obtained exact A IS aconstant amphtude, anblis a constant phasg shift. In
solutions through numerically tracking the evolution of the the presence of potential perturbations, the redshift a photon
source by solving the truncated Boltzmann hierarchy equa€XPeriences climbing out of a potential well makes the effec-
tions. Our expression agree witB,4,24 where they overlap. tive temperatur® "+ ¥ [see Eq(79)], which satisfies

2
IV. PHOTON-BARYON FLUID . .ok
[Mer(OF+W)]" + = (07 +¥)

Before recombination, Thomson scattering between the
photons and electrons and Coulomb interactions between the k? S
electrons and baryons were sufficiently rapid that the photon- =~ g RVA[Me(V—=P)] ", (89
baryon system behaves as a single tightly coupled fluid. For-

mally, one expands the evolution equations in powers of the g shows that the effective force on the oscillator is due to
Thomson mean-free path over the wavelength and horizog, o dragRW and differential gravitational redshifts from
scale. Here we briefly review well-known results for the sca-a%ime dependence of the metric. As seen in Ef8, and
lars (see, e.9.[25,26) to show how vector or vorticity per- (g4 the effective temperature at last scattering forms the

:ﬁrb?tiol?s ;jiffer in their beha:’i]f’('s‘iﬁ' v A)t.' I_rt1 parr]ticular, nmain contribution at last scattering with the Doppler effect
€ 'ack ot pressure support for the VOrucity changes the, ©0)_ () playing a secondary role fomes>1. Further-

) ) i B
relation between the CMB and metric fluctuations. We thenmore, because of the nature of the monopole versus dipole

_study the h'ghe.f order effects of shear viscosity and pOI"’zr]lbrojection, features v’ space are mainly created by the
ization generation from scalar, vector, and tensor perturba-

tions (Sec. IV B.. We identify signatures in the temperature- effective temperaturésee Fig. 3 anq S?C' p R
polarization power spectra that can help separate the types of /f R<1, then one e(;(pects_ contributions ©{¥ — ®)/k
perturbations. Entropy generation and heat conduction onl§@ the oscillations if®{”+W in addition to the initial fluc-
occur for the scalaréSec. IV O and leads to differences in tuations. These acoustic contributions should be compared

the dissipation rate for fluctuatioriSec. IV D). with the O(AW — A®) contributions from gravitational red-
shifts in a time-dependent metric after last scattering. The
A. Compression and vorticity stimulation of oscillations gtz>1 thus either requires large

or rapidly varying metric fluctuations. In the case of the

~ For the (=0) scalars, the well-known result of expand- former, acoustic oscillations would be small compared to
ing the Boltzmann equatior(§0) for ~=0,1 and the baryon  grayitational redshift contributions.

Euler equation(68) is Vector perturbations, on the other hand, lack pressure
_ K . support and cannot generate acous_,tic or compressional
E)O>:__<10>_q)' waves. The tight coupling expansion of the photon

3 (/=1m=1) and baryon Euler equatio80) and(72) leads
(Me®1”) " =k(OF" +meg¥), @
[Mer(®=V)]" =0 (86)

which represent the photon fluid continuity and Euler equa-

tions and gives the baryon fluid quantities directly as 1) @ (1) . )
andvg’=073". Thus the vorticity in the photon baryon fluid

1. © ©) © is of equal amplitude.to. the vector_metric perturbatipn. In the_
98=300 . vs =01, (82 absence of sources, it is constant in a photon-dominated fluid
and decays aa~ ! with the expansion in a baryon-dominated
to lowest order. Heren.q=1+ R, where we recall thaR is  fluid. In the presence of sources, the solution is
the baryon-photon momentum density ratio. We have
dropped the viscosity tern@éo)f O(k{r)@)(lo) (see Sec. OW(7,K)=V(7,k) + i[(@(l)(o,k)—V(O,k)], 87
IV B). The effect of the baryons is to introduce a Compton Mg
drag term that slows the oscillation and enhances infall into
gravitational potential wellsV. That these equations de- So that the photon dipole tracks the evolution of the metric
scribe forced acoustic oscillations in the fluid is clear wherfluctuation. Withv )= 0{Y in Eq. (61), vorticity leads to a
we rewrite the equations as Doppler effect in the CMB of magnitude on order the vector
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metric fluctuation at last scattering in contrast to scalar

E T T 17700 L L T T 3
acoustic effects which depend on the time rate of change of F sCDM E
the metric. 100 L J
In turn the vector metric depends on the vector aniso- 00 /“\/ Y
tropic stress of the matter as o L //
Vv _ o[ ™ 4 (1), (1) . f ~J 1
(my ., k)=—8mGa, . dpa’(psmy’ +mg’)/K. %10_2 B // ]
(88) RS /EE x 20 3
In the absence of sourcésxa~? and decays with the ex- o2 b o E
pansion. They are thus generally negligible if the universe TE ]
contains only the usual fluids. Only seeded models such as 01F E
cosmological defects may have their contributions to the ok A
CMB anisotropy dominated by vector modes. However, even : 3
though the vector to scaldiuid contribution to the anisot- OrE et Y
10 100 1000

ropy for seeded models is of ordetV/(¥ — ®) and may be
large, the vector to scalar gravitational redshift contributions, l

of order\(/(\If—fl)) IS pot necessarily large. Furthermore, FIG. 6. Power spectra for the standard cold dark matter model
from the integral solution for the vectors E(f9) and the  (scqie invariant scalar adiabatic initial conditions wifhy=1,
tight coupling approximation E¢(87), the fluid effects tend 1~ 5 and4h?=0.0125). Notice thaB polarization is absent,

to cancel part of the gravitational effect. E polarization scales as* at large angles, and the cross correlation
(®E) is negative at large angles and reflects the acoustic oscilla-
B. Viscosity and polarization tions at small angles. In particular the phase of B and OE
. . . oo . acoustic peaks is set by the temperature oscillati®ms (see Sec.
Anisotropic stress represents shear viscosity in the flui B)
Vv B).

and is generated as tight coupling breaks down on sma
scales where the photon diffusion length is comparable to the

wavelength. For the photons, amlsot.ropl.c sntgess.ls r.el.ated tI.(Popic scattering sources of the temperature and polarization
the quadrupole moments of the distributi®™ which isin ;o important for understanding the large angle behavior of

turn coupled to theE-parity pc_)lari.zationE(zm). The zeroth  the polarization and temperature polarization cross spectrum.
order expansion of the polarization”2) equationdEq.  Here last scattering is effectively instantaneous compared

These scaling relations between the metric and aniso-

(64)] gives with the scale of the perturbation and the tight coupling re-
NG mains a good approximation throug_h last scattering.
E(2m>: __(2m)' B(2m>:0’ (89) For the scalars, the Eu_Ier equatié®l) may be uged_to _
4 express the scalar velocity and hence the polarization in

. , terms of the effective temperature:
or PM=10{™  The quadrupole{=2) component of the

temperature hierarchyeq. (60)] then becomes, to lowest or-

der ink/ 7 0y= m;ﬁlf KO +me¥)d 7. (92

4 K 1 K Since mgi~1, % has the same sign B+ ¥ before
@(2m):§V -m’ 0", P““>=§v —-m? -@}" 0+ W itself can change signs, assuming reasonable initial
T 4 (©0) conditions. It then follows thaP(®) is also of the same sign
and is of order
for scalars and vectors. In the tight coupling limit, the scalar K
and vector sources of polarization traces the structure of the 0
photon-baryon fluid veI%city. For the tensors, P<°)~(kn);[®g ], (93

which is strongly suppressed férp<<1. The definite sign

(22): T3 p®=— 3 (91) leads to a definite prediction for the sign of the temperature
T T polarization cross correlation on large angles.
Combining Eqs(89) and(90), we see that polarization fluc- For the vectors
tuations are generally suppressed with respect to metric or
temperature fluctuations. They are proportional to the quad- P“EEEV (94)
rupole moments in the temperature which are suppressed by P

scattering. Only as the optical depth decreases can polariza-

tion be generated by scattering. Yet then the fraction of phoand is both suppressed and has a definite sign in relation to
tons affected also decreases. In the standard cold dark mattdéwe metric fluctuation. The tensor relation to the metric is
model, the polarization is less than 5% of the temperaturgiven in Eq.(91). In fact, in all three cases the dominant
anisotropy at its peaksee Fig. 6. source of temperature perturbations hasshenesign as the
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anisotropic scattering sourde™. From Eq.(80), differ- D. Dissipation
ences in the sense of the cross correlation between tempera- e generation of viscosity and heat conduction in the
ture and polarization thus arise only due to geometric reasongyiq gissipates fluctuations through the Euler equations with
in the projection of the sourcésee Fig. 5. On angles larger Egs.(90) and (95),
than the horizon at last scattering, the scalar and vector
C9EF is negative whereas the tensor cross power is positive . kK . 16 k2
[9,21]. (1+R)OV=KOP+(1+R)¥]+ -R?OY - 4—5,_@<l°>,
On smaller scales, the scalar polarization follows the ve- T T
locity in the tight coupling regime. It is instructive to recall
the solutions for the acoustic oscillations from E8d). The - (1) . k4 D
velocity oscillates/2 out of phase with the temperature and (1+R)O;"=(1+R)V— ; E:,k@) ' (97)
hence theE-polarization acoustic peaks will be out of phase

with the temperature peaksee Fig. 6. The cross correlation . )
oscillates as coké+ ¢)sinks+¢) and hence has twice the where we have dropped tla¢a factors under the assumption

frequency. Thus between peaks of the polarization and tenfat the expansion can be neglected during the dissipation
perature power spectréwhich representsoth peaks and Period. We have also employed HO) to eliminate higher
troughs of the temperature amplitydize cross correlation order terms in the vegtor equation. Wlth the continuity equa-
peaks. The structure of the cross correlation can be used ton for the scalars@”)=—-k0{/3—d [see Eq.(60),
measure the acoustic phage(¢$~0 for adiabatic mode)s /=0, m=0], we obtain

and how it changes with scale just as the temperature but, as

with the EE power spectruni27], has the added benefit of 1k R2 16 1 k2

probing slightly larger scales than the first temperature peak. E)O)Jr 3 (1T R)? + 151R E)O)Jr m@)g‘”
This property can help distinguish adiabatic and isocurvature T

models due to causal constraints on the generation of acous- K3 )

tic waves at the horizon at last scatter{i§]. =——V-0, (98

Finally, polarization also increases the viscosity of the 3

fluid by a factor of 6/5, which has significant effects for the
temperature. Even though the viscous imperfections of th& AN . ider is the behavior in the ab
fluid are small in the tight coupling region they can lead to N interesting case to consider Is the behavior in the ab-

significant dissipation of the fluctuations over tifsee Sec. S€NC€ of metric fluctuation¥’, @, andV._The result, immg—
|VgD). P e diately apparent from Eq$97) and(998), is that the acoustic

amplitude (=0) and vorticity (n=1) damp as
exrd — (KkIM)?], where

hich is a damped forced oscillator equation.

C. Entropy and heat conduction

Differences in the bulk velocities of the photons and bary-
ons®{™ -y ™ also represent imperfections in the fluid that
lead to entropy generation and heat conduction. The baryon
Euler equation$68) and(72) give

1

6

2_1f 1 R?>+16(1+R)/15
T (1+R?Z

1

R KD
0P — =1 Kp

T

2_4fd 11 99
=15) 977 TR (99

o, 8
U<B°>+avg°>—kqf},

Notice that dissipation is less rapid for the vectors compared
. with the scalars once the fluid becomes baryon dominated
v —V+ E(vgl)_v)}, (95 R>1 because of the absence of heat conduction damping. In
a principle, this allows vectors to contribute more CMB
anisotropies at small scales due to fluid contributions. In
practice, the dissipative cutoff scales are not very far apart
as_inceRSl at recombination.
Vectors may also dominate if there is a continual metric
source. There is a competition between the metric source and
I o= (8p.a—C2adp g/ dissipational sinks in Eq$97) and(98). Scalars retain con-
78= (0P8~ Cr80Py8) /P8 tributions t0® )+ ¥ of O[RW, (¥ — ®)/k?] (see Eq(85)

4 R o (© and[29]). The vector solution becomes
-5 mor) @O-ukdy (99

R
(1) 1)_
O —vg=—

i

which may be iterated to the desired order im. For scalar
fluctuations, this slippage leads to the generation of nonadi
batic pressure or entropy fluctuations

31+R
O (7)=e WK (n)? j "dy Velks (1% (100)
as the local number density of baryons to photons changes. 0
Equivalently, this can be viewed as heat conduction in the
fluid. For vorticity fluctuations, these processes do not occuivhich says that if variations in the metric are rapid compared
since there are no density, pressure, or temperature differemith the damping, the®{=V and damping does not oc-
tials in the fluid. cur.
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V. SCALING STRESS SEEDS T

10 £ (a) B,=1 Bz=o.5//\\,_\{r%

AT

Stress seeds provide an interesting example of the pro-
cesses considered above by which scalar, vector, and tensor
metric perturbations are generated and affect the temperature
and polarization of the CMB. They are also the means by
which cosmological defect models form structure in the uni- 0.1
verse. As part of the class of isocurvature models, all metric
fluctuations, including théscalay curvature perturbation, are
absent in the initial conditions. To explore the basic proper-
ties of these processes, we employ simple examples of stress
seeds under the restrictions they are causal and scale with the

horizon length. Realistic defect models may be constructed 1 10
by superimposing such simple sources in principle. x=kn

We begin by discussing the form of the stress seeds them- T
selves(Sec. V A and then trace the processes by which they 1000 £ (b) B,=0.2 B,=0.1 .~ 1r5>%/x/\/\

form metric perturbations(Sec. VB and hence CMB

anisotropieqgSec. V Q. 100

10

LU AL AL AL

A. Causal anisotropic stress

Stress perturbations are fundamental to seeded models of
structure formation because causality combined with energy- 0.1
momentum conservation forbids perturbations in the energy
or momentum density until matter has had the opportunity to
move around inside the horizaisee, e.g.[30]). Isotropic
stress, or pressure, only arises for scalar perturbations and
has been considered in detail [&7]. Anisotropic stress per-
turpatlons can also come in vector and tensqr types and it is FIG. 7. Metric fluctuations from scaling anisotropic stress seeds
their effect that we wish to study here. Combined they coveci

he full f ibiliti ilabl " ources. The same anisotropic stress s@ett solid linesa?r
the full range of possibilities available to causally seede fg/x) produce qualitatively different scaléshort dashed vector

models such as defects. _ _ (long dashey] and tensofsolid) metric perturbations. As discussed
We impose two constraints on the anisotropic Stres$, the text the behavior scales with the characteristic time of the

seeds: causality and scaling. Causality implies that COffe'%ourcexcocBl‘l. The left panela) shows a source which begins to

tions in the stresses must vanish outside the horizon. Anisatecay as soon as causally permitt€d£ 1) and the right paneb)

tropic stresses represent spatial derivatives of the momentutRe effect of delaying the deca®(=0.2). We have displayed the

density and hence vanish &$ for kp<1. Scaling requires results here for a photon-dominated universe for simplicity.

that the fundamental scale is set by the current horizon so

0.01

1 10 100
x=kn

that evolutionary effects are a function »+kz. A conve- B. Metric fluctuations
nient form that satisfies these criteria[ 7,31 Let us consider how the anisotropic stress seed sources
- enerate scalar, vector, and tensor metric fluctuations. The
4G a2a(™ =AM 512 (x), oy 9

form of Eq. (102 implies that the metric perturbations also
scale so thak® h|?=f(x=kz), wheref may be different
with functions for h=(¥,®,V,H). Thus scaling in the defect
field also implies scaling for the metric evolution and conse-
. . quently the purelygravitational effects in the CMB as we
fa(x)= 6 Jsm(le)_ Sin(B,x) ’ (102  shall see in the next section. Scattering introduces another
B5-Bil (B1X) (Box) fundamental scale, the horizon at last scatterigg which
we shall see breaks the scaling in the CMB.

with 0<(B;,B,)< 1. We caution the reader that though con- It is interesting to co_nsider differences in t_he evolutions

venient and complete, this choice of basis is not optimal fof©" the same anisotropic stress sef’=1 with By and

representing the currently popular set of defect models. |B2 S€t €qual for the scalars, vectors, and tensors. The basic

suffices for our purposes here since we only wish to illustratd®ndencies can be seen by considering the behavior at early

general properties of the anisotropy formation process. times x<x.. If_ x<1 as well, then the contributions to the
AssumingB,>B,, B, controls the characteristic time af- Metric fluctuations scale as

ter horizon crossing that the stresses are generated, i.e., the K32D/f5=0(x 1), KI2W/fa=0(x" 1)
peak infg scales ak7.=x.*B; ! (see Fig. J. B, controls B ’ B '
the rate of decline of the source at late times. In the general K3/ fg=0(x%), k3¥2H/fg=0(xb), (103

case, the seed may be a sum of different pairsByf,B,)
which may also differ between scalar, vector, and tensowhere fg=x? for x<1. Note that the sources of the scalar
components. fluctuations in this limit are the anisotropic stress and mo-
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mentum density rather than energy dengige Eq.(65)]. |
This behavior is displayed in Fig.(&@. For the scalar and M _oommem==EEETTTT
tensor evolution, the horizon scale enters in separately from 0

the characteristic tim&;. For the scalars, the stresses move
matter around and generate density fluctuations as

ps~X2ms. The result is that the evolution & and® steep- — E 3
ens byx? between Ex=<x.. For the tensors, the equation of 2 2k =
motion takes the form of a damped driven oscillator and n _3 = 3
whose amplitude follows the source. Thus the tensor scaling T 4 3
becomes shallower in this regime. Boe X, both the source - S N
and the metric fluctuations decay. Thus thaximummetric @ -5E ., F e
fluctuation scales as T 2F R 3
K¥2D/fg(x)=0(x2), K2 /fg(x)=0(xD), ‘i t BB ///,// VTN

-4 F // . \F\/\—E

K32/ fg(x) =O(x0),  k¥H/fg(xe)=0(x; ). S E L@’ il il S

(104 10 100 1000

{
For a late characteristic tine,>1, fluctuations in the sca- o
lars are larger than vectors or tensors for the same source FIG. 8. Temperature and polarization power spectra for a scal-
[see Fig. T)]. The ratio of acoustic to gravitational redshift iNg anisotropic stress seeds with the minimal characteristic time
contributions from the scalars scalexas by virtue of pres- B1=1 for scalars(S, solid, vectors(V, short dasher and tensors

sure support in Eq(85) and thus acoustic oscillations be- (T, long dashed Scalar temperature fluctuations at intermediate
come subdominant 28 decreases scales are dominated by acoustic contributions which then damp at
1 .

small scalesB-parity polarization contributions are absent for the
scalars, larger by an order of magnitude tl&parity contributions
C. CMB anisotropies for the vectors and similar to but smaller than eparity for the

Anisotropy and structure formation in causally seeded, of€nsors. Features in the vector and tensor spectra are artifacts of our
in fact any isocurvature model, proceeds by a qualitativelfho'ce of source and are unlikely to be present in a realistic model.
different route than the conventional adiabatic inflationaryThe2 background ~ cosmology is set td}o=1, h=05,
picture. As we have seen, fluctuations in the metric are onI)PBh =0.0125.
generated inside the horizon rather than at the initial condi-
tions (see Sec. VB Since CMB anisotropies probe scales erated and depends on how rapidly they are generated after
outside the horizon at last scattering, one would hope thdtorizon crossing. Inside the horizon at last scatte(ingre
this striking difference can be seen in the CMB. Unfortu-/=200), scalar fluctuations generate acoustic waves as dis-
nately, gravitational redshifts between last scattering and tosussed in Sec. IV which dominate for small characteristic
day masks the signature in the temperature anisotropy. THémes x.~1. On the other hand, these contributions are
scaling ansatz for the sources described in Sec. V A in facstrongly damped below the thickness of the last scattering
leads to near scale invariance in the large angle temperatuggirface by dissipational processes. Note that features in the
because fluctuations are stimulated in the same way for eastector and tensor spectrum shown here are artifacts of our
k mode as it crosses the horizon between last scattering arédnoice of source function. In a realistic model, the superpo-
the present. While these models generically leave a differergition of many sources of this type will wash out such fea-
signature in modes which cross the horizon before last scatures. The general tendencies, however, do not depend on the
tering [22,27, models which mimic adiabatic inflationary detailed form of the source. Note that vector and tensor con-
predictions can be constructggil]. tributions damp more slowly and hence may contribute sig-

Polarization provides a more direct test in that it can onlynificantly to the small-angle temperature anisotropy.
be generated through scattering. The large angle polarization Polarization can only be generated by scattering of a
reflects fluctuations near the horizon at last scattering and sguadrupole temperature anisotropy. For seeded models,
may provide a direct window on such causal, noninflationaryscales outside the horizon at last scattekmg <1 have not
models of structure formation. One must be careful, howformed significant metric fluctuationgsee, e.g., Fig. )7
ever, to separate scalar, vector, and tensor modes whose difence quadrupole fluctuations, generated from the metric
ferent large angle behaviors may obscure the issue. Let UBictuations through Eqg91), (93), and(94), are also sup-
now illustrate these considerations with the specific exfressed. The power itk of the polarization thus drops
amples introduced in the last section. sharply belowk 7, =1. This drop of course corresponds to a

The metric fluctuations produced by the seed sources getack of large angle power in the polarization. However, its
erate CMB anisotropies through the Boltzmann equatiorform at low / depends on geometric aspects of the projec-
(60). We display an example with; =1 andB,=0.5in Fig.  tion fromk to /. In these models, thiarge angle polariza-
8. Notice that scaling in the sources does indeed lead to neéipn is dominated by projection aliasing of power freamall
scale invariance in the large angle temperature but not thecalesk#,=1. The asymptotic expressions of E@8) thus
large angle polarization. The small rise toward the quadrudetermine the large angle behavior of the polarization:
pole for the tensor temperature is due to the contribution of2C .« /® for scalars EE), /* for vectors, and’? for ten-
long-wavelength gravity waves that are currently being gensors EE andBB); the cross spectrum®E) goes as”™ for
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FIG. 9. Temperature-polarization cross power spectrum for the C | ,//l///\——\l ]
model of Fig. 8. Independent of the nature of the sources, the cross — ""10 s "'1'00 E— "1'(')00_

power at angles larger than that subtended by the horizon at last
scattering is negative for the scalars and vectors and positive for the
tensors. The more complex structure for the scalars at small angular F|G. 10. Same as Fig. 8 except with a larger characteristic time
scales reflects the.correlatlon betvvgen the acoustic effective teng, =0.2, B,=0.1. Scalar gravitational redshift effects now domi-
perature and velocity at last scattering. nate over scalar acoustic as well as vector and tensor contributions
for the same stress source due the process by which stress pertur-
each contribution. For comparison, the scale invariant adiabations generate metric fluctuatiofsee Fig. 7.
batic inflationary prediction has scalar polarizatiob H)

. 4 g2
dropping off as”" and cross spectrun®(E) as/“ from Eq.  res. Because of the late generation of metric fluctuations in

I(:9'3) gecsausde ((): thedcclmtsr:ant poggnttial above th_g hodnizetg .these models, the peak in the polarization spectra is also

ig. 6. Seede _MOdeIs thus predict a more rapid reduction 1, withx.. Note, however, that the qualitative behavior

the scalar polarization for the same background cosmology.of the polarization described above remains the same.
Polarization can also help separate the three types of fluc- Although these examples do not exhaust the full range of

tuations. In accord with the g(_aneral pred|_ct|(ﬁ$ee Sec. possibilities for scaling seeded models, the general behavior
D), scala_rs proquce n@-pgnty polgrlzgtlon, whereas is representative. Equal amplitude anisotropic stress sources
vectorB parity domln_ate_f—panty polarization by a factor tend to produce similar large angle temperature anisotropies
of 6 and tensol parity is suppres_sed _by a factor of 8/13 i y,e gorce is active as soon as causally allowgs 1.

[see 'Eq..(23)]. Differences also ",g‘”se n Fhe 'temperature—l_arge angle scalar polarization is reduced as compared with
polarization cross power spect@f™ shown in Fig. 9. Inde- jiap aic inflationary models because of causal constraints
pendent of the nature of the source, above the angle thg, heir formation. This behavior is not as marked in vectors

horizon subtends 'at last scattering, scalar 'and vector teMy g tensors due to the projection geometry but the relative
perature perturbations from the last scattering surf@¢ 5 pjitudes of the-parity andB-parity polarization as well

are anticorrelated with polarization, whereas they are correzs the®E cross correlation can be used to separate them

lated for tensor perturbatiorisee Sec. IV B anf9]). Inside independently of assumptions for the seed sources. Of

the horizon, the scalar polarization follows the scalar veloce e in practice these tests at large angles will be difficult

ity which is 7/2 out of phase with the effective temperature ;, apply due to the smallness of the expected signal.
[see Eq(90)]. In the adiabatic model, scalar cross correlation  paignization increases the large angle polarization signal
reverses signs before the first acoustic peak, as COMPressigR -, se the quadrupole anisotropies that generate it can be
overcomes the grawtatlonal redshift of thg Sachs-Wolfe ef,,ch largef32]. This occurs since decoupling occurs gradu-
fect, gnhke the isocurvature mode(see Fig. 6 and28]). ally and the scattering is no longer rapid enough to suppress
The sign test to distinguish scalars fr_om tensors must thus b§nisotropies. The prospects for separating the scalars, vec-
performed on scales larger than twice the first peak. Cong,rs and tensors based on polarization consequently also im-
versely, to use the cross correlation to distinguish ad|abat|5rove[33]_
from isocurvature fluctuations, the scalar and tensor contri- ., angles smaller than that subtended by the horizon at
butions must be separated. , last scattering, the relative contributions of these effects de-
HO",‘)’ do these results change with the model for theyengs on a competition between scalar gravitational and
seeds? As we increase the characteristic ¥gby decreas-  5coustic effects and the differences in the generation and

ing B,=0.2, the main effect comes from differences in the 4amping behavior of the scalar, vector, and tensor perturba-
generation of metric fluctuations discussed in Sec. V B. Fofjgns.

the same amplitude anisotropic stress, scalar contributions
dominate the vector and tensor contributions by factors of
x.=B; ! [see Eq(104) and Fig. 1Q. Note, however, that the
scalar contributions come from the gravitational redshifts be- We have provided a new technique for the study of tem-
tween last scattering and today rather than the acoustic operature and polarization anisotropy formation in the CMB
cillations (see Sec. IV A and hence produce no strong fea- which introduces a simple and systematic representation for

VI. DISCUSSION
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their angular distributions. The main virtue of this approachsources: the metric fluctuatidaia the gravitational redshift
is that the gravitational and scattering sources are directlyhe intrinsic temperature at last scattering, the baryon veloc-
related to observable properties in the CMB. One can theity at last scatteringvia the Doppler effe¢t and the tem-
explore properties that aiedependenbf the source, which  perature and polarization quadrupoles at last scattéfiiag
tell us the broad framework, e.g., the classical cosmologicahe angular dependence of Compton scatteriAg such, it
parameters and the nature of fluctuations in the early unipetter reveals the power of the CMB to probe the nature of
verse, and identify properties that adependenton the  these sources and extract information on the process of struc-
source, which can help pin down the model for structureyre formation in the universe. As an example, we have ex-
formation. An example of the former is the fact that Scalarpk)red how genera| properties of sca"ng stress seeds found
fluctuations generate no magnetic parity polariza{i8®],  in cosmological defect models manifest themselves in the
vectors generate mainly magnetic parity polarization, andemperature and polarization power spectra. The framework
tensors generate comparable but somewhat smaller magneiig have provided here should be useful for determining the
parity polarization. Large angle polarization of the threerghuyst signatures of specific models for structure formation
components are also constrained by model-independent gegs well as the reconstruction of the true model for structure
metric arguments in its slope and its correlation with thefgrmation from the data as it becomes available.
temperature anisotropy. If the scalar contributions can be iso-
lated from the vectors, tensors, and other foreground sources
of polarization from these and other means, these constraints
translate into a robust distinction between isocurvature and
adiabatic models for structure formation. We would like to thank Uros Seljak and Matias Zaldar-
In our representation, the temperature and polarizatiomiaga for many useful discussions. W.H. was supported by
distributions are projections on the sky of four simplethe W.M. Keck Foundation.
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