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A total angular momentum representation simplifies the radiation transport problem for temperature and
polarization anisotropy in the cosmic microwave background~CMB!. Scattering terms couple only the quad-
rupole moments of the distributions and each moment corresponds directly to the observable angular pattern on
the sky. We develop and employ these techniques to study the general properties of anisotropy generation from
scalar, vector, and tensor perturbations to the metric and the matter, both in the cosmological fluids and from
any seed perturbations~e.g., defects! that may be present. The simpler, more transparent form and derivation
of the Boltzmann equations brings out the geometric and model-independent aspects of temperature and
polarization anisotropy formation. Large angle scalar polarization provides a robust means to distinguish
between isocurvature and adiabatic models for structure formation in principle. Vector modes have the unique
property that the CMB polarization is dominated by magnetic-type parity at small angles~a factor of 6 in
power compared with 0 for the scalars and 8/13 for the tensors! and hence potentially distinguishable inde-
pendent of the model for the seed. The tensor modes produce a different sign from the scalars and vectors for
the temperature-polarization correlations at large angles. We explore conditions under which one perturbation
type may dominate over the others including a detailed treatment of the photon-baryon fluid before recombi-
nation.@S0556-2821~97!00614-0#

PACS number~s!: 98.70.Vc, 98.80.Es

I. INTRODUCTION

The cosmic microwave background~CMB! is fast becom-
ing the premier laboratory for early universe and classical
cosmology. With the flood of high-quality data expected in
the coming years, most notably from the new MAP@1# and
Planck Surveyor@2# satellite missions, it is imperative that
theoretical tools for their interpretation be developed. The
corresponding techniques involved should be as physically
transparent as possible so that the implications for cosmol-
ogy will be readily apparent from the data.

Toward this end, we reconsider the general problem of
temperature and polarization anisotropy formation in the
CMB. These anisotropies arise from gravitational perturba-
tions which separate into scalar~compressional!, vector~vor-
tical!, and tensor~gravity wave! modes. In previous treat-
ments, the simple underlying geometrical distinctions and
physical processes involved in their appearance as CMB
anisotropies has been obscured by the choice of representa-
tion for the angular distribution of the CMB. In this paper,
we systematically develop a new representation, thetotal
angular momentumrepresentation, which puts vector and
tensor modes for the temperature and all polarization modes
on an equal footing with the familiar scalar temperature
modes. For polarization, this completes and substantially
simplifies the ground-breaking work of@3,4#. Although we
consider only flat geometries here for simplicity, the frame-
work we establish allows for straightforward generalization
to open geometries@5–8# unlike previous treatments.

The central idea of this method is to employ only observ-
able quantities, i.e., those which involve the total angular
dependence of the temperature and polarization distributions.

By applying this principle from beginning to end, we obtain
a substantial simplification of the radiation transport problem
underlying anisotropy formation. Scattering terms couple
only the quadrupole moments of the temperature and polar-
ization distributions. Each moment of the distribution corre-
sponds to angular moments on the sky which allows a direct
relation between the fundamental scattering and gravitational
sources and the observable anisotropy through their integral
solutions.

We study the means by which gravitational perturbations
of the scalar, vector, or tensor type, originating in either the
cosmological fluids or seed sources such as defects, form
temperature, and polarization anisotropies in the CMB. As is
well established@3,4#, scalar perturbations generate only the
so-called electric parity mode of the polarization. Here we
show that conversely the ratio of magnetic to electric parity
power is a factor of 6 for vectors, compared with 8/13 for
tensors,independentof their source. Furthermore, the large
angle limits of polarization must obey simple geometrical
constraints for its amplitude that differ between scalars, vec-
tors, and tensors. The sense of the temperature-polarization
cross correlation at large angle is also determined by geomet-
ric considerations which separate the scalars and vectors
from the tensors@9#. These constraints are important since
large-angle polarization unlike large-angle temperature
anisotropies allow one to see directly scales above the hori-
zon at last scattering. Combined with causal constraints, they
provide robust signatures of causal isocurvature models for
structure formation such as cosmological defects.

In Sec. II we develop the formalism of the total angular
momentum representation and lay the groundwork for the
geometric interpretation of the radiation transport problem
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and its integral solutions. We further establish the relation-
ship between scalars, vectors, and tensors and the orthogonal
angular modes on the sphere. In Sec. III, we treat the radia-
tion transport problem from first principles. The total angular
momentum representation simplifies both the derivation and
the form of the evolution equations for the radiation. We
present the differential form of these equations, their integral
solutions, and their geometric interpretation. In Sec. IV we
specialize the treatment to the tight-coupling limit for the
photon-baryon fluid before recombination and show how
acoustic waves and vorticity are generated from metric per-
turbations and dissipated through the action of viscosity, po-
larization, and heat conduction. In Sec. V, we provide spe-
cific examples inspired by seeded models such as
cosmological defects. We trace the full process that transfers
seed fluctuations in the matter through metric perturbations
to observable anisotropies in the temperature and polariza-
tion distributions. For reference, Table I provides a list of
commonly used symbols.

II. NORMAL MODES

In this section, we introduce the total angular momentum
representation for the normal modes of fluctuations in a flat
universe that are used to describe the CMB temperature and
polarization as well as the metric and matter fluctuations.
This representation greatly simplifies the derivation and form
of the evolution equations for fluctuations in Sec. III. In par-
ticular, the angular structure of modes corresponds directly
to the angular distribution of the temperature and polariza-
tion, whereas the radial structure determines how distant
sources contribute to this angular distribution.

The new aspect of this approach is the isolation of the
total angular dependence of the modes by combining the
intrinsic angular structure with that of the plane-wave spatial
dependence. This property implies that the normal modes
correspond directly to angular structures on the sky as op-
posed to the commonly employed technique that isolates
portions of theintrinsic angular dependence and hence a lin-
ear combination of observable modes@10#. Elements of this
approach can be found in earlier works~e.g.,@6,7,11# for the
temperature and@3# for the scalar and tensor polarization!.
We provide here a systematic study of this technique which
also provides for a substantial simplification of the evolution
equations and their integral solution in Sec. III C, including
the terms involving the radiation transport of the CMB. We
discuss in detail how the monopole, dipole, and quadrupole
sources that enter into the radiation transport problem project
as anisotropies on the sky today.

Readers not interested in the formal details may skip this
section on first reading and simply note that the temperature
and polarization distribution is decomposed into the modes
Yl
mexp(ikW•xW) and 62Yl

mexp(ikW•xW) with m50,61,62 for sca-
lar, vectors, and tensor metric perturbations, respectively. In
this representation, the geometric distinction between scalar,
vector, and tensor contributions to the anisotropies is clear as
is the reason why they do not mix. Here the62Yl

m are the
spin-2 spherical harmonics@12# and were introduced to the
study of CMB polarization by@3#. The radial decompositions
of the modes Yl 8

m j l 8
(l m)(kr) and 62Yl 8

m
@e l 8

(m)(kr)

6 ib l 8
(m)(kr)] ~for l 52) isolate the total angular dependence

by combining the intrinsic and plane wave angular momenta.

A. Angular modes

In this section, we derive the basic properties of the an-
gular modes of the temperature and polarization distributions
that will be useful in Sec. III to describe their evolution. In
particular, the Clebsch-Gordan relation for the addition of
angular momentum plays a central role in exposing the sim-
plicity of the total angular momentum representation.

A scalar, or spin-0 field on the sky such as the tempera-
ture can be decomposed into spherical harmonicsYl

m . Like-

TABLE I. Commonly used symbols.m50,61,62 for the sca-
lars, vectors, and tensors. For the fluid variablesf→g for the pho-
tons, f→B for the baryons, andgB for the photon-baryon fluid.
X5Q, E, B for the temperature-polarization power spectra.

Symbol Definition Eq.

C,F Scalar metric ~36!
Q l

(m) DT/T moments ~55!
a,b,g Euler angles ~7!

b l
(m) ,e l

(m) RadialB,E function ~16!
d f Fluid density perturbation ~39!
h Conformal time ~35!

sk l
m Clebsch-Gordan coefficient ~59!

r f ,rs Fluid, seed density ~39!
p f
(m) ,p f

(m) Fluid, seed anisotropic stress ~39!
u,f Spherical coordinates ink̂ frame ~10!

t Thomson optical depth ~49!
Bl
(m) B-pol. moments ~55!

CW Collision term ~50!

Cl
XX̃(m) XX̃ power spectrum fromm ~56!

El
(m) E-pol. moments ~55!

GW Gravitational redshift term ~54!

Gl
m Temperature basis ~10!

62Gl
m Polarization basis ~11!

H Tensor metric ~38!
M6 ~Pauli! matrix basis ~1!

P(m) Anisotropic scattering source ~62!
Q(0) Scalar basis ~26!
Qi
(1) Vector basis ~28!

Qi j
(2) Tensor basis ~32!
R B/g momentum density ~67!
Sl
(m) Temperature source ~61!
V Vector metric ~37!

sYl
m Spin-s harmonics ~2!

j l
(l 8m) Radial temp function ~15!

kW Wavenumber ~10!

kD
(m) Damping wavenumber ~99!
l Multipole ~2!

meff Effective mass 11R ~81!

n̂ Propagation direction ~12!

pf ,ps Fluid, seed pressure ~39!

v f
(m) Fluid velocity ~39!

vs
(m) Seed momentum density ~39!
wf pf /r f ~66!
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wise a spin-s field on the sky can be decomposed into the
spin-weighted spherical harmonicssYl

m and a tensor con-

structed out of the basis vectorsêu6 i êf , êr @12#. The basis
for a spin-2 field such as the polarization is62Yl

mM6 @3,4#,
where

M6[
1

2
~ êu7 i êf! ^ ~ êu7 i êf!, ~1!

since it transforms under rotations as a 232 symmetric
traceless tensor. This property is more easily seen through
the relation to the Pauli matricesM65s37 is1 in spherical
coordinates (u,f). The spin-s harmonics are expressed in
terms of rotation matrices1 as @12#

sYl
m~u,f!5S 2l 11

4p D 1/2D2s,m
l ~f,u,0!

5F2l 11

4p

~ l 1m!! ~ l 2m!!

~ l 1s!! ~ l 2s!! G1/2

3~sinu/2!2l (
r

S l 2s

r D S l 1s

r1s2mD
3~21! l 2r2seimf~cotu/2!2r1s2m. ~2!

The rotation matrix

D2s,m
l ~f,u,c!5A4p/~2l 11!sYl

m~u,f!e2 isc

represents rotations by the Euler angles (f,u,c). Since the
spin-2 harmonics will be useful in the following sections, we
give their explicit form in Table II forl 52; the higherl
harmonics are related to the ordinary spherical harmonics as

62Yl
m5F ~ l 22!!

~ l 12!! G
1/2F]u

22cotu]u6
2i

sinu
~]u2cotu!]f

2
1

sin2u
]f
2 GYlm . ~3!

By virtue of their relation to the rotation matrices, the spin
harmonics satisfy the compatibility relation with spherical
harmonics 0Yl

m5Yl
m , the conjugation relationsYl

m*5

(21)m1s
2sYl

2m , the orthonormality relation

E dV~sYl
m* !~sYl

m!5d l ,l 8dm,m8, ~4!

the completeness relation

(
l ,m

@sYl
m* ~u,f!#@sYl

m~u8,f8!#

5d~f2f8!d~cosu2cosu8!, ~5!

the parity relation

sYl
m→~21! l 2sYl

m , ~6!

the generalized addition relation

(
m

@s1Yl
m* ~u8,f8!#@s2Yl

m~u,f!#

5A2l 11

4p
@s2Yl

2s1~b,a!#e2 is2g, ~7!

which follows from the group multiplication property of ro-
tation matrices which relates a rotation from (u8,f8)
through the origin to (u,f) with a direct rotation in terms of
the Euler angles (a,b,g) defined in Fig. 1, and the Clebsch-
Gordan relation

~s1Yl 1
m1!~s2Yl 2

m2!5
A~2l 111!~2l 211!

4p

3 (
l ,m,s

^l 1 ,l 2 ;m1 ,m2ul 1 ,l 2 ;l ,m&

1See e.g., Sakurai@13#, but note that our conventions differ from
those of Jackson@14# for Yl

m by (21)m. The correspondence to@4#
is 62Yl m5@(l 22)!/(l 12)!#1/2@W(l m)6 iX (l m)#.

TABLE II. Quadrupole (l 52) harmonics for spin-0 and 2.

m Y2
m

2Y2
m

2 1

4
A15/2psin2ue2if

1

8
A5/p~12cosu!2e2if

1 A15/8psinucosueif 1

4
A5/psinu~12cosu!eif

0 1

2
A5/4p~3cos2u21!

3

4
A5/6psin2u

-1 2A15/8psinucosue2if 1

4
A5/psinu~11cosu!e2if

-2 1

4
A15/2psin2ue22if

1

8
A5/p~11cosu!2e22if

FIG. 1. Addition theorem and scattering geometry. The addition
theorem for spin-s harmonics Eq.~7! is established by their relation
to rotations Eq.~2! and by noting that a rotation from (u8,f8)
through the origin~pole! to (u,f) is equivalent to a direct rotation
by the Euler angles (a,b,g). For the scattering problem of Eq.

~48!, these angles represent the rotation bya from thek̂5ê3 frame
to the scattering frame, by the scattering angleb, and byg back

into the k̂ frame.
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^l 1 ,l 2 ;2s1 ,2s2ul 1 ,l 2 ;l ,2s&

3A 4p

2l 11
~sYl

m!. ~8!

It is worthwhile to examine the implications of these
properties. Note that the orthogonality and completeness re-
lations Eqs.~4! and~5! do not extend to different spin states.
Orthogonality betweens562 states is established by the
Pauli basis of Eq.~1! M6*M651 andM6*M750. The parity
equation~6! tells us that the spin flips under a parity trans-
formation so that, unlike thes50 spherical harmonics, the
higher spin harmonics are not parity eigenstates. Orthonor-
mal parity states can be constructed as@3,4#

1

2
@2Yl

mM1622Yl
mM2#, ~9!

which have ‘‘electric-type’’ (21)l and ‘‘magnetic-type’’
(21)l 11 parity for the (6) states, respectively. We shall
see in Sec. III C that the polarization evolution naturally
separates into parity eigenstates. The addition property will
be useful in relating the scattering angle to coordinates on
the sphere in Sec. III B. Finally the Clebsch-Gordan relation
Eq. ~8! is central to the following discussion and will be used
to derive the total angular momentum representation in Sec.
II B and evolution equations for angular moments of the ra-
diation in Sec. III C.

B. Radial modes

We now complete the formalism needed to describe the
temperature and polarization fields by adding a spatial de-
pendence to the modes. By further separating theradial de-
pendence of the modes, we gain insight on their full angular
structure. This decomposition will be useful in constructing
the formal integral solutions of the perturbation equations in
Sec. III C. We begin with its derivation and then proceed to
its geometric interpretation.

1. Derivation

The temperature and polarization distribution of the radia-
tion is in general a function of both spatial positionxW and
anglenW defining the propagation direction. In flat space, we
know that plane waves form a complete basis for the spatial
dependence. Thus a spin-0 field, as with the temperature,
may be expanded in

Gl
m5~2 i ! lA 4p

2l 11
Yl
m~ n̂!exp~ ikW•xW !, ~10!

where the normalization is chosen to agree with the standard
Legendre polynomial conventions form50. Likewise a
spin-2 field, as with the polarization, may be expanded in

62Gl
m5~2 i ! lA 4p

2l 11
@62Yl

m~ n̂!#exp~ ikW•xW !. ~11!

The plane wave itself also carries an angular dependence,
of course,

exp~ ikW•xW !5(
l

~2 i ! l A4p~2l 11! j l ~kr !Yl
0 ~ n̂!,

~12!

whereê35 k̂ andxW52rn̂ ~see Fig. 2!. The sign convention
for the direction is opposite to direction on the sky to be in
accord with the direction of propagation of the radiation to
the observer. Thus the extra factor of (21)l comes from the
parity relation Eq.~6!.

The separation of the mode functions into an intrinsic
angular dependence and plane-wave spatial dependence is
essentially a division into spin (sYl 8

m ) and orbital (Yl
0 ) an-

gular momentum. Since only the total angular dependence is
observable, it is instructive to employ the Clebsch-Gordan
relation of Eq.~8! to add the angular momenta. In general
this couples the states betweenul 2l 8u and l 1l 8. Corre-
spondingly a state of definite totall will correspond to a
weighted sum ofj ul 2l 8u to j l 1l 8 in its radial dependence.
This can be reexpressed in terms of thej l using the recur-
sion relations of spherical Bessel functions:

j l ~x!

x
5

1

2l 11
@ j l 21~x!1 j l 11~x!#,

j l8 ~x!5
1

2l 11
@ l j l 21~x!2~ l 11! j l 11~x!#. ~13!

We can then rewrite

Gl 8
m

5(
l

~2 i ! l A4p~2l 11! j l
~ l 8m!~kr !Yl

m~ n̂!, ~14!

where the lowest (l 8,m) radial functions are

FIG. 2. Projection effects. A plane wave exp(ikW•xW) can be de-
composed intoj l (kr)Yl

0 and hence carries an ‘‘orbital’’ angular
dependence. A plane wave source at distancer thus contributes
angular power tol 'kr at u5p/2 but also to larger angles
l !kr at u50 which is encapsulated into the structure ofj l ~see
Fig. 3!. If the source has an intrinsic angular dependence, the dis-
tribution of power is altered. For an aligned dipoleY1

0}cosu ~‘‘fig-
ure eights’’! power atu5p/2 or l 'kr is suppressed. These argu-
ments are generalized for other intrinsic angular dependences in the
text.
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j l
~00!~x!5 j l ~x!, j l

~10!~x!5 j l8 ~x!,

j l
~20!~x!5

1

2
@3 j l9 ~x!1 j l ~x!#,

j l
~11!~x!5Al ~ l 11!

2

j l ~x!

x
,

j l
~21!~x!5A3l ~ l 11!

2 S j l ~x!

x D 8
,

j l
~22!~x!5A3

8

~ l 12!!

~ l 22!!

j l ~x!

x2
~15!

with primes representing derivatives with respect to the ar-
gument of the radial functionx5kr. These modes are shown
in Fig. 3.

Similarly for the spin62 functions withm.0 ~see Fig.
4!,

62G2
m5(

l
~2 i ! l A4p~2l 11!@e l

~m!~kr !

6 ib l
~m!~kr !#62Yl

m~ n̂!, ~16!

where

e l
~0!~x!5A3

8

~ l 12!!

~ l 22!!

j l ~x!

x2
,

e l
~1!~x!5

1

2
A~ l 21!~ l 12!F j l ~x!

x2
1
j l8 ~x!

x G ,
e l

~2!~x!5
1

4F2 j l ~x!1 j l9 ~x!12
j l ~x!

x2
14

j l8 ~x!

x G , ~17!

which corresponds to thel 85l ,l 62 coupling and

b l
~0!~x!50,

b l
~1!~x!5

1

2
A~ l 21!~ l 12!

j l ~x!

x
,

b l
~2!~x!5

1

2F j l8 ~x!12
j l ~x!

x G , ~18!

which corresponds to thel 85l 61 coupling. The corre-
sponding relation for negativem involves a reversal in sign
of theb functions:

e l
~2m!5e l

~m! ,

b l
~2m!52b l

~m! . ~19!

These functions are plotted in Fig. 4. Note thate l
(0)5 j l

(2) is
displayed in Fig. 3.

2. Interpretation

The structure of these functions is readily apparent from
geometrical considerations. A single plane wave contributes

to a range of angular scales froml 'kr at u5p/2 to larger
anglesl !kr as u→(0,p), where k̂•n̂5cosu ~see Fig. 1!.
The power inl of a single plane wave shown in Fig. 3~a!
~top panel! drops to zerol *kr, has a concentration of
power aroundl 5kr, and an extended low amplitude tail to
l &kr.

Now if the plane wave is multiplied by an intrinsic angu-
lar dependence, the projected power changes. The key to
understanding this effect is to note that the intrinsic angular
behavior is related to power inl as

u→~0,p!⇔l !kr,

u→p/2⇔l 'kr. ~20!

FIG. 3. Radial spin-0~temperature! modes. The angular power
in a plane wave~left panel, top! is modified due to the intrinsic
angular structure of the source as discussed in the text. The left
panel corresponds to the power in scalar (m50) monopoleG0

0,
dipole G1

0, and quadrupoleG2
0 sources~top to bottom!; the right

panel to that in vector (m51) dipoleG1
61 and quadrupoleG2

61

sources and a tensor (m52) quadrupoleG2
62 source~top to bot-

tom!. Note the differences in how sharply peaked the power is at
l 'kr and how fast power falls asl !kr. The argument of the
radial functionskr5100 here.
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Thus factors of sinu in the intrinsic angular dependence sup-
press power atl !kr ~‘‘aliasing suppression’’!, whereas fac-
tors of cosu suppress power atl 'kr ~‘‘projection suppres-
sion’’!. Let us consider first am50 dipole contributionY1

0

}cosu ~see Fig. 2!. The cosu dependence suppresses power
in j l

(10) at the peak in the plane-wave spectruml 'kr @com-
pare Fig. 3~a! top and middle panels#. The remaining power
is broadly distributed forl &kr. The same reasoning applies
for Y2

0 quadrupole sources which have an intrinsic angular
dependence of 3cos2u21. Now the minimum falls at
u5cos21(1/A3) causing the double peaked form of the
power in j l

(20) shown in Fig. 3~a! ~bottom panel!. This series
can be continued to higherGl

0 and such techniques have
been used in the free streaming limit for temperature
anisotropies@11#.

Similarly, the structures ofj l
(11) , j l

(21) , and j l
(22) are ap-

parent from the intrinsic angular dependences of theG1
1,

G2
1, andG2

2 sources:

Y1
1}sinueif, Y2

1}sinucosueif, Y2
2}sin2ue2if,

~21!

respectively. The sinu factors imply that asm increases, low
l power in the source decreases@compare Figs. 3~a! and
3~b! top panels#. G2

1 suffers a further suppression at
u5p/2 (l 'kr) from its cosu factor.

There are two interesting consequences of this behavior.
The sharpness of the radial function aroundl 5kr quantifies
how faithfully features in thek-space spectrum are preserved
in l space. If all else is equal, this faithfulness increases with
umu for Gumu

m due to aliasing suppression from sinmu. On the
other hand, features inGumu11

m are washed out in comparison
due projection suppression from the cosu factor.

Secondly, even if there are no contributions from long
wavelength sources withk!l /r , there will still be large
angle anisotropies atl !kr which scale as

@ l j l
~ l 8m!#2}l 212umu. ~22!

This scaling puts an upper bound on how steeply the power
can rise withl that increaseswith umu and hence a lower
bound on the amount of large relative to small angle power
thatdecreaseswith umu.

The same arguments apply to the spin-2 functions with
the added complication of the appearance of two radial func-
tions e l andb l . The addition of spin-2 angular momenta
introduces ab contribution fromeimf except form50. For
m561, theb contribution strongly dominates over thee
contributions; whereas form562, e contributions are
slightly larger thanb contributions~see Fig. 4!. The ratios
reach the asymptotic values of

( l @ l b l
~m!#2

( l @ l e l
~m!#2

'H 6, m561,

8/13, m562, ~23!

for fixed kr@1. These considerations are closely related to
the parity of the multipole expansion. Although the orbital
angular momentum does not mix states of different spin, it
does mix states of different parity since the plane wave itself
does not have definite parity. A state with ‘‘electric’’ parity
in the intrinsic angular dependence@see Eq.~9!# becomes

2G2
mM1122G2

mM25(
l

~2 i ! l A4p~2l 11!$e l
~m!

3@2Yl
mM1122Yl

mM2#1 ib l
~m!

3@2Yl
mM1222Yl

mM2#%. ~24!

Thus the addition of angular momentum of the plane wave
generates ‘‘magnetic’’B-type parity of amplitudeb l out of
an intrinsically ‘‘electric’’ E-type source as well asE-type
parity of amplitudee l . Thus the behavior of the two radial
functions has significant consequences for the polarization
calculation in Sec. III C and implies thatB-parity polariza-
tion is absent for scalars, dominant for vectors, and compa-
rable to but slightly smaller than theE parity for tensors.

Now let us consider the lowl !kr tail of the spin-2
radial functions. Unlike the spin-0 projection, the spin-2 pro-
jection allows increasingly more power atu→0 and/orp,
i.e., l !kr, asumu increases~see Table I and note the factors
of sinu). In this limit, the power in a plane wave fluctuation
goes as

@ l e l
~m!#2}l 622umu, @ l b l

~m!#2}l 622umu. ~25!

Comparing these expressions with Eq.~22!, we note that the
spin-0 and spin-2 functions have an opposite dependence on
m. The consequence is that the relative power in large vs
small angle polarization tends to decrease from them52
tensors to them50 scalars.

Finally it is interesting to consider the cross power be-
tween spin-0 and spin-2 sources because it will be used to
represent the temperature-polarization cross correlation.

FIG. 4. Radial spin-2~polarization! modes. Displayed is the
angular power in a plane-wave spin-2 source. The top panel shows
that vector (m51, upper panel! sources are dominated by
B-parity contributions, whereas tensor (m52, lower panel! sources
have comparable but less power in theB parity. Note that the power
is strongly peaked atl 5kr for the B-parity vectors andE-parity
tensors. The argument of the radial functionskr5100 here.

56 601CMB ANISOTROPIES: TOTAL ANGULAR MOMENTUM METHOD



Again interesting geometric effects can be identified~see
Fig. 5!. Form50, the power inj l

(00)e l
(0) correlates~Fig. 5,

top panel solid line, positive definite!; for m51, j l
(11)e l

(1)

oscillates~short dashed line!, and form52, j l
(22)e l

(2) anticor-
relates~long dashed line, negative definite!. The cross power

involves only e l
(m) j l

(l 8m) due to the opposite parity of the
b l
(m) modes.
These properties will become important in Secs. III and

IV B and translates into cross power contributions withop-
positesign between the scalar monopole temperature cross
polarization sources and tensor quadrupole temperature cross
polarization sources@9#. Vector dipole temperature and po-
larization sources do not contribute strongly to the cross
power since correlations and anticorrelations inj l

(11)e l
(1) will

cancel when modes are superimposed. The same is true of
the scalar dipole temperature cross polarizationj l

(10)e l
(0) as is

apparent from Figs. 3 and 4. The vector cross power is domi-
nated by quadrupole temperature and polarization sources
j l
(21)e l

(1) ~Fig. 5, lower panel!.

C. Perturbation classification

As is well known~see, e.g.,@7,15#!, a general symmetric
tensor such as the metric and stress-energy perturbations can
be separated into scalar, vector, and tensor pieces through
their coordinate transformation properties. We now review
the properties of their normal modes so that they may be
related to those of the radiation. We find that the
m50,61,62 modes of the radiation couple to the scalar,
vector, and tensor modes of the metric. Although we con-
sider flat geometries here, we preserve a covariant notation
that ensures straightforward generalization to open geom-

etries through the replacement ofd i j with the curved three
metric and ordinary derivatives with covariant derivatives
@6,7#.

1. Scalar perturbations

Scalar perturbations in a flat universe are represented by
plane wavesQ(0)5exp(ikW•xW), which are the eigenfunctions
of the Laplacian operator

¹2Q~0!52k2Q~0! ~26!

and their spatial derivatives. For example, vector and sym-
metric tensor quantities such as velocities and stresses based
on scalar perturbations can be constructed as

Qi
~0!52k21¹ iQ

~0!,

Qi j
~0!5Fk22¹ i¹ j1

1

3
d i j GQ~0!. ~27!

Since¹W 3QW (0)50, velocity fields based on scalar perturba-
tions are irrotational. Notice thatQ(0)5G0

0, niQi
(0)5G1

0 , and
ninjQi j

(0)}G2
0 , where the coordinate system is defined by

ê35 k̂. From the orthogonality of the spherical harmonics, it
follows that scalars generate onlym50 fluctuations in the
radiation.

2. Vector perturbations

Vector perturbations can be decomposed into harmonic
modesQi

(61) of the Laplacian in the same manner as the
scalars,

¹2Qi
~61!52k2Qi

~61! , ~28!

which satisfy a divergenceless condition

¹ iQi
~61!50. ~29!

A velocity field based on vector perturbations thus represents
vorticity, whereas scalar objects such as density perturba-
tions are entirely absent. The corresponding symmetric ten-
sor is constructed out of derivatives as

Qi j
~61!52

1

2k
~¹ iQj

~61!1¹ jQi
~61!!. ~30!

A convenient representation is

Qi
~61!52

i

A2
~ ê16 i ê2! iexp~ ikW•xW !. ~31!

Notice thatniQi
(61)5G1

61 andninjQi j
(61)}G2

61 . Thus vec-
tor perturbations stimulate them561 modes in the radia-
tion.

3. Tensor perturbations

Tensor perturbations are represented by Laplacian eigen-
functions

¹2Qi j
~62!52k2Qi j

~62! , ~32!

FIG. 5. Spin-03 Spin-2 ~temperature3 polarization! modes.
Displayed is the cross angular power in plane wave spin-0 and
spin-2 sources. The top panel shows that a scalar monopole
(m50) source correlates with a scalar spin-2~polarization quadru-
pole! source, whereas the tensor quadrupole (m52) anticorrelates
with a tensor spin-2 source. Vector dipole (m51) sources oscillate
in their correlation with vector spin-2 sources and contribute negli-
gible once modes are superimposed. One must go to vector quad-
rupole sources~lower panel! for a strong correlation. The argument
of the radial functionskr5100 here.
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which satisfy a transverse-traceless condition

d i j Qi j
~62!5¹ iQi j

~62!50, ~33!

that forbids the construction of scalar and vector objects such
as density and velocity fields. The modes take on an explicit
representation of

Qi j
~62!52A3

8
~ ê16 i ê2! i ^ ~ ê16 i ê2! jexp~ ikW•xW !. ~34!

Notice thatninjQi j
(62)5G2

62 and thus tensors stimulate the
m562 modes in the radiation.

In the following sections, we often only explicitly show
the positivem value with the understanding that its opposite
takes on the same form except where otherwise noted~i.e., in
theB-type polarization where a sign reversal occurs!.

III. PERTURBATION EVOLUTION

We discuss here the evolution of perturbations in the nor-
mal modes of Sec. II. We first review the decomposition of
perturbations in the metric and stress-energy tensor into sca-
lar, vector, and tensor types~Sec. III A!. We further divide
the stress-energy tensor into fluid contributions, applicable to
the usual particle species, and seed perturbations, applicable
to cosmological defect models. We then employ the tech-
niques developed in Sec. II to obtain a new, simpler deriva-
tion and form of the radiation transport of the CMB under
Thomson scattering, including polarization~Sec. III B!, than
that obtained first by@16#. The complete evolution equations,
given in Sec. III C, are again substantially simpler in form
than those of prior works where they overlap@3,4,10,11# and
treats the case of vector perturbations. Finally in Sec. III D,
we derive the formal integral solutions through the use of the
radial functions of Sec. II B and discuss their geometric in-
terpretation. These solutions encapsulate many of the impor-
tant results.

A. Perturbations

1. Metric tensor

The ultimate source of CMB anisotropies is the gravita-
tional redshift induced by the metric fluctuationhmn :

gmn5a2~hmn1hmn!, ~35!

where the zeroth component represents conformal time
dh5dt/a and, in the flat universe considered here,hmn is
the Minkowski metric. The metric perturbation can be fur-
ther broken up into the normal modes of scalar, vector, and
tensor types as in Sec. II C. Scalar and vector modes exhibit
gauge freedom which is fixed by an explicit choice of the
coordinates that relate the perturbation to the background.
For the scalars, we choose the Newtonian gauge~see, e.g.,
@15,17#!

h0052CQ~0!, hi j52FQ~0!d i j , ~36!

where the metric is shear free. For the vectors, we choose

h0i52VQi
~1! ~37!

and the tensors

hi j52HQi j
~2! . ~38!

Note that tensor fluctuations do not exhibit gauge freedom of
this type.

2. Stress energy tensor

The stress energy tensor can be broken up into fluid (f )
contributions and seed (s) contributions~see e.g.@18#!. The
latter is distinguished by the fact that the net effect can be
viewed as a perturbation to the background. Specifically
Tmn5 T̄mn1dTmn , where T̄0

052r f , T̄ i
05 T̄0

i 50, and

T̄ j
i5pfd

i
j is given by the fluid alone. The fluctuations can be

decomposed into the normal modes of Sec. II C as

dT0
052@r fd f1rs#Q

~0!,

dTi
05@~r f1pf !v f

~0!1vs
~0!#Qi

~0! ,

dT0
i 52@~r f1pf !v f

~0!1vs
~0!#Q~0!i ,

dTj
i5@dpf1psd j

i #Q~0!1@pfp f1ps#Q
~0!

j
i ~39!

for the scalar components,

dT0
i 52@~r f1pf !v f

~1!1rs#Q
~1!i ,

dTi
05@~r f1pf !~v f

~1!2V!1vs
~1!#Qi

~1! ,

dTj
i5@pfp f

~1!1ps
~1!#Q~1!

j
i ~40!

for the vector components, and

dTj
i5@pfp f

~2!1ps
~2!#Q~2!

j
i ~41!

for the tensor components.

B. Radiation transport

1. Stokes parameters

The Boltzmann equation for the CMB describes the trans-
port of the photons under Thomson scattering by the elec-
trons. The radiation is described by the intensity matrix: the
time average of the electric field tensorEi*Ej over a time
long compared to the frequency of the light or equivalently
as the components of the photon density matrix~see@19# for
reviews!. For radiation propagating radiallyEW'êr , so that
the intensity matrix exists on theêu ^ êf subspace. The ma-
trix can further be decomposed in terms of the 232 Pauli
matricess i and the unit matrix1 on this subspace.

For our purposes, it is convenient to describe the polar-
ization in temperature fluctuation units rather than intensity,
where the analogous matrix becomes

T5Q11Qs31Us11Vs2 . ~42!

Q5Tr(T1)/25DT/T is the temperature perturbation
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summed over polarization states. SinceQ5Tr(Ts3)/2, it is
the difference in temperature fluctuations polarized in the
êu and êf directions. SimilarlyU5Tr(Ts1)/2 is the differ-
ence along axes rotated by 45°, (êu6êf)/A2, and
V5Tr(Ts2)/2 that between (êu6 i êf)/A2. Q and U thus
represent linearly polarized light in the north/south-east/west
and northeast/southwest-northwest/southeast directions on
the sphere, respectively.V represents circularly polarized
light ~in this section only, not to be confused with vector
metric perturbations!.

Under a counterclockwise rotation of the axes through an
anglec the intensityT transforms asT85RTR21. Q and
V remain distinct whileQ andU transform into one another.
Since the Pauli matrices transform as
s386 is185e72ic(s36 is1) a more convenient description is

T5Q11Vs21~Q1 iU !M11~Q2 iU !M2 , ~43!

where recall thatM65(s37 is1)/2 @see Eq.~1!#, so that
Q6 iU transforms into itself under rotation. Thus Eq.~2!
implies thatQ6 iU should be decomposed intos562 spin
harmonics@3,4#.

Since circular polarization cannot be generated by Thom-
son scattering alone, we shall hereafter ignoreV. It is then
convenient to reexpress the matrix as a vector:

TW 5~Q,Q1 iU ,Q2 iU !. ~44!

The Boltzmann equation describes the evolution of the vec-
tor TW under the Thomson collisional termC@TW # and gravita-
tional redshifts in a perturbed metricG@hmn#:

d

dh
TW ~h,xW ,n̂![

]

]h
TW 1ni¹ iTW 5CW @TW #1GW @hmn#, ~45!

where we have used the fact thatẋi5ni and that in a flat
universe photons propagate in straight linesṅ50. We shall
now evaluate the Thomson scattering and gravitational red-
shift terms.

2. Scattering matrix

The calculation of Thomson scattering including polariza-
tion was first performed by Chandrasekhar@16#; here we
show a much simpler derivation employing the spin harmon-
ics. The Thomson differential scattering cross section de-
pends on angle asu ê8• êu2, whereê8 and ê are the incoming

and outgoing polarization vectors, respectively, in the elec-
tron rest frame. Radiation polarized perpendicular to the
scattering plane scatters isotropically, while that in the scat-
tering plane picks up a factor of cos2b, whereb is the scat-
tering angle. If the radiation has different intensities or tem-
peratures at right angles, the radiation scattered into a given
angle will be linearly polarized.

Now let us evaluate the scattering term explicitly. The
angular dependence of the scattering gives

S Q i

Q'

U
D 8

5S cos2b 0 0

0 1 0

0 0 cosb
D S Q i

Q'

U
D , ~46!

where theU transformation follows from its definition in
terms of the difference in intensities polarized645° from
the scattering plane. With the relationsQ5Q i1Q' and
Q6 iU5Q i2Q'6 iU , the angular dependence in theTW rep-
resentation of Eq.~44! becomes2

TW 85STW

5
3

4S cos2b11 2
1

2
sin2b 2

1

2
sin2b

2
1

2
sin2b

1

2
~cosb11!2

1

2
~cosb21!2

2
1

2
sin2b

1

2
~cosb21!2

1

2
~cosb11!2

D TW ,

~47!

where the overall normalization is fixed by photon conserva-
tion in the scattering. To relate these scattering frame quan-
tities to those in the frame defined byk̂5ê3, we must first
perform a rotation from thek̂ frame to the scattering frame.
The geometry is displayed in Fig. 1, where the anglea sepa-
rates the scattering plane from the meridian plane at
(u8,f8) spanned byêr andêu . After scattering, we rotate by
the angle between the scattering plane and the meridian
plane at (u,f) to return to thek̂ frame. Equation~43! tells us
these rotations transformTW as R(c)TW 5diag(1,e2ic,
e22ic)TW . The net result is thus expressed as

R~g!S~b!R~2a!5
1

2
A4p

5 S Y2
0~b,a!12A5Y0

0~b,a! 2A3

2
Y2

22~b,a! 2A3

2
Y2
2~b,a!

2A62Y2
0~b,a!e22ig 32Y2

22~b,a!e22ig 32Y2
2~b,a!e22ig

2A622Y2
0~b,a!e2ig 322Y2

22~b,a!e2ig 322Y2
2~b,a!e2ig

D , ~48!

2Chandrasekhar employs a different sign convention forU→2U.
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where we have employed the explict spin-2,l 52 forms in
Table II. Integrating over incoming angles, we obtain the
collision term in the electron rest frame

CW @TW # rest52 ṫTW ~V!1 ṫE dV8

4p
R~g!S~b!R~2a!TW ~V8!,

~49!

where the two terms on the right-hand side account for scat-
tering out of and into a given angle, respectively. Here the
differential optical depthṫ5nesTa sets the collision rate in
conformal time withne as the free electron density andsT as
the Thomson cross section.

The transformation from the electron rest frame into the
background frame yields a Doppler shiftn̂•vW B in the tem-
perature of the scattered radiation. With the help of the gen-
eralized addition relation for the harmonics Eq.~7!, the full
collision term can be written as

CW @TW #52 ṫ IW~V!1
1

10
ṫE dV8 (

m522

2

P~m!~V,V8!TW ~V8!.

~50!

The vectorIW describes the isotropization of distribution in
the electron rest frame and is given by

IW~V!5TW ~V!2S E dV8

4p
Q81n̂•vW B ,0,0D . ~51!

The matrixP(m) encapsulates the anisotropic nature of Th-
omson scattering and shows that as expected polarization is
generated through quadrupole anisotropies in the tempera-
ture and vice versa

P~m!5S Y2
m8Y2

m
2A3

22
Y2
m8Y2

m 2A3

222Y2
m8Y2

m

2A6Y2
m82Y2

m 32Y2
m82Y2

m 322Y2
m82Y2

m

2A6Y2
m822Y2

m 32Y2
m822Y2

m 322Y2
m822Y2

m
D , ~52!

where Yl
m8[Yl

m* (V8) and sYl
m8[sYl

m* (V8) and the
unprimed harmonics are with respect toV. These
m50,61,62 components correspond to the scalar, vector,
and tensor scattering terms as discussed in Sec. II C and
III C.

3. Gravitational redshift

In a perturbed metric, gravitational interactions alter the
temperature perturbationQ. The redshift properties may be
formally derived by employing the equation of motion for
the photon energyp[2umpm , whereu

m is the four-velocity
of an observer at rest in the background frame andpm is the
photon four-momentum. The Euler-Lagrange equations of
motion for the photon and the requirement thatuu2u51 result
in

ṗ

p
52

a

a
˙2

1

2
ninj ḣi j2niḣ0i2

1

2
ni¹ ih00, ~53!

which differs from@20,7# since we taken̂ to be the photon
propagation direction rather than the viewing direction of the
observer. The first term is the cosmological reshift due to the
expansion of the spatial metric; it does not affect temperature
perturbationsdT/T. The second term has a similar origin and
is due to stretching of the spatial metric. The third and fourth
terms are the frame dragging and time dilation effects.

Since gravitational redshift affects the different polariza-
tion states alike,

GW @hmn#5S 12 ninj ḣi j1niḣ0i1
1

2
ni¹ ih00,0,0D ~54!

in the TW basis. We now explicitly evaluate the Boltzmann
equation for scalar, vector, and tensor metric fluctuations of
Eqs.~36!–~38!.

C. Evolution equations

In this section, we derive the complete set of evolution
equations for the temperature and polarization distribution in
the scalar, vector, and tensor decomposition of metric fluc-
tuations. Though the scalar and tensor fluid results can be
found elsewhere in the literature in a different form~see, e.g.,
@11,10#!, the total angular momentum representation substan-
tially simplifies the form and aids in the interpretation of the
results. The vector derivation is new to this work.

1. Angular moments and power

The temperature and polarization fluctuations are ex-
panded into the normal modes defined in Sec. II B:3

3Our conventions differ from @3# as (2l 11)DTl
(S,T)

54Q l
(0,2)/(2p)3/2 and similarly for DE,Bl

(S,T) with
Q l

(0,2)→2El
(0,2) ,2Bl

(0,2) and soCCl
(S,T)52Cl

QE(0,2) but with other
power spectra the same.
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Q~h,xW ,nW !5E d3k

~2p!3(l (
m522

2

Q l
~m!Gl

m ,

~Q6 iU !~h,xW ,nW !5E d3k

~2p!3(l (
m522

2

~El
~m!6 iB l

~m!!62Gl
m .

~55!

A comparison with Eqs.~9! and ~43! shows thatEl
(m) and

Bl
(m) represent polarization with electric-type (21)l and

magnetic-type (21)l 11 parities, respectively@3,4#. Because
the temperatureQ l

(m) has electric-type parity, onlyEl
(m)

couples directly to the temperature in the scattering sources.
Note thatBl

(m) andEl
(m) represent polarizations withQ and

U interchanged and thus represent polarization patterns ro-
tated by 45°. A simple example is given by them50 modes.
In the k̂ frame,El

(0) represents a pureQ, or north/south-east/
west, polarization field whose amplitude depends onu, e.g.,
sin2u for l 52. Bl

(0) represents a pureU, or northwest/
southeast-northeast/southwest, polarization with the same
dependence.

The power spectra of temperature and polarization
anisotropies today are defined as, e.g.,Cl

QQ[^ual mu2& for
Q5(al mYl

m with the average being over the (2l 11) m
values. Recalling the normalization of the mode functions
from Eqs.~10! and ~11!, we obtain

~2l 11!2Cl
XX̃5

2

pE dk

k (
m522

2

k3Xl
~m!* ~h0 ,k!X̃l

~m!~h0 ,k!,

~56!

whereX takes on the valuesQ, E, andB. There is no cross
correlationCl

QB or Cl
EB due to parity@see Eqs.~6! and~24!#.

We also employ the notationCl
XX̃(m) for them contributions

individually. Note thatBl
(0)50 here due to azimuthal sym-

metry in the transport problem so thatCl
BB(0)50.

As we shall now show, them50,61,62 modes are
stimulated by scalar, vector, and tensor perturbations in the
metric. The orthogonality of the spherical harmonics assures
us that these modes are independent, and we now discuss the
contributions separately.

2. Free streaming

As the radiation free streams, gradients in the distribution
produce anisotropies. For example, as photons from different
temperature regions intersect on their trajectories, the tem-
perature difference is reflected in the angular distribution.
This effect is represented in the Boltzmann equation~45!
gradient term,

n̂•¹W→ i n̂•kW5 iA4p

3
kY1

0 , ~57!

which multiplies the intrinsic angular dependence of the tem-
perature and polarization distributions,Yl

m and 62Yl
m , re-

spectively, from the expansion Eq.~55! and the angular basis
of Eqs. ~10! and ~11!. Free streaming thus involves the
Clebsch-Gordan relation of Eq.~8!

A4p

3
Y1
0~sYl

m!5

sk l
m

A~2l 11!~2l 21! ~sYl 21
m !

2
ms

l ~ l 11!
~sYl

m!

1

sk l 11
m

A~2l 11!~2l 13! ~sYl 11
m !, ~58!

which couples thel to l 61 moments of the distribution.
Here the coupling coefficient is

sk l
m5A~ l 22m2!~ l 22s2!/l 2. ~59!

As we shall now see, the result of this streaming effect is an
infinite hierarchy of coupledl moments that passes power
from sources at low multipoles up thel chain as time
progresses.

3. Boltzmann equations

The explicit form of the Boltzmann equations for the tem-
perature and polarization follows directly from the Clebsch-
Gordan relation of Eq.~58!. For the temperature (s50),

Q̇ l
~m!5kF 0k l

m

~2l 21!
Q l 21

~m! 2
0k l 11

m

~2l 13!
Q l 11

~m! G2 ṫQ l
~m!

1Sl
~m!, ~ l >m!. ~60!

The term in the square brackets is the free streaming effect
that couples thel modes and tells us that in the absence of
scattering power is transferred down the hierarchy when
kh*1. This transferral merely represents geometrical pro-
jection of fluctuations on the scale corresponding tok at
distanceh which subtends an angle given byl ;kh. The
main effect of scattering comes through theṫQ l

(m) term and
implies an exponential suppression of anisotropies with op-
tical depth in the absence of sources. The sourceSl

(m) ac-
counts for the gravitational and residual scattering effects:

S0
~0!5 ṫQ0

~0!2Ḟ, S1
~0!5 ṫvB

~0!1kC, S2
~0!5 ṫP~0!,

S1
~1!5 ṫvB

~1!1V̇, S2
~1!5 ṫP~1!, ~61!

S2
~2!5 ṫP~2!2Ḣ.

The presence ofQ0
(0) represents the fact that an isotropic

temperature fluctuation is not destroyed by scattering. The
Doppler effect enters the dipole (l 51) equation through the
baryon velocityvB

(m) term. Finally the anisotropic nature of
Compton scattering is expressed through

P~m!5
1

10
@Q2

~m!2A6E2
~m!#, ~62!

and involves the quadrupole moments of the temperature and
E-polarization distribution only.
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The polarization evolution follows a similar pattern for
l >2,m>0 from4 Eq. ~58! with s562:

Ėl
~m!5kF 2k l

m

~2l 21!
El 21

~m! 2
2m

l ~ l 11!
Bl

~m!2
2k l 11

m

~2l 13!
El 11

~m! G
2 ṫ@El

~m!1A6P~m!d l ,2#, ~63!

Ḃl
~m!5kF 2k l

m

~2l 21!
Bl 21

~m! 1
2m

l ~ l 11!
El

~m!2
2k l 11

m

~2l 13!
Bl 11

~m! G
2 ṫBl

~m! . ~64!

Notice that the source of polarizationP(m) enters only in the
E-mode quadrupole due to the opposite parity ofQ2 and
B2. However, as discussed in Sec. II B, free streaming or
projection couples the two parities except for them50 sca-
lars. ThusBl

(0)50 by geometry regardless of the source. It is
unnecessary to solve separately for them52umu relations
since they satisfy the same equations and solutions with
Bl
(2umu)52Bl

(umu) and all other quantities equal.
To complete these equations, we need to express the evo-

lution of the metric sources (F,C,V,H). It is to this subject
we now turn.

4. Scalar Einstein equations

The Einstein equationsGmn58pGTmn express the metric
evolution in terms of the matter sources. With the form of
the scalar metric and stress energy tensor given in Eqs.~36!
and ~39!, the ‘‘Poisson’’ equations become

k2F54pGa2F ~r fd f1rs!13
ȧ

a
@~r f1pf !v f

~0!1vs
~0!#/kG ,

k2~C1F!528pGa2~pfp f
~0!1ps

~0!!, ~65!

where the corresponding matter evolution is given by cova-
riant conservation of the stress energy tensorTmn :

ḋ f52~11wf !~kv f
~0!13Ḟ!23

ȧ

a
dwf ,

d

dh
@~11wf !v f

~0!#5~11wf !FkC2
ȧ

a
~123wf !v f

~0!G
1wfkS dpf /pf2

2

3
p f D ~66!

for the fluid part, wherewf5pf /r f . These equations express
energy and momentum density conservation, respectively.
They remain true for each fluid individually in the absence of

momentum exchange. Note that for the photons

dg54Q0
(0) , vg

(0)5Q1
(0) , andpg

(0)5 12
5 Q2

(0) . Massless neutri-
nos obey Eq.~60! without the Thomson coupling term.

Momentum exchange between the baryons and photons
due to Thomson scattering follows by noting that for a given
velocity perturbation the momentum density ratio between
the two fluids is

R[
rB1pB
rg1pg

'
3rB
4rg

. ~67!

A comparison with photon Euler equation~60! ~with l 51,
m50) gives the baryon equations as

ḋB52kvB
~0!23Ḟ,

v̇B
~0!52

ȧ

a
vB

~0!1kC1
ṫ

R
~Q1

~0!2vB
~0!!. ~68!

For a seed source, the conservation equations become

ṙs523
ȧ

a
~rs1ps!2kvs

~0! ,

v̇s
~0!524

ȧ

a
vs

~0!1kS ps2 2

3
ps

~0!D , ~69!

since the metric fluctuations produce higher order terms.

5. Vector Einstein equations

The vector metric source evolution is similarly con-
structed from a ‘‘Poisson’’ equation

V̇12
ȧ

a
V528pGa2~pfp f

~1!1ps
~1!!/k, ~70!

and the momentum conservation equation for the stress-
energy tensor or Euler equation

v̇ f
~1!5V̇2~123cf

2!
ȧ

a
~v f

~1!2V!2
1

2
k

wf

11wf
p f

~1! ,

v̇s
~1!524

ȧ

a
vs

~1!2
1

2
kps

~1! , ~71!

where we recall thatcf
25 ṗf / ṙ f is the sound speed. Again,

the first of these equations remains true for each fluid indi-
vidually save for momentum exchange terms. For the pho-
tons vg

(1)5Q1
(1) andpg

(1)5 8
5A3Q2

(1) . Thus with the photon
Euler equation~60! ~with l 51, m51), the full baryon
equation becomes

v̇B
~1!5V̇2

ȧ

a
~vB

~1!2V!1
ṫ

R
~Q1

~1!2vB
~1!!, ~72!

see Eq.~68! for details.

4The expressions above were all derived assuming a flat spatial
geometry. In this formalism, including the effects of spatial curva-
ture is straightforward: thel 61 terms in the hierarchy are multi-
plied by factors of@12(l 22m21)K/k2#1/2 @6,7#, where the cur-
vature isK52H0

2(12V tot). These factors account for geodesic
deviation and alter the transfer of power through the hierarchy. A
full treatment of such effects will be provided in@8#.
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6. Tensor Einstein equations

The Einstein equations tell us that the tensor metric
source is governed by

Ḧ12
ȧ

a
Ḣ1k2H58pGa2@pfp f

~2!1ps
~2!#, ~73!

where we note that the photon contribution ispg
(2)5 8

5Q2
(2) .

D. Integral solutions

The Boltzmann equations have formal integral solutions
that are simple to write down by considering the properties
of source projection from Sec. II B. The hierarchy equations
for the temperature distribution Eq.~60! merely express the
projection of the various plane wave temperature sources
Sl
(m)Gl

m on the sky today@see Eq.~61!#. From the angular
decomposition ofGl

m in Eq. ~14!, the integral solution im-
mediately follows:

Q l
~m!~h0 ,k!

2l 11
5E

0

h0
dhe2t(

l 8
Sl 8

~m!
~h! j l

~ l 8m!@k~h02h!#.

~74!

Here

t~h![E
h

h0
ṫ~h8!dh8 ~75!

is the optical depth betweenh and the present. The combi-
nationṫe2t is the visibility function and expresses the prob-
ability that a photon last scattered betweendh of h and
hence is sharply peaked at the last scattering epoch.

Similarly, the polarization solutions follow from the radial
decomposition of the

2A6ṫP~m!@2G2
mM1122G2

mM2# ~76!

source. From Eq.~24!, the solutions

El
~m!~h0 ,k!

2l 11
52A6E

0

h0
dhṫe2tP~m!~h!e l

~m!@k~h02h!#,

Bl
~m!~h0 ,k!

2l 11
52A6E

0

h0
dhṫe2tP~m!~h!b l

~m!@k~h02h!#

~77!

immediately follow as well.

Thus the structures ofj l
(l 8m) , e l

(m) , andb l
(m) shown in

Figs. 3 and 4 directly reflect the angular power of the sources
Sl 8
(m) andP(m). There are several general results that can be
read off the radial functions. Regardless of the source behav-
ior in k, theB-parity polarization for scalars vanishes, domi-
nates by a factor of 6 over the electric parity atl @2 for the
vectors, and is reduced by a factor of 8/13 for the tensors at
l @2 @see Eq.~23!#.

Furthermore, the power spectra inl can rise no faster
than

l 2Cl
QQ~m!}l 212umu, l 2Cl

EE~m!}l 622umu,

l 2Cl
BB~m!}l 622umu, l 2Cl

QE~m!}l 4, ~78!

due to the aliasing of plane-wave power tol !k(h02h)
@see Eq.~25!# which leads to interesting constraints on scalar
temperature fluctuations@22# and polarization fluctuations
~see Sec. V C!.

Features ink space in thel 5umu moment atfixed time
are increasingly well preserved inl space asumu increases,
but may be washed out if the source is not well localized in
time. Only sources involving the visibility functionṫe2t are
required to be well localized at last scattering. However,
even features in such sources will be washed out if they
occur in thel 5umu11 moment, such as the scalar dipole
and the vector quadrupole~see Fig. 3!. Similarly features in
the vectorE and tensorB modes are washed out.

The geometric properties of the temperature-polarization
cross power spectrumCl

QE can also be read off the integral
solutions. It is first instructive, however, to rewrite the inte-
gral solutions as (l >2)

Q l
~0!~h0 ,k!

2l 11
5E

0

h0
dhe2t@~ ṫQ0

~0!1 ṫC1Ċ2Ḟ! j l
~00!

1 ṫvB
~0! j l

~10!1 ṫP~0! j l
~20!#,

Q l
~1!~h0 ,k!

2l 11
5E

0

h0
dhe2tF ṫ~vB

~1!2V! j l
~11!

1S ṫP~1!1
1

A3
kVD j l~21!G ,

Q l
~2!~h0 ,k!

2l 11
5E

0

h0
dhe2t@ ṫP~2!2Ḣ# j l

~22! , ~79!

where we have integrated the scalar and vector equations by
parts noting thatde2t/dh5 ṫe2t. Notice thatQ0

(0)1C acts
as an effective temperature by accounting for the gravita-
tional redshift from the potential wells at last scattering. We
shall see in Sec. IV thatvB

(1)'V at last scattering which
suppresses the first term in the vector equation. Moreover, as
discussed in Sec. II B and shown in Fig. 5, the vector dipole
terms (j l

(11)) do not correlate well with the polarization
(e l

(1)), whereas the quadrupole terms (j l
(21)) do.

The cross power spectrum contains two pieces: the rela-
tion between the temperature and polarization sourcesSl 8

(m)

andP(m), respectively and the differences in their projection
as anisotropies on the sky. The latter is independent of the
model and provides interesting consequences in conjunction
with tight coupling and causal constraints on the sources. In
particular, thesignof the correlation is determined by@21#

sgn@Cl
QE~0!#52sgn@P~0!~Q0

~0!1C!#,

sgn@Cl
QE~1!#52sgn@P~1!~A3ṫP~1!1kV!#,

sgn@Cl
QE~2!#5sgn@P~2!~ ṫP~2!2Ḣ !#, ~80!
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where the sources are evaluated at last scattering and we
have assumed thatuQ0

(0)1Cu@uP(0)u as is the case for stan-
dard recombination~see Sec. IV!. The scalar Doppler effect
couples only weakly to the polarization due to differences in
the projection~see Sec. II B!. The important aspect is that
relative to the sources, the tensor cross spectrum has an op-
posite sign due to the projection~see Fig. 5!.

These integral solutions are also useful in calculations.
For example, they may be employed with approximate solu-
tions to the sources in the tight coupling regime to gain
physical insight on anisotropy formation~see Sec. IV and
@22,23#!. Seljak and Zaldarriaga@24# have obtained exact
solutions through numerically tracking the evolution of the
source by solving the truncated Boltzmann hierarchy equa-
tions. Our expression agree with@3,4,24# where they overlap.

IV. PHOTON-BARYON FLUID

Before recombination, Thomson scattering between the
photons and electrons and Coulomb interactions between the
electrons and baryons were sufficiently rapid that the photon-
baryon system behaves as a single tightly coupled fluid. For-
mally, one expands the evolution equations in powers of the
Thomson mean-free path over the wavelength and horizon
scale. Here we briefly review well-known results for the sca-
lars ~see, e.g.,@25,26#! to show how vector or vorticity per-
turbations differ in their behavior~Sec. IV A!. In particular,
the lack of pressure support for the vorticity changes the
relation between the CMB and metric fluctuations. We then
study the higher order effects of shear viscosity and polar-
ization generation from scalar, vector, and tensor perturba-
tions ~Sec. IV B!. We identify signatures in the temperature-
polarization power spectra that can help separate the types of
perturbations. Entropy generation and heat conduction only
occur for the scalars~Sec. IV C! and leads to differences in
the dissipation rate for fluctuations~Sec. IV D!.

A. Compression and vorticity

For the (m50) scalars, the well-known result of expand-
ing the Boltzmann equations~60! for l 50,1 and the baryon
Euler equation~68! is

Q̇0
~0!52

k

3
Q1

~0!2Ḟ,

~meffQ1
~0!!•5k~Q0

~0!1meffC!, ~81!

which represent the photon fluid continuity and Euler equa-
tions and gives the baryon fluid quantities directly as

ḋB5
1

3
Q̇0

~0! , vB
~0!5Q1

~0! , ~82!

to lowest order. Heremeff511R, where we recall thatR is
the baryon-photon momentum density ratio. We have
dropped the viscosity termQ2

(0)5O(k/ ṫ)Q1
(0) ~see Sec.

IV B !. The effect of the baryons is to introduce a Compton
drag term that slows the oscillation and enhances infall into
gravitational potential wellsC. That these equations de-
scribe forced acoustic oscillations in the fluid is clear when
we rewrite the equations as

~meffQ̇0
~0!!•1

k2

3
Q0

~0!52
k2

3
meffC2~meffḞ!• , ~83!

whose solution in the absence of metric fluctuations is

Q0
~0!5Ameff

21/4cos~ks1f!,

Q1
~0!5A3Ameff

23/4sin~ks1f!, ~84!

where s5*cgBdh5*(3meff)
21/2dh is the sound horizon,

A is a constant amplitude, andf is a constant phase shift. In
the presence of potential perturbations, the redshift a photon
experiences climbing out of a potential well makes the effec-
tive temperatureQ0

(0)1C @see Eq.~79!#, which satisfies

@meff~Q̇0
~0!1Ċ!#•1

k2

3
~Q0

~0!1C!

52
k2

3
RC1@meff~Ċ2Ḟ!#• , ~85!

and shows that the effective force on the oscillator is due to
baryon dragRC and differential gravitational redshifts from
the time dependence of the metric. As seen in Eqs.~79! and
~84!, the effective temperature at last scattering forms the
main contribution at last scattering with the Doppler effect
vB
(0)5Q1

(0) playing a secondary role formeff.1. Further-
more, because of the nature of the monopole versus dipole
projection, features inl space are mainly created by the
effective temperature~see Fig. 3 and Sec. III D!.

If R!1, then one expects contributions ofO(C̈2F̈)/k2

to the oscillations inQ0
(0)1C in addition to the initial fluc-

tuations. These acoustic contributions should be compared
with theO(DC2DF) contributions from gravitational red-
shifts in a time-dependent metric after last scattering. The
stimulation of oscillations atkh@1 thus either requires large
or rapidly varying metric fluctuations. In the case of the
former, acoustic oscillations would be small compared to
gravitational redshift contributions.

Vector perturbations, on the other hand, lack pressure
support and cannot generate acoustic or compressional
waves. The tight coupling expansion of the photon
(l 51,m51) and baryon Euler equations~60! and~72! leads
to

@meff~Q1
~1!2V!#•50 ~86!

andvB
(1)5Q1

(1) . Thus the vorticity in the photon baryon fluid
is of equal amplitude to the vector metric perturbation. In the
absence of sources, it is constant in a photon-dominated fluid
and decays asa21 with the expansion in a baryon-dominated
fluid. In the presence of sources, the solution is

Q1
~1!~h,k!5V~h,k!1

1

meff
@Q~1!~0,k!2V~0,k!#, ~87!

so that the photon dipole tracks the evolution of the metric
fluctuation. WithvB

(1)5Q1
(1) in Eq. ~61!, vorticity leads to a

Doppler effect in the CMB of magnitude on order the vector
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metric fluctuation at last scatteringV in contrast to scalar
acoustic effects which depend on the time rate of change of
the metric.

In turn the vector metric depends on the vector aniso-
tropic stress of the matter as

V~h* ,k!528pGa
*
22E

0

h
* dha4~pfp f

~1!1ps
~1!!/k.

~88!

In the absence of sourcesV}a22 and decays with the ex-
pansion. They are thus generally negligible if the universe
contains only the usual fluids. Only seeded models such as
cosmological defects may have their contributions to the
CMB anisotropy dominated by vector modes. However, even
though the vector to scalarfluid contribution to the anisot-
ropy for seeded models is of orderk2V/(C̈2F̈) and may be
large, the vector to scalar gravitational redshift contributions,
of order V/(C2F) is not necessarily large. Furthermore,
from the integral solution for the vectors Eq.~79! and the
tight coupling approximation Eq.~87!, the fluid effects tend
to cancel part of the gravitational effect.

B. Viscosity and polarization

Anisotropic stress represents shear viscosity in the fluid
and is generated as tight coupling breaks down on small
scales where the photon diffusion length is comparable to the
wavelength. For the photons, anisotropic stress is related to
the quadrupole moments of the distributionQ2

(m) which is in
turn coupled to theE-parity polarizationE2

(m) . The zeroth
order expansion of the polarization (l 52) equations@Eq.
~64!# gives

E2
~m!52

A6
4

Q2
~m! , B2

~m!50, ~89!

or P(m)5 1
4Q2

(m) . The quadrupole (l 52) component of the
temperature hierarchy@Eq. ~60!# then becomes, to lowest or-
der in k/ ṫ,

Q2
~m!5

4

9
A42m2

k

ṫ
Q1

~m! , P~m!5
1

9
A42m2

k

ṫ
Q1

~m!

~90!

for scalars and vectors. In the tight coupling limit, the scalar
and vector sources of polarization traces the structure of the
photon-baryon fluid velocity. For the tensors,

Q2
~2!52

4

3

Ḣ

ṫ
, P~2!52

1

3

Ḣ

ṫ
. ~91!

Combining Eqs.~89! and~90!, we see that polarization fluc-
tuations are generally suppressed with respect to metric or
temperature fluctuations. They are proportional to the quad-
rupole moments in the temperature which are suppressed by
scattering. Only as the optical depth decreases can polariza-
tion be generated by scattering. Yet then the fraction of pho-
tons affected also decreases. In the standard cold dark matter
model, the polarization is less than 5% of the temperature
anisotropy at its peak~see Fig. 6!.

These scaling relations between the metric and aniso-
tropic scattering sources of the temperature and polarization
are important for understanding the large angle behavior of
the polarization and temperature polarization cross spectrum.
Here last scattering is effectively instantaneous compared
with the scale of the perturbation and the tight coupling re-
mains a good approximation through last scattering.

For the scalars, the Euler equation~81! may be used to
express the scalar velocity and hence the polarization in
terms of the effective temperature:

Q1
~0!5meff

21E k~Q0
~0!1meffC!dh. ~92!

Sincemeff;1, Q1
(0) has the same sign asQ0

(0)1C before
Q0

(0)1C itself can change signs, assuming reasonable initial
conditions. It then follows thatP(0) is also of the same sign
and is of order

P~0!;~kh!
k

ṫ
@Q0

~0!1C#, ~93!

which is strongly suppressed forkh!1. The definite sign
leads to a definite prediction for the sign of the temperature
polarization cross correlation on large angles.

For the vectors

P~1!5
A3
9

k

ṫ
V, ~94!

and is both suppressed and has a definite sign in relation to
the metric fluctuation. The tensor relation to the metric is
given in Eq. ~91!. In fact, in all three cases the dominant
source of temperature perturbations has thesamesign as the

FIG. 6. Power spectra for the standard cold dark matter model
~scale invariant scalar adiabatic initial conditions withV051,
h50.5 andVBh

250.0125). Notice thatB polarization is absent,
E polarization scales asl 4 at large angles, and the cross correlation
(QE) is negative at large angles and reflects the acoustic oscilla-
tions at small angles. In particular the phase of theEE andQE
acoustic peaks is set by the temperature oscillationsQQ ~see Sec.
IV B !.
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anisotropic scattering sourceP(m). From Eq. ~80!, differ-
ences in the sense of the cross correlation between tempera-
ture and polarization thus arise only due to geometric reasons
in the projection of the sources~see Fig. 5!. On angles larger
than the horizon at last scattering, the scalar and vector
Cl

QE is negative whereas the tensor cross power is positive
@9,21#.

On smaller scales, the scalar polarization follows the ve-
locity in the tight coupling regime. It is instructive to recall
the solutions for the acoustic oscillations from Eq.~84!. The
velocity oscillatesp/2 out of phase with the temperature and
hence theE-polarization acoustic peaks will be out of phase
with the temperature peaks~see Fig. 6!. The cross correlation
oscillates as cos(ks1f)sin(ks1f) and hence has twice the
frequency. Thus between peaks of the polarization and tem-
perature power spectra~which representsboth peaks and
troughs of the temperature amplitude! the cross correlation
peaks. The structure of the cross correlation can be used to
measure the acoustic phasef (f'0 for adiabatic models!
and how it changes with scale just as the temperature but, as
with theEE power spectrum@27#, has the added benefit of
probing slightly larger scales than the first temperature peak.
This property can help distinguish adiabatic and isocurvature
models due to causal constraints on the generation of acous-
tic waves at the horizon at last scattering@28#.

Finally, polarization also increases the viscosity of the
fluid by a factor of 6/5, which has significant effects for the
temperature. Even though the viscous imperfections of the
fluid are small in the tight coupling region they can lead to
significant dissipation of the fluctuations over time~see Sec.
IV D !.

C. Entropy and heat conduction

Differences in the bulk velocities of the photons and bary-
onsQ1

(m)2vB
(m) also represent imperfections in the fluid that

lead to entropy generation and heat conduction. The baryon
Euler equations~68! and ~72! give

Q1
~0!2vB

~0!5
R

ṫ
F v̇B~0!1

ȧ

a
vB

~0!2kCG ,
Q1

~1!2vB
~1!5

R

ṫ
F v̇B~1!2V̇1

ȧ

a
~vB

~1!2V!G , ~95!

which may be iterated to the desired order in 1/ṫ. For scalar
fluctuations, this slippage leads to the generation of nonadia-
batic pressure or entropy fluctuations

GgB[~dpgB2cgB
2 drgB!/pgB

52
4

3

R

11RE ~Q1
~0!2vB

~0!!kdh, ~96!

as the local number density of baryons to photons changes.
Equivalently, this can be viewed as heat conduction in the
fluid. For vorticity fluctuations, these processes do not occur
since there are no density, pressure, or temperature differen-
tials in the fluid.

D. Dissipation

The generation of viscosity and heat conduction in the
fluid dissipates fluctuations through the Euler equations with
Eqs.~90! and ~95!,

~11R!Q̇1
~0!5k@Q0

~0!1~11R!C#1
k

ṫ
R2Q̇0

~0!2
16

45

k2

ṫ
Q1

~0! ,

~11R!Q̇1
~1!5~11R!V̇2

k

ṫ

4

15
kQ1

~1! , ~97!

where we have dropped theȧ/a factors under the assumption
that the expansion can be neglected during the dissipation
period. We have also employed Eq.~86! to eliminate higher
order terms in the vector equation. With the continuity equa-

tion for the scalarsQ̇0
(0)52kQ1

(0)/32Ḟ @see Eq. ~60!,
l 50,m50#, we obtain

Q̈0
~0!1

1

3

k2

ṫ
F R2

~11R!2
1
16

15

1

11RGQ̇0
~0!1

k2

3~11R!
Q0

~0!

52
k3

3
C2F̈, ~98!

which is a damped forced oscillator equation.
An interesting case to consider is the behavior in the ab-

sence of metric fluctuationsC, F, andV. The result, imme-
diately apparent from Eqs.~97! and~98!, is that the acoustic
amplitude (m50) and vorticity (m51) damp as
exp@2(k/kD

(m))2#, where

F 1

kD
~0!G25 1

6E dh
1

ṫ

R2116~11R!/15

~11R!2
,

F 1

kD
~1!G25 4

15E dh
1

ṫ

1

11R
. ~99!

Notice that dissipation is less rapid for the vectors compared
with the scalars once the fluid becomes baryon dominated
R@1 because of the absence of heat conduction damping. In
principle, this allows vectors to contribute more CMB
anisotropies at small scales due to fluid contributions. In
practice, the dissipative cutoff scales are not very far apart
sinceR&1 at recombination.

Vectors may also dominate if there is a continual metric
source. There is a competition between the metric source and
dissipational sinks in Eqs.~97! and ~98!. Scalars retain con-
tributions toQ0

(0)1C of O@RC,(C̈2F̈)/k2# „see Eq.~85!
and @29#…. The vector solution becomes

Q1
~1!~h!5e2[k/kD

~1!
~h!] 2E

0

h
dh8V̇e[k/kD

~1!
~h8!] 2, ~100!

which says that if variations in the metric are rapid compared
with the damping, thenQ1

(1)5V and damping does not oc-
cur.
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V. SCALING STRESS SEEDS

Stress seeds provide an interesting example of the pro-
cesses considered above by which scalar, vector, and tensor
metric perturbations are generated and affect the temperature
and polarization of the CMB. They are also the means by
which cosmological defect models form structure in the uni-
verse. As part of the class of isocurvature models, all metric
fluctuations, including the~scalar! curvature perturbation, are
absent in the initial conditions. To explore the basic proper-
ties of these processes, we employ simple examples of stress
seeds under the restrictions they are causal and scale with the
horizon length. Realistic defect models may be constructed
by superimposing such simple sources in principle.

We begin by discussing the form of the stress seeds them-
selves~Sec. V A! and then trace the processes by which they
form metric perturbations~Sec. V B! and hence CMB
anisotropies~Sec. V C!.

A. Causal anisotropic stress

Stress perturbations are fundamental to seeded models of
structure formation because causality combined with energy-
momentum conservation forbids perturbations in the energy
or momentum density until matter has had the opportunity to
move around inside the horizon~see, e.g.,@30#!. Isotropic
stress, or pressure, only arises for scalar perturbations and
has been considered in detail by@27#. Anisotropic stress per-
turbations can also come in vector and tensor types and it is
their effect that we wish to study here. Combined they cover
the full range of possibilities available to causally seeded
models such as defects.

We impose two constraints on the anisotropic stress
seeds: causality and scaling. Causality implies that correla-
tions in the stresses must vanish outside the horizon. Aniso-
tropic stresses represent spatial derivatives of the momentum
density and hence vanish ask2 for kh!1. Scaling requires
that the fundamental scale is set by the current horizon so
that evolutionary effects are a function ofx5kh. A conve-
nient form that satisfies these criteria is@27,31#

4pGa2ps
~m!5A~m!h21/2f B~x!, ~101!

with

f B~x!5
6

B2
22B1

2Fsin~B1x!

~B1x!
2
sin~B2x!

~B2x! G , ~102!

with 0,(B1 ,B2),1. We caution the reader that though con-
venient and complete, this choice of basis is not optimal for
representing the currently popular set of defect models. It
suffices for our purposes here since we only wish to illustrate
general properties of the anisotropy formation process.

AssumingB1.B2, B1 controls the characteristic time af-
ter horizon crossing that the stresses are generated, i.e., the
peak in f B scales askhc[xc}B1

21 ~see Fig. 7!. B2 controls
the rate of decline of the source at late times. In the general
case, the seed may be a sum of different pairs of (B1 ,B2)
which may also differ between scalar, vector, and tensor
components.

B. Metric fluctuations

Let us consider how the anisotropic stress seed sources
generate scalar, vector, and tensor metric fluctuations. The
form of Eq. ~102! implies that the metric perturbations also
scale so thatk3uhu25 f (x5kh), where f may be different
functions for h5(C,F,V,H). Thus scaling in the defect
field also implies scaling for the metric evolution and conse-
quently the purelygravitational effects in the CMB as we
shall see in the next section. Scattering introduces another
fundamental scale, the horizon at last scatteringh* , which
we shall see breaks the scaling in the CMB.

It is interesting to consider differences in the evolutions
for the same anisotropic stress seed,A(m)51 with B1 and
B2 set equal for the scalars, vectors, and tensors. The basic
tendencies can be seen by considering the behavior at early
times x&xc . If x!1 as well, then the contributions to the
metric fluctuations scale as

k3/2F/ f B5O~x21!, k3/2C/ f B5O~x21!,

k3/2V/ f B5O~x0!, k3/2H/ f B5O~x1!, ~103!

where f B5x2 for x!1. Note that the sources of the scalar
fluctuations in this limit are the anisotropic stress and mo-

FIG. 7. Metric fluctuations from scaling anisotropic stress seeds
sources. The same anisotropic stress seed~bold solid linesa2ps

} f B /x) produce qualitatively different scalar~short dashed!, vector
~long dashed!, and tensor~solid! metric perturbations. As discussed
in the text the behavior scales with the characteristic time of the
sourcexc}B1

21. The left panel~a! shows a source which begins to
decay as soon as causally permitted (B151) and the right panel~b!
the effect of delaying the decay (B150.2). We have displayed the
results here for a photon-dominated universe for simplicity.
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mentum density rather than energy density@see Eq.~65!#.
This behavior is displayed in Fig. 7~a!. For the scalar and
tensor evolution, the horizon scale enters in separately from
the characteristic timexc . For the scalars, the stresses move
matter around and generate density fluctuations as
rs;x2ps . The result is that the evolution ofC andF steep-
ens byx2 between 1&x&xc . For the tensors, the equation of
motion takes the form of a damped driven oscillator and
whose amplitude follows the source. Thus the tensor scaling
becomes shallower in this regime. Forx*xc both the source
and the metric fluctuations decay. Thus themaximummetric
fluctuation scales as

k3/2F/ f B~xc!5O~xc
1!, k3/2C/ f B~xc!5O~xc

1!,

k3/2V/ f B~xc!5O~xc
0!, k3/2H/ f B~xc!5O~xc

21!.
~104!

For a late characteristic timexc.1, fluctuations in the sca-
lars are larger than vectors or tensors for the same source
@see Fig. 7~b!#. The ratio of acoustic to gravitational redshift
contributions from the scalars scale asxc

22 by virtue of pres-
sure support in Eq.~85! and thus acoustic oscillations be-
come subdominant asB1 decreases.

C. CMB anisotropies

Anisotropy and structure formation in causally seeded, or
in fact any isocurvature model, proceeds by a qualitatively
different route than the conventional adiabatic inflationary
picture. As we have seen, fluctuations in the metric are only
generated inside the horizon rather than at the initial condi-
tions ~see Sec. V B!. Since CMB anisotropies probe scales
outside the horizon at last scattering, one would hope that
this striking difference can be seen in the CMB. Unfortu-
nately, gravitational redshifts between last scattering and to-
day masks the signature in the temperature anisotropy. The
scaling ansatz for the sources described in Sec. V A in fact
leads to near scale invariance in the large angle temperature
because fluctuations are stimulated in the same way for each
k mode as it crosses the horizon between last scattering and
the present. While these models generically leave a different
signature in modes which cross the horizon before last scat-
tering @22,27#, models which mimic adiabatic inflationary
predictions can be constructed@31#.

Polarization provides a more direct test in that it can only
be generated through scattering. The large angle polarization
reflects fluctuations near the horizon at last scattering and so
may provide a direct window on such causal, noninflationary
models of structure formation. One must be careful, how-
ever, to separate scalar, vector, and tensor modes whose dif-
ferent large angle behaviors may obscure the issue. Let us
now illustrate these considerations with the specific ex-
amples introduced in the last section.

The metric fluctuations produced by the seed sources gen-
erate CMB anisotropies through the Boltzmann equation
~60!. We display an example withB151 andB250.5 in Fig.
8. Notice that scaling in the sources does indeed lead to near
scale invariance in the large angle temperature but not the
large angle polarization. The small rise toward the quadru-
pole for the tensor temperature is due to the contribution of
long-wavelength gravity waves that are currently being gen-

erated and depends on how rapidly they are generated after
horizon crossing. Inside the horizon at last scattering~here
l *200), scalar fluctuations generate acoustic waves as dis-
cussed in Sec. IV which dominate for small characteristic
times xc'1. On the other hand, these contributions are
strongly damped below the thickness of the last scattering
surface by dissipational processes. Note that features in the
vector and tensor spectrum shown here are artifacts of our
choice of source function. In a realistic model, the superpo-
sition of many sources of this type will wash out such fea-
tures. The general tendencies, however, do not depend on the
detailed form of the source. Note that vector and tensor con-
tributions damp more slowly and hence may contribute sig-
nificantly to the small-angle temperature anisotropy.

Polarization can only be generated by scattering of a
quadrupole temperature anisotropy. For seeded models,
scales outside the horizon at last scatteringkh*&1 have not
formed significant metric fluctuations~see, e.g., Fig. 7!.
Hence quadrupole fluctuations, generated from the metric
fluctuations through Eqs.~91!, ~93!, and ~94!, are also sup-
pressed. The power ink of the polarization thus drops
sharply belowkh*51. This drop of course corresponds to a
lack of large angle power in the polarization. However, its
form at low l depends on geometric aspects of the projec-
tion from k to l . In these models, thelarge angle polariza-
tion is dominated by projection aliasing of power fromsmall
scaleskh**1. The asymptotic expressions of Eq.~78! thus
determine the large angle behavior of the polarization:
l 2Cl }l 6 for scalars (EE), l 4 for vectors, andl 2 for ten-
sors (EE andBB); the cross spectrum (QE) goes asl 4 for

FIG. 8. Temperature and polarization power spectra for a scal-
ing anisotropic stress seeds with the minimal characteristic time
B151 for scalars~S, solid!, vectors~V, short dashed!, and tensors
~T, long dashed!. Scalar temperature fluctuations at intermediate
scales are dominated by acoustic contributions which then damp at
small scales.B-parity polarization contributions are absent for the
scalars, larger by an order of magnitude thanE-parity contributions
for the vectors and similar to but smaller than theE parity for the
tensors. Features in the vector and tensor spectra are artifacts of our
choice of source and are unlikely to be present in a realistic model.
The background cosmology is set toV051, h50.5,
VBh

250.0125.
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each contribution. For comparison, the scale invariant adia-
batic inflationary prediction has scalar polarization (EE)
dropping off asl 4 and cross spectrum (QE) asl 2 from Eq.
~93! because of the constant potential above the horizon~see
Fig. 6!. Seeded models thus predict a more rapid reduction in
the scalarpolarization for the same background cosmology.

Polarization can also help separate the three types of fluc-
tuations. In accord with the general prediction~see Sec.
III D !, scalars produce noB-parity polarization, whereas
vectorB parity dominatesE-parity polarization by a factor
of 6 and tensorB parity is suppressed by a factor of 8/13
@see Eq.~23!#. Differences also arise in the temperature-
polarization cross power spectraCl

QE shown in Fig. 9. Inde-
pendent of the nature of the source, above the angle the
horizon subtends at last scattering, scalar and vector tem-
perature perturbations from the last scattering surface@21#
are anticorrelated with polarization, whereas they are corre-
lated for tensor perturbations~see Sec. IV B and@9#!. Inside
the horizon, the scalar polarization follows the scalar veloc-
ity which is p/2 out of phase with the effective temperature
@see Eq.~90!#. In the adiabatic model, scalar cross correlation
reverses signs before the first acoustic peak, as compression
overcomes the gravitational redshift of the Sachs-Wolfe ef-
fect, unlike the isocurvature models~see Fig. 6 and@28#!.
The sign test to distinguish scalars from tensors must thus be
performed on scales larger than twice the first peak. Con-
versely, to use the cross correlation to distinguish adiabatic
from isocurvature fluctuations, the scalar and tensor contri-
butions must be separated.

How do these results change with the model for the
seeds? As we increase the characteristic timexc by decreas-
ing B150.2, the main effect comes from differences in the
generation of metric fluctuations discussed in Sec. V B. For
the same amplitude anisotropic stress, scalar contributions
dominate the vector and tensor contributions by factors of
xc5B1

21 @see Eq.~104! and Fig. 10#. Note, however, that the
scalar contributions come from the gravitational redshifts be-
tween last scattering and today rather than the acoustic os-
cillations ~see Sec. IV A! and hence produce no strong fea-

tures. Because of the late generation of metric fluctuations in
these models, the peak in the polarization spectra is also
shifted withxc . Note, however, that the qualitative behavior
of the polarization described above remains the same.

Although these examples do not exhaust the full range of
possibilities for scaling seeded models, the general behavior
is representative. Equal amplitude anisotropic stress sources
tend to produce similar large angle temperature anisotropies
if the source is active as soon as causally allowedxc'1.
Large angle scalar polarization is reduced as compared with
adiabatic inflationary models because of causal constraints
on their formation. This behavior is not as marked in vectors
and tensors due to the projection geometry but the relative
amplitudes of theE-parity andB-parity polarization as well
as theQE cross correlation can be used to separate them
independently of assumptions for the seed sources. Of
course, in practice these tests at large angles will be difficult
to apply due to the smallness of the expected signal.

Reionization increases the large angle polarization signal
because the quadrupole anisotropies that generate it can be
much larger@32#. This occurs since decoupling occurs gradu-
ally and the scattering is no longer rapid enough to suppress
anisotropies. The prospects for separating the scalars, vec-
tors, and tensors based on polarization consequently also im-
prove @33#.

For angles smaller than that subtended by the horizon at
last scattering, the relative contributions of these effects de-
pends on a competition between scalar gravitational and
acoustic effects and the differences in the generation and
damping behavior of the scalar, vector, and tensor perturba-
tions.

VI. DISCUSSION

We have provided a new technique for the study of tem-
perature and polarization anisotropy formation in the CMB
which introduces a simple and systematic representation for

FIG. 9. Temperature-polarization cross power spectrum for the
model of Fig. 8. Independent of the nature of the sources, the cross
power at angles larger than that subtended by the horizon at last
scattering is negative for the scalars and vectors and positive for the
tensors. The more complex structure for the scalars at small angular
scales reflects the correlation between the acoustic effective tem-
perature and velocity at last scattering.

FIG. 10. Same as Fig. 8 except with a larger characteristic time
B150.2, B250.1. Scalar gravitational redshift effects now domi-
nate over scalar acoustic as well as vector and tensor contributions
for the same stress source due the process by which stress pertur-
bations generate metric fluctuations~see Fig. 7!.
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their angular distributions. The main virtue of this approach
is that the gravitational and scattering sources are directly
related to observable properties in the CMB. One can then
explore properties that areindependentof the source, which
tell us the broad framework, e.g., the classical cosmological
parameters and the nature of fluctuations in the early uni-
verse, and identify properties that aredependenton the
source, which can help pin down the model for structure
formation. An example of the former is the fact that scalar
fluctuations generate no magnetic parity polarization@3,4#,
vectors generate mainly magnetic parity polarization, and
tensors generate comparable but somewhat smaller magnetic
parity polarization. Large angle polarization of the three
components are also constrained by model-independent geo-
metric arguments in its slope and its correlation with the
temperature anisotropy. If the scalar contributions can be iso-
lated from the vectors, tensors, and other foreground sources
of polarization from these and other means, these constraints
translate into a robust distinction between isocurvature and
adiabatic models for structure formation.

In our representation, the temperature and polarization
distributions are projections on the sky of four simple

sources: the metric fluctuation~via the gravitational redshift!,
the intrinsic temperature at last scattering, the baryon veloc-
ity at last scattering~via the Doppler effect!, and the tem-
perature and polarization quadrupoles at last scattering~via
the angular dependence of Compton scattering!. As such, it
better reveals the power of the CMB to probe the nature of
these sources and extract information on the process of struc-
ture formation in the universe. As an example, we have ex-
plored how general properties of scaling stress seeds found
in cosmological defect models manifest themselves in the
temperature and polarization power spectra. The framework
we have provided here should be useful for determining the
robust signatures of specific models for structure formation
as well as the reconstruction of the true model for structure
formation from the data as it becomes available.
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