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Abstract: We apply state-of-the art data analysis meth-
ods to a number of fictitious CMB mapping experiments, in-
cluding 1/f noise, distilling the cosmological information from
time-ordered data to maps to power spectrum estimates, and
find that in all cases, the resulting error bars can we well
approximated by simple and intuitive analytic expressions.
Using these approximations, we discuss how to maximize the
scientific return of CMB mapping experiments given the prac-
tical constraints at hand, and our main conclusions are as
follows. (1) For a given resolution and sensitivity, it is best
to cover a sky area such that the signal-to-noise ratio per
resolution element (pixel) is of order unity. (2) It is best to
avoid excessively skinny observing regions, narrower than a
few degrees. (3) The minimum-variance mapmaking method
can reduce the effects of 1/f noise by a substantial factor, but
only if the scan pattern is thoroughly interconnected. (4) 1/f
noise produces a 1/ℓ contribution to the angular power spec-
trum for well connected single-beam scanning, as compared
to virtually white noise for a two-beam scan pattern such as
that of the MAP satellite.

I. INTRODUCTION

Over the next decade, precision measurements of the
cosmic microwave background (CMB) are likely to radi-
cally tighten existing constraints on cosmological models.
Although some upcoming experiments, e.g., the NASA
MAP Satellite, already have their design and observing
strategy essentially frozen in, many others do not, and
face important tradeoffs between figures of merit such as
resolution, sky coverage, frequency coverage and sensi-
tivity. For instance, is it better to concentrate a given
amount of observing time on a small patch, thereby im-
proving the signal-to-noise per pixel, or to map a large
area with lower accuracy? The purpose of this pa-
per is to investigate how such tradeoffs affect the accu-
racy with which cosmological models can be constrained,
thereby providing some guidance for observers attempt-
ing to maximize the scientific “bang for the buck” of their
experiments.

∗Hubble Fellow.

A. From maps to cosmology

The approach taken with the first CMB experiments
was to use numerical likelihood or Monte Carlo calcula-
tions to assess the accuracy with which various parame-
ters could be measured from the data. It has gradually
become clear that although such calculations are useful
post hoc, to compute accurate error bars once the ex-
periment has taken place and the data set is in hand,
simple and intuitive analytic approximations exist that
are often accurate enough for studying the effects of de-
sign tradeoffs. For instance, it was shown that the effect
of incomplete sky coverage is well approximated by two
simple effects: to increase the sample variance by a fac-
tor 1/fsky [1], where fsky is the fraction of the sky area
that is observed, and to smear out features in the power
spectrum on a scale ∆ℓ ∼ 1/∆θ [2], where ∆θ is the size
of the patch (in radians) in its narrowest direction. In a
similar spirit, Knox showed that the effect of uniform in-
strumental noise could be accurately modeled as simply
an additional random field on the sky, with an angular
power spectrum given by [3,4]

Cnoise
ℓ =

Ωσ2

NB2
ℓ

=
Ωs2

tobsB2
ℓ

=
fsky
wB2

ℓ

, (1)

and we give a detailed proof of this in Appendix A. Here
σ is the r.m.s. noise in each of the N pixels, the solid
angle covered is Ω = 4πfsky, s is the detector sensitivity

in units µK s1/2, tobs is the total observation time, and
w is the raw sensitivity measure defined by [3]

w−1 ≡ 4πσ2

N
=

4πs2

tobs
. (2)

Bℓ is the experimental beam function, which for a Gaus-
sian beam with standard deviation θb

1 is well approxi-
mated by

Bℓ = e−θ2

bℓ(ℓ+1)/2. (3)

Thus early estimates of how accurately cosmological pa-
rameters could be measured based on Monte Carlo maps
(e.g. [5]) could be substantially accelerated. A further
simplification was achieved by altogether eliminating the

1 The FWHM (full-width-half-maximum) is given by
FWHM=

√
8 ln 2θb.
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likelihood minimization (performed say by simulated an-
nealing [3]), and computing the attainable error bars di-
rectly from the power spectrum and its derivatives [6].
This procedure involves the formalism of the Fisher In-
formation Matrix (described in detail in [7]), and has
now been used to study the accuracy with which about
a dozen cosmological parameters can be simultaneously
measured by MAP and the ESA Planck mission [8–10],
going substantially beyond the obvious conclusions that
it helps to increase the sky and frequency coverage, the
resolution and the sensitivity. It was found that by in-
creasing the angular resolution to FWHM≪ 1◦, thereby
measuring the power spectrum well beyond the first
“Doppler peak”, much of the degeneracy between dif-
ferent parameters that had been termed “cosmic confu-
sion” [11] could be lifted, with Planck measuring most
parameters to within a few percent. Measuring polar-
ization as well was found to improve the accuracy by a
further factor of two assuming that foreground and sys-
tematics problems could be controlled [10]. Using the
same method, a number of experimental design issues
for both single-dish experiments and interferometers have
been discussed with the attention limited to measuring
the density parameter Ω [12] (“weighing the Universe”)
and the observability of a second Doppler peak [13].

B. From time-ordered data to maps

All the above-mentioned results focused on the link
between completed CMB maps and cosmological con-
straints. In the presence of detector 1/f noise, how-
ever, it is important to pay attention also to the previous
step in the data-analysis pipeline, where the time-ordered
data (TOD) is reduced to a map. Handy approximations
for the impact of 1/f noise when circular scans are aver-
aged have been derived [14], and it is clear that the scan
strategy (by which we mean not merely how many times
different pixels are observed, but also in what order) has
a substantial impact on the attainable noise levels in the
map. It has been argued [15] that it is desirable to have
a scan strategy that is as “connected” as possible, where
each pixel is scanned through in many different direc-
tions.

C. New data-analysis techniques

Substantial progress has recently been made on the
issue of how to analyze a given data set. Computa-
tionally feasible methods are now available for reducing
data sets as large as those of the upcoming satellite mis-
sions from time-ordered data to maps and from maps
to power spectra and cosmological parameter constraints
in a way that destroys no cosmological information, in
the sense that parameters can be measured just as ac-
curately as they could with a (computationally unfea-

sible) brute force likelihood analysis of the entire time
ordered data set. A recent clever implementation of the
minimum-variance method for reducing TOD to maps
[15] is both feasible and lossless in this sense [16] (all the
cosmological information from the TOD is distilled into
the map with nothing leaking out of the pipeline). A
feasible and lossless power spectrum estimation has also
been found [17,18] for the case of Gaussian fluctuations.
The signal-to-noise eigenmode method (see [20–22,7,24]
and references therein) offers a feasible and lossless way
of constraining parameters directly from maps as long as
the number of pixels n <∼ 104, as do the orthogonalized
spherical harmonic [25] and brute-force [26,27] methods.

D. Outline

In this paper, we will adopt an approach to experi-
mental design which combines the accuracy of these new
numerical methods with the intuitive understanding of
the analytical approximations. This has essentially not
been done before. For instance, the published 1/f ap-
proximations [14] were not based on the lossless map-
making method [15,16], but on a straight pixel averaging
which can be improved upon in many situations, and
the resulting angular power spectrum of the noise was
not computed exactly given 1/f noise, merely estimated
with Monte Carlo simulations [14]. Similarly, the above-
mentioned sample variance approximation was derived
assuming a Gaussian autocorrelation function [1], al-
though as we will see, it is readily generalized to a signal-
to-noise or power spectrum analysis. We will present a
number of worked examples, using the above-mentioned
lossless data analysis methods, and show how in each
case, these results can be accurately matched by simple
approximations. We then use these approximations to
arrive at rules of thumb for experimental design. Sec-
tion 2 discusses the effect of varying four attributes of a
map; its size, shape, sensitivity and resolution. (For a
discussion on the best choice of frequency channels with
regard to foreground removal, see e.g. [28,29,4].) Section
3 discusses the preceding mapmaking step, and how two
attributes of the scan pattern (the 1/f noise level and the
amount of interconnectedness in the scan pattern) affect
the noise power spectrum in the map.

II. FROM MAP TO COSMOLOGY

In this section, we analyze a number of different types
of maps with the signal-to-noise eigenmode method and
the lossless power spectrum method, focusing on the ef-
fect of varying the map size, shape, sensitivity and reso-
lution.
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A. Signal-to-noise eigenmodes: demystifying the
black box

The signal-to-noise (S/N) eigenmode method distills
the information content of a CMB map into a set of mu-
tually exclusive and collectively exhaustive chunks which
have a number of properties that make them useful for
measuring the CMB power spectrum and constraining
cosmological models. Although it has traditionally been
a “black box” method, where all the details are hidden in
the numerical diagonalization of a large matrix, we will
see below that the workings of this box are in fact easy
to understand both qualitatively and quantitatively by
making some simple approximations.2

B. A minimalistic review of the S/N method

The S/N eigenmode method was introduced into CMB
data analysis by Bond [20] and Bunn [22], who both rein-
vented the method independently. It is a special case
of the Karhunen-Loève method [23], and since our focus
here is not on data analysis methods but on experimental
design, our review below is very brief and the interested
reader is referred to other recent papers [7,24] for method
details. Suppose the CMB map is pixelized into N pixels
whose center positions in the sky are given by the unit
vectors r̂1, r̂2, ..., r̂N . The map consists of N numbers
x̃i ≡ xi +ni, where xi ≡ δT (r̂i) are the true sky temper-
atures and ni are the instrumental noise contributions.
We group these numbers into N -dimensional vectors x̃, x
and n, respectively, so x̃ = x+n. The signal x and noise
n are assumed to have zero mean (〈x〉 = 〈n〉 = 0), to
be uncorrelated (〈xnt〉 = 0), and to have a multivariate
Gaussian probability distribution with covariance matri-
ces S ≡ 〈xxt〉 and N ≡ 〈nnt〉. The data covariance
matrix is thus C ≡ 〈x̃x̃t〉 = S +N. The signal-to-noise
eigenmodes are the N vectors bi satisfying the general-
ized eigenvalue equation

Sbi = λiNbi. (4)

Grouping them together as the columns of the N × N
matrix B, one computes a new data vector y ≡ Btx̃.
These N numbers yi are the above-mentioned informa-
tion chunks. They are mutually exclusive in the sense
that they are uncorrelated (〈yiyj〉 = bt

iCbj = [1+λi]δij)
and collectively exhaustive in the sense that they retain
all the information from the original data set (since x̃
can be recovered by computing B−ty, as B is invert-
ible). Moreover, the eigenvalues λi can be interpreted

2An interesting step in this direction was a handy approxi-
mation for the special case of the MSAM experiment chopping
[19].

as signal-to-noise ratios for the coefficients yi, and sort-
ing them by decreasing signal-to-noise, y1 can be shown
to contain the most information about the power spec-
trum normalization, followed by y2, y3, etc. Typically,
the bulk of the coefficients are so noisy that they can be
thrown away without appreciable loss of cosmological in-
formation, and such data compression has the advantage
of greatly accelerating subsequent analysis such as likeli-
hood computations, where the CPU time typically scales
as the cube of the size of the data set.
The expectation value 〈y2i 〉 generally equals a noise

term stemming from N plus a linear combination of
δT 2

ℓ ≡ ℓ(ℓ+1)Cℓ/2π, where the weights given to the dif-

ferent δT 2
ℓ are denoted W

(i)
ℓ , the window function. Here

Cℓ is the customary angular power spectrum, and the
window functions are given by (e.g. [2])

W
(i)
ℓ ∝ 2ℓ+ 1

ℓ(ℓ+ 1)
B2

ℓ

N∑

j=1

N∑

k=1

BjiBkiPℓ(r̂j · r̂k), (5)

where Pℓ denotes Legendre polynomials. W is normal-

ized so that
∑

ℓW
(i)
ℓ = 1, so we can think of y2i as mea-

suring a weighted average of the power spectrum coeffi-
cients δT 2

ℓ , with the window function giving the weights.
As the examples below will illustrate, the coefficients yi

generally have the additional advantage of being fairly
localized in the Fourier (multipole) domain, by which is
meant that they have narrow window functions, and this
makes them useful for band power measurements.

C. Case study 1: round maps

Let us first consider a CMB map with an angular res-
olution θb covering the sky area within an angle θ from
some given point. For θ ≪ 1, this region will simply be
a (rather flat) disk of radius θ, whereas θ = π gives a full
sky map. The sky fraction covered is

fsky = sin2
θ

2
. (6)

We discretize the map into N equal-area pixels which
we assume to have uncorrelated Gaussian noise with an
r.m.s. amplitude σ. To keep things simple, we use a flat
fiducial power spectrum Cℓ ∝ 1/ℓ(ℓ + 1) with a Q =
30µK quadrupole normalization, corresponding to δTℓ =
(12/5)1/2Q ≈ 47µK, a ball park figure for recent degree-
scale measurements.
Fig. 1 shows the eigenmodes for the case θ = 5◦. Some

of the corresponding window functions are plotted in
Fig. 2, and the eigenvalues λi are shown in Fig. 3. As
we will now describe, the contents of all of these figures
could have been approximately predicted without ever
carrying out the full numerical calculation.
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1. Eigenmodes:

Let us first consider the eigenmodes. The exact choice
of pixelization is clearly irrelevant as long as the pixel
separation is much smaller than the beamwidth, so let
us simplify the problem by considering an infinitely fine
pixelization, where the eigenmodes are smooth functions
bi(r̂). The spherical harmonics Yℓm are eigenfunctions
of the Laplacian ∆ with eigenvalues ℓ(ℓ + 1), so mul-
tiplying by ℓ(ℓ + 1) in the Fourier (multipole) domain
is equivalent to applying the angular Laplace operator
on the sphere. When the fiducial power spectrum is
Cℓ ∝ 1/ℓ(ℓ + 1), we can thus think of the signal co-
variance matrix in Eq. (4) as essentially S ∝ ∆−1. Since
N ∝ I, the eigenmodes are thus basically eigenfunctions
of the Laplacian. When θ ≪ 1, sky curvature is negligi-
ble and this reduces to the 2D Helmholtz equation. For
the circular case at hand, the solutions are well-known to
correspond to Bessel functions:

bℓm(r) ∝ Jm(kℓr)e
imφ, (7)

where r = (x, y) = r(cosφ, sinφ). Thus each mode is
specified by some integerm and some radial wave number
kℓ. This is verified by our numerical results. Since the
discrete eigenvectors of Eq. (4) are orthogonal when N ∝
I, the combination of m and kℓ will be such that the
functions bℓm(r) are orthogonal as well.

2. Window functions:

Fig. 1 also shows that the larger mode numbers tend
to oscillate more. This reflects the fact that the window
functions probe increasingly small scales (large ℓ) as the
mode number increases, which is more clearly illustrated
in Fig. 2. This is quite a general property of the CMB
S/N method [22], and holds because whereas the signal
Cℓ generally decreases with ℓ, the noise power Cnoise

ℓ
stays constant and eventually increases.3 Thus the mode
with the highest S/N-ratio will probe the largest scales
to which the map is sensitive, the runner up will be the
largest scale mode remaining (which is uncorrelated with
the first one), etc.
The finite size of the survey places a crude lower limit

on the width of the any window function [2]:

∆ℓ >∼ 1/∆θ, (8)

where ∆θ is the angular extent of the survey in the small-
est direction, in our case ∆θ ∼ 2θ (a more careful discus-
sion of this is given in Section II E 2). This limit is typ-
ically attained with the decorrelated quadratic method

3 In Section III C, we will see that 1/f noise can in fact pro-
duce a falling Cnoise

ℓ . Hovever, it generally falls no faster than
ℓ−1 whereas the CMB signal falls as ℓ−2, so our conclusion
remains unaffected.

[17], whereas the S/N-method sometimes does signifi-
cantly worse. We find that the mean of a window func-
tion, which we will denote 〈ℓ〉 or ℓeff and define by

ℓeffk ≡
∑

ℓ

ℓW
(k)
ℓ (9)

is numerically well approximated by

ℓeffk ≈
√

k

fsky
. (10)

This can be understood as follows. If we Fourier trans-
form a finite patch of a homogeneous random field, the
Fourier coefficients become correlated over a coherence
volume in Fourier space whose size is roughly the in-
verse of that of the patch — this is a well-known ef-
fect in the context of galaxy surveys [30]. The situa-
tion is quite analogous with spherical harmonics [1,13]:
the number of multipole coefficients that become cor-
related are roughly 1/fsky. There are ℓ2max multipoles
Yℓm with ℓ < ℓmax, so one expects to be able to form
roughly fskyℓ

2
max uncorrelated linear combinations of

them. Since the S/N-coefficients are all by construction
uncorrelated, one therefore expects there to be of order
k = fskyℓ

2 of them probing scales out to ℓeff ∼ ℓ, in
agreement with Eq. (10).

3. The signal-to-noise eigenvalues

As mentioned, a S/N-coefficient measures a weighted
average of the power spectrum. As long as ∆ℓ ≪ ℓ and
the power spectrum lacks sharp features, this average is
well approximated by the power at ℓeff , and we arrive
at the useful approximation

λk ≈ Cℓ

Cnoise
ℓ

∣∣∣∣
ℓ=ℓeff

k

, (11)

where ℓeffk and Cnoise
ℓ are given by equations (10)

and (1), respectively. As shown in Fig. 3, this approxi-
mation is generally quite accurate. Symmetries tend to
cause groups of modes to be degenerate, with identical
eigenvalues, causing horizontal lines to be visible for the
first modes. For the all-sky case, the 2ℓ + 1 multipoles
corresponding to different m-values are degenerate, and
for azimuthally symmetric regions, the eigenvalues come
in pairs corresponding to a sine and a cosine mode. At
the opposite end, the very last modes are seen to con-
tain even less signal than predicted by Eq. (11). This is
because the effect of discrete pixelization becomes notice-
able when the number of modes approaches the number
of pixels.
We have tested our approximation for maps of a garden

variety of shapes and sizes, and in all cases find an ac-
curacy comparable to that in Fig. 3. Because it is both
accurate and computationally trivial, it is a useful al-
ternative to full-blown simulations and S/N-calculations
when studying experimental design issues.
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D. Lesson 1: how to choose the map size

Above we found that the accuracy with which band
powers could be measured was accurately fit by the sim-
ple approximation given by equations (1) and (10). Let
us now use this result to address the following question:
given a fixed amount of observing time, how large a sky
area should one spread it over? It is better to scan as
large an area as practically feasible, or to map a smaller
patch with a lower noise per pixel (resolution element)?

1. How accurately can you measure band power?

Let C̄ℓ denote the power Cℓ averaged over a multipole
band ℓ − L/2 ≤ ℓ ≤ ℓ + L/2, i.e., a band of width L
centered on ℓ. How accurately can we measure the band
power C̄ℓ? Eq. (11) showed that as long as L ≫ ∆ℓ,
each S/N eigenmode whose window function fell into this
band would measure the power with a signal-to-noise ra-
tio λ ≈ Cℓ/C

noise
ℓ , which corresponds to measuring the

band power with an r.m.s. error
√
2(Cℓ+C

noise
ℓ ) since the

S/N-coefficient has a Gaussian distribution. (These two
terms correspond to sample variance and noise variance,
respectively.) From our mode counting above, we know
that there are N ∼ (2ℓ+1)Lfsky such eigenmodes prob-
ing the multipole band, so since they are by construction
uncorrelated, the r.m.s. error simply drops by a factor√
N when we use all of them, giving

∆C̄ℓ ≈
√

2

(2ℓ+ 1)Lfsky

[
Cℓ + Cnoise

ℓ

]
(12)

This is to be compared with the equation

∆Cℓ ≈
√

2

(2ℓ+ 1)fsky

[
Cℓ + Cnoise

ℓ

]
, (13)

which has frequently appeared in the literature and fol-
lows if we naively set L = 1 in Eq. (12). This is of
course not legitimate when fsky < 1, since Eq. (12) is
only valid when L ≫ ∆ℓ, which is just another way of
saying that one cannot measure an individual multipole
Cℓ alone when faced with incomplete sky coverage. There
is, nonetheless, a sense in which Eq. (13) can be used,
with the appropriate precautions: as long as the power
spectrum is smooth enough to be featureless on the scale
∆ℓ, calculations assuming that we can make uncorrelated
measurements of the individual multipoles with standard
deviation given by Eq. (13) will always give the right an-
swer. For example, with this assumption, Eq. (13) can
be used to derive Eq. (12). Also, the Fisher informa-
tion matrix F, which determines the accuracy with which
cosmological parameters θ1, θ2, ... can be measured [7], is
correctly given by

Fij =
∑

ℓ

(∆Cℓ)
−2 ∂Cℓ

∂θi

∂Cℓ

∂θj
(14)

in this case, where ∆Cℓ is given by Eq. (13).

2. Maximizing the accuracy

Let us now vary fsky to minimize the measurement
error on the band power C̄ℓ. Substituting Eq. (1) into
Eq. (12) gives

∆C̄ℓ ∝ f
−1/2
sky

[
Cℓ +

fsky
wB2

ℓ

]
. (15)

Requiring the derivative of this with respect to fsky to
vanish shows that the best choice of fsky is

fsky = wB2
ℓCℓ =

NB2
ℓCℓ

4πσ2
. (16)

Substituting this back into Eq. (1), we obtain Cnoise
ℓ =

Cℓ, so we see that this choice corresponds to making the
noise and sample variance contributions equal.
This choice of fsky depends on the multipole ℓ that

we are trying to measure, so which ℓ should be tailor
the experiment for? We argue that the natural choice is
ℓ ∼ ℓb ≡ 1/θb, the scale set by the beam resolution, for
the following reasons:

1. If one focuses on ℓ≪ ℓb, using the narrow beam is
like throwing pearls before swine, since one would
obtain about as good results even with inferior an-
gular resolution.

2. If one focuses on ℓ ≫ ℓb, the beam factor B2
ℓ will

be exponentially small and the resulting error bars
will be exponentially large.

To obtain a rule of thumb for choosing the map size, we
will therefore maximize the sensitivity to the scale ℓ ∼ ℓb,
i.e., where the experiment has its strongest comparative
advantage over others. Since Bℓb ∼ 1, this gives simply
fsky ∼ wCℓb . Let us translate this into a more intuitive
expression. In terms of a flat band power Q2, the power
spectrum at ℓ = ℓb is by definition

Cℓ =
24π

5

Q2

ℓb(ℓb + 1)
∼ 24πQ2θ2b

5
. (17)

If we divide the map area 4πfsky into N pixels of area

FWHM2, FWHM ≡
√
8 ln 2θb, then equations (2)

and (17) together with our result fsky ∼ wCℓb gives

N =
4πfsky

FWHM2
∼ 3π

5 ln 2

Q2tobs
s2

∼ 3
Q2tobs
s2

(18)

In other words, for a given resolution and sensitivity, it

is best to cover a sky area of order the beam area times
the signal-to-noise factor Q2tobs/s

2. Again using Eq. (2),
this tells us that the the noise per pixel should be of order

σ ∼ 2Q. (19)

5



Since the r.m.s. CMB fluctuation σcmb in each pixel,
given by

σcmb =

[∑

ℓ

2ℓ+ 1

4π
B2

ℓCℓ

]1/2

, (20)

differs from Q only by a logarithmic factor of order a few
for typical angular resolutions and cosmological models,
we arrive at the following useful rule of thumb:

• Choose the map size such that the signal-to-noise

ratio per pixel, σcmb/σ, is of order unity.

Thus if an experiment has a noise level per resolution
element (pixel) of σ ≪ 50− 100µK, it will be dominated
by sample variance, and better results can be obtained
by spreading the scan out over a larger sky patch. (Since
fsky cannot exceed unity, it of course still makes sense to
aim for lower noise levels for full-sky experiments, such as
for instance the upcoming satellite missions.) This rule of
thumb agrees well with detailed calculations performed
for the specific case of the MSAM2 experiment [19].

E. Case study 2: oblong maps

Above we used the fact that both noise and sample
variance depends only on the area of a map to determine
the best choice of map size. Changing the shape while
keeping the area fixed leaves the variance unchanged but
affects the width of the window functions, the spectral
resolution. To study this in more detail, we will now
study the effect of elongating a map, returning to a dis-
cussion of how to best choose the map shape in the next
section. Consider a small rectangular map of size θx×θy,
where θx ≤ θy ≪ 1, so that we can neglect the effect of
sky curvature.

1. The eigenmodes

As discussed above, we expect the signal-to-noise
eigenmodes to be eigenfunctions of the Laplacian, which
for rectangular symmetry take the form

bmn(x, y) ∝ cos(kxx+ α) cos(kyy + β), (21)

where the wave numbers kx and ky and the phases α and
β are such that the modes are orthogonal. (We are using
coordinates where the map is centered on the north pole,
so r̂ ≈ (x, y, 1), |x| ≤ θx, |y| ≤ θy.) Eq. (21) is verified
by our numerical computations, and illustrated in Fig. 4
and Fig. 5, where six sample modes are plotted together
with their window functions.

2. The window functions

Fig. 4 shows that more oblong regions generally pro-
duce inferior (wider) window functions, but Fig. 5 illus-
trates that there is also a strong dependence on whether
the oscillations are mainly in the narrow or wide direc-
tion. All of this can be readily understood by consider-
ing two-dimensional rather than one-dimensional window
functions, as illustrated in Fig. 6. In the context of 3D
galaxy redshift surveys, a mode probes a weighted aver-
age of the power in three-dimensional Fourier space, and
it is well-known that this weight function (3D window
function) is simply the square modulus of the Fourier
transform of the mode itself. The situation is analogous
in the CMB case [12]: in the flat sky approximation, we
can replace the (ℓ,m) multipole space by a 2D Fourier
space (kx, ky), and we can compute the 2D window func-
tion by simply Fourier transforming the signal-to-noise
eigenmodes of Eq. (21), as illustrated in Fig. 6. The
shape of the 2D window, schematically illustrated by the
ellipses, basically only depends on the shape of the sky
patch. It is of order (∆kx,∆ky) ∼ (θ−1

x , θ−1
y ), so since

the 32◦ × 2◦ map is 16 times wider than it is high, the
ellipses corresponding to its window functions are drawn
16 times higher than wide. The central location of a win-
dow function is determined by the wave vector (kx, ky) in
Eq. (21). For instance, mode C in Fig. 6 has ky ∼ 0, i.e.,
virtually no vertical oscillations, so its window function
lies straight to the right of the origin (the careful reader
will notice that since the eigenmodes contain cos(kxx)
rather than exp(ikxx), there should be a mirror image
to the left, but this is omitted to avoid cluttering up the
figure).
The 1D window functions plotted in Fig. 4 and Fig. 5

depend only ℓ (which corresponds to the radius k in
Fig. 6), not on m (roughly corresponding to the angu-
lar direction), and are essentially the angular average of
the 2D window functions. The width of the 1D window
functions is therefore determined by how many of the
concentric circles are crossed in Fig. 6:

• In Fig. 5, mode A has the worst window function,
because its longest extent is in the radial direction.
Its spectral resolution is thus determined by θy, the
narrowest dimension of the patch.

• Mode C has the best window function, because its
shortest extent is in the radial direction. In the
limit ℓeff ≫ ∆ℓ (where it is very far from the ori-
gin in Fourier space), its spectral resolution is thus
determined by θx, the broadest dimension of the
patch.

• Modes like A and C constitute only a small mi-
nority, with typical modes being more like B, with
comparable oscillations in the horizontal and verti-
cal directions. For very oblong patches, the window
function is a factor of

√
2 narrower for mode B than
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for mode A, i.e., it is still determined by the nar-
rowest direction alone.

• The three cases compared in Fig. 4 are all “typi-
cal” modes like B, but with patches whose aspect
ratios are 1, 4 and 16, respectively. These modes
are illustrated to the lower left in Fig. 6, and show
why the skinniest patch produces the worst result.

F. Lesson 2: how to choose the map shape

Above we saw how the window functions resulting from
oblong sky patches could readily be understood in a two-
dimensional Fourier space picture. What does this tell
us as regards the best choice of patch shape?

1. What spectral resolution is needed?

We want to be able to resolve all small-scale features
in the power spectrum that carry information about cos-
mological parameters. What is this scale? Acoustic os-
cillations occur on a scale set by the horizon size at last
scattering, corresponding to ∆ℓ ∼ 200 [31] for an Ω = 1
CDM universe, and if Ω < 1, this scale ∆ℓ increases.
To accurately measure the power spectrum, we clearly
need more than one measurement per Doppler peak, but
a spectral resolution ∆ℓ ∼ 40 would appear adequate for
crude measurements, and ∆ℓ ∼ 10 should retain virtually
all cosmological information. The main exception is on
the very largest scales, where the late integrated Sachs-
Wolfe effect can cause variations on a scale ∆ℓ ∼ 1 if the
universe has curvature of a non-zero cosmological con-
stant. However, this is rather irrelevant to our present
discussion, which is geared towards ground and balloon
based experiments, since COBE has already measured
these low multipoles with high spectral resolution, to
near the cosmic-variance limit, and these measurements
are unlikely to be improved before the MAP mission flies.
Thus although some speculative models (e.g., [32]) intro-
duce sharp features into the power spectrum, a spectral
resolution ∆ℓ ∼ 10−40 appears sufficient for constraining
the parameters of both standard inflationary and defect-
based cosmologies.

2. A rule of thumb

Above we saw that the signal-to-noise eigenmodes had
∆ℓ ∼ 40 for round regions of diameter ∼ 5◦. By elimi-
nating ringing, the maximum-resolution method [2] can
reduce this to ∆ℓ ∼ 10 − 20, but there are fewer un-
correlated modes that are this narrow, so to avoid in-
creasing the sample variance, it is preferable to not go
below this map size. We also saw that the picture was
more complex for oblong regions. Although there are

typically a small number of modes (which used alone
would give a large sample variance) with narrow win-
dow functions like case C, the bulk of the modes have
their width determined by the narrowest direction of the
survey. It is easy to see that a skinny mode centered
at (kx, ky) = k(cosϕ, sinϕ) will have a window function

width ∆ℓ ∼ [θ−2
x cos2 ϕ + θ−2

y sin2 ϕ]1/2, so if we use all
the modes (which is necessary to attain the sample vari-
ance from Section IID), then (∆ℓ)2 gets averaged over ϕ
and we obtain

∆ℓ ∼

√
θ−2
x + θ−2

y

2
. (22)

This means that if the patch is fairly oblong (θx ≫ θy),
then θx becomes completely irrelevant to the resolution,
which is determined only by the narrowest direction, θy.
Thus although it is possible to extract some useful con-
straints from even narrower maps, we conclude our shape
discussion with the following rule of thumb:

• Avoid maps that are skinnier than a few degrees in

the narrowest direction.

We have seen that as long as the narrowest direction
>∼ 5◦, the situation is greatly simplifies, since all modes
will be narrow enough in Fourier space to be cosmologi-
cally useful. This means that one need not worry about
weeding out the widest modes, and can attain the mini-
mal sample variance that the map area permits.

III. FROM SCAN PATTERN TO MAP

The previous section discussed measuring the power
spectrum and cosmological parameters from a map, fo-
cusing on how to best chose its size, shape, sensitivity
and resolution. In this section, we turn to the preceding
step in the data analysis pipeline: reducing time-ordered
data (TOD) to a map. Our focus will be on 1/f noise,
and how the power spectrum of the TOD noise in the
time-domain becomes processed into a map noise power
spectrum in the multipole domain. Specifically, once the
shape and size of the map have been decided as above,
what is the best choice of scan pattern if we want to
minimize the map noise? To what extent is it worth
complicating the scan pattern to reduce the map noise?

A. Mapmaking with 1/f-noise

1. The mapmaking problem

The CMBmapmaking problem (see [16] for a recent re-
view) is to estimate the map vector x of the previous sec-
tion fromM measured numbers y1, ..., yM , which we will
refer to as the time-ordered data (TOD), and group into
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an M -dimensional vector y. Assuming that the TOD
depends linearly on the map, we can write

y = Ax+ n (23)

for some known matrix A and some random noise vector
n. Without loss of generality, we can take the noise vector
to have zero mean, i.e., 〈n〉 = 0, so the noise covariance
matrix is

N ≡ 〈nnt〉. (24)

2. The solution

All linear methods can clearly be written in the form

x̃ = Wy, (25)

where x̃ denotes the estimate of the map x and W is
some N × M matrix that specifies the method. If we
make the choice

W = [AtMA]−1AtM, (26)

where M is an arbitrary M ×M matrix, then WA = I,
which means that the reconstruction error ε, defined as

ε ≡ x̃− x = [WA− I]x+Wn (27)

is independent of x. In other words, the recovered map
x̃ is simply the true map x plus some noise that is inde-
pendent of the signal one is trying to measure. We will
therefore refer to ε as the noise map, and study how its
statistical properties depend on the scan strategy (spec-
ified by A) and the detector noise characteristics (given
by N). Equations (25) and (27) show that its covariance
matrix Σ ≡ 〈εεt〉 is given by

Σ = WNWt = [AtMA]−1[AtMNMA][AtMA]−1

(28)

if the matrix M is symmetric.
When chosingM, it is clearly desirable to minimize the

diagonal elements of Σ, the noise variance in the map,
which gives M = N−1 and Σ = [AtMA]−1. However,
noise correlations manifested as off-diagonal elements in
Σ may also appear undesirable, and one might fear that
there is a tradeoff between these two evils that muddles
the issue as to how to choose M. Fortunately, this is
not the case. M = N−1 is the best possible method in
the sense that the map it produces can be shown [16] to
retain all the cosmological information from the TOD,
even if the map is non-Gaussian, and it has also been
shown to be numerically feasible [15], so there is no need
to settle for anything less. If for instance Wiener-filtered
or Maximum-Entropy filtered maps are desired, these can
always be computed directly from x̃ afterwards, without
recourse to the TOD.

3. Practical issues

Although direct application of equations (25) and (28)
using a standard linear algebra package gives what we
need (x̃ and Σ) in principle, this would be too slow
to be useful in practice, since N is an M × M matrix
and M is typically between 106 and 1010 [15]. Fortu-
nately, this can be remedied by some numerical tricks.
A useful way of implementing the mapmaking algorithm
described above was recently presented by Wright [15].
It handles the inversion implicit in Eq. (25) by solving
for the vector x̃ iteratively, with the conjugate gradi-
ent method, never computing Σ, which means that one
avoids inverting large matrices explicitly. In the present
paper, we specifically need the map noise covariance ma-
trix Σ, to compute the noise power. Below we present
tricks enabling explicit calculation ofΣ for huge data sets
as long as the number of pixels N <∼ 104 − 105, which
should prove useful for some upcoming ground and bal-
loon based CMB experiments. The tricks make use of the
fact that all three of the huge matrices involved have very
special properties: A is extremely sparse, and N and M
can be replaced by matrices that are both band-diagonal
and circulant. Our treatment is slightly more general
than Wright’s Fourier approach [15] in that it treats dis-
creteness and edge effects exactly and is applicable also
if data blocks are too short to allow one to pre-whiten
the noise exactly.

4. The circulant matrix trick

As this and the subsequent section are rather techni-
cal, the reader not interested in data analysis per se is
encouraged to jump directly to Section III B.
A square matrix C is said to be circulant [33] if each of

its rows is merely the one above it cyclically shifted one
notch to the right, i.e., if Ci+1,j+1 = Cij , understood
(mod M) for an M ×M matrix. As we will return to be-
low, circulant matrices have the useful property of being
extremely fast to invert and multiply.
Assuming that the statistical properties of the detector

noise are independent of time, the correlation between
the noise n(t) at two different times will depend only on
the time separation: 〈n(t)n(t′)〉 = c(t− t′) for some time

correlation function c (which is by definition symmetric;
c(−τ) = c(τ)). Assuming that the measurements in the
TOD are made at a uniform rate in time, separated by
some constant time interval ∆t and starting at some time
t0, the noise covariance matrix N thus takes the form

Nij = 〈n(t0 + i∆t)n(t0 + j∆t)〉 = c(|i− j|∆t). (29)

For instance, the M = 5 case can be written
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N =




c0 c1 c2 c3 c4
c1 c0 c1 c2 c3
c2 c1 c0 c1 c2
c3 c2 c1 c0 c1
c4 c3 c2 c1 c0


 , (30)

where we have defined the noise correlations

cn ≡ c(n∆t). (31)

It would be numerically useful if this were a symmetric
circulant matrix. However, the above definition shows
that the M = 5 symmetric circulant matrix takes the
form

Nc =




c0 c1 c2 c2 c1
c1 c0 c1 c2 c2
c2 c1 c0 c1 c2
c2 c2 c1 c0 c1
c1 c2 c2 c1 c0


 . (32)

In other words, the requirement that it wraps around
modulo M specifies the upper right and lower left cor-
ners, requiring that c4 = c1 and c2 = c3, which would
correspond to the correlation between the first and last
observation equaling that between the first and second
one, etc. However, it is useful to decompose N as a sum
of a circulant and a non-circulant matrix, as

N = Nc +Ns, (33)

where for our M = 5 example, the latter is given by

Ns =




0 0 0 c3 − c2 c4 − c1
0 0 0 0 c3 − c2
0 0 0 0 0

c3 − c2 0 0 0 0
c4 − c1 c3 − c2 0 0 0


 . (34)

The subscript s denotes sparse, since as we will see in
the next section, we can make the correlations cn vanish
for n ≫ 1. If there is some integer L ≪ M such that
cn = 0 for n > L, then Ns will contain merely L(L + 1)
non-zero elements, and it will be trivial to multiply by
(which as we will see is all we need to do with it). The
circulant matrix Nc will be band-diagonal and contain
(2L+ 1)M nonzero numbers, i.e., a factor ∼ 2N/L≫ 1
more thanNs. For typical applications, L ∼ 10−100 and
M ∼ 106 − 1010, so when performing matrix operations
with N, the Nc-term will completely dominate over the
Ns-term. Specifically, N−1 ≈ N−1

c . We now come to our
first speed trick. Our mapmaking algorithm computes
the correct Σ for the resulting map x̃ for any choice of
M. Minimizing the map noise variance gave M = N−1,
so this variance will clearly increase only to second order
if we change M slightly. Let us take advantage of this
by replacing the strictly optimal choice M = N−1 by the
more convenient choice

M = N−1
c . (35)

To proceed, we need to be able invert the M ×M ma-

trix M. Being able to compute N
1/2
c is also useful at

times, since it enables one to make Monte Carlo simula-

tions of the noise using the equation n = N1/2z ≈ N
1/2
c z,

where z is a vector of uncorrelated normalized Gaussian
random variables. We now describe how to do both. The
action of any function on a symmetric matrix is defined
as the corresponding real-valued function acting on its
eigenvalues: Since all symmetric matrices C can be di-
agonalized as

C = RΛRt, (36)

where R is orthogonal (RRt = I) and Λ = diag{λi} is
diagonal and real, one can extend any mapping f on the
real line to symmetric matrices by defining

f(R diag{λi}Rt) ≡ R diag{f(λi)}Rt, (37)

or more explicitly,

f(C)mn =
∑

k

RmkRnkf(λk). (38)

It is easy to see that this definition is consistent with
power series expansions whenever the latter converge.
Circulant matrices have the great advantage that they

all commute. This is because they can all be diagonalized
by the same matrix R, an orthogonal version of the dis-
crete Fourier matrix. If C is symmetric, positive-definite,
circulant and infinite-dimensional (the latter is an excel-
lent approximation as long as M ≫ L), then Eq. (38)
simplifies to [34]

f(C)mn =
1

2π

∫ π

−π

f [λ(ϕ)]cos[(m − n)ϕ]dϕ, (39)

where λ(ϕ), the spectral function of the matrix, is the
function whose Fourier coefficients are row zero of C,
i.e.,

λ(ϕ) =

∞∑

n=−∞

cne
inϕ. (40)

Note that f(C) is circulant as well. In particular, the in-
verse N−1

c , which we can compute by chosing f(x) = 1/x
in Eq. (39), will also be circulant. It is easy to see that
multiplying two circulant matrices also produces a cir-
culant matrix, and that this corresponds to multiplying
their spectral functions. This is equivalent to convolv-
ing their 0th rows, which is also extremely quick if both
matrices are band-diagonal. Thus all the operations on
circulant matrices in Eq. (28) (inverting Nc to obtain
M, multiplying M with Nc, etc.), produce new circulant
matrices, so all we ever need to store is row zero of each
square matrix being manipulated.
What about the matrix A? For a single-horned ex-

periment, all its entries are zero except that there is a
single “1” on each row. Letting Ni denote the number
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of the pixel pointed to at the ith observation (at time
t = t0 + i∆t), we have Aij = 1 if Ni = j, Aij = 0 oth-
erwise. This makes it very simple to multiply by both A
and At. For instance, for any vector a, we can compute
the vector b ≡ Ata by a single loop over i = 1, ...,M [15]:
b(Nj) := b(Nj) + a(i), simply summing the temperature
measurements of each pixel. Multiple beams introduce
virtually no additional difficulty. For double-horned ex-
periments like COBE and MAP, there are simply two
non-zero entries in each row, a “1” and a “−1”.

5. A trick for making the matrices band-diagonal

The computation of the matrices [AtMA] and
[AtMNMA] can be further accelerated by making the
circulant matrices Nc and M band-diagonal.
a. The noise model: The noise correlations cn from

Eq. (31) can be computed as

cn =
1

π

∫ ∞

0

P (ω) cos(nω∆t)dω, (41)

where the noise (time) power spectrum P (ω) is simply
the Fourier transform of the time correlation function
c(τ). The noise characteristics of most CMB detectors
can be well fit by an expression of the form:

P (ω) = σ2

[
1 +

ωk

ω
+
(ωb

ω

)2
]
|Ŵ (ω)|2. (42)

The three terms in square brackets correspond to white
noise, 1/f noise and so-called brown noise, respectively,
and the “knee” frequencies ωk and ωb determine where
they yield the same power as the white noise. (The angu-
lar frequency ω is related to the frequency f by ω = 2πf .)
Most CMB detectors have no brown noise component
(ωb = 0) — we are including it here for pedagogical rea-
sons, since it turns out to be very simple to understand
its effects, and the properties of 1/f noise are intermedi-
ate between the simple white and brown cases. W is a
window function specifying what kind of analog smooth-
ing (convolution) was performed on the time signal be-
fore sampling it. Here we will follow [14] by assuming
“boxcar” smoothing where yi is the average of the signal
measured during a time interval ∆t. This corresponds
to W (τ) = θ(∆t/2 − |τ |)/∆t. Fourier transforming this
gives

Ŵ (ω) = j0(ω∆t/2), (43)

where j0(x) = sinx/x.
Substituting Eq. (41) into Eq. (40), we see that the

relation between the power spectrum and the spectral
function is

λ(ϕ) =

∞∑

n=−∞

P [(ϕ+ 2πn)/∆t], (44)

where P (−ω) = P (ω). In other words, the power spec-
trum simply “wraps around” onto itself many times, with
all power above the Nyquist sampling frequency π/∆t
getting aliased down to lower frequencies.
b. The white noise case: White noise alone (ωk =

ωb = 0) gives the trivial case of uncorrelated noise: cn
vanishes except for n = 0, so N ∝ I, M ∝ I, and the
mapmaking reduces to simply averaging measurements
of each pixel in the map. The variance Σii in each map
pixel is simply σ2 divided by the number of times it was
observed, so if the sky patch has been covered uniformly,
we obtain the familiar case Σ ∝ I corresponding to white
noise in the map, whose angular power spectrum is given
by Eq. (1).
c. The correlated noise case: If 1/f noise or brown

noise is present, then the integral in Eq. (41) diverges
at low frequencies. This means that slow drifts will com-
pletely dominate the noise, and that all the coefficients cn
will be equal (the noise at any two times will be perfectly
correlated). This is of course not a problem in practice,
since we can remove these slowly varying offsets – it is
merely a numerical nuisance, and is easily eliminated by
replacing the TOD y by a high-pass filtered data set

ỹ ≡ Dy, (45)

where D is some appropriate circulant matrix. The new
noise covariance matrix becomes

Ñ ≡ 〈(Dn)(Dn)t〉 = DNDt. (46)

Using ỹ instead if y as the starting point for the map-
making process, Eq. (23) becomes ỹ = Ãx + ñ, where

Ã ≡ DA, so equations (25) and (28) follow with tildes
on all matrices, or explicitly, eliminating all tildes,

Σ = [AtDtMDA]−1[AtDtMÑMDA][AtDtMDA]−1,

W = [AtDtMDA]−1AtDtMD (47)

where Ñ = Ñc + Ñs as before and M = Ñ−1
c .

Fig. 7 shows the effect of the simple choice where all
components ofD vanish exceptDii = −1 andDi,i+1 = 1.
This corresponds to simply taking differences of consecu-
tive observations: ỹi = yi+1 − yi, and row zero of D (the
convolution filter) is plotted in the top panel. The bot-
tom three panels show that whereas N was pathological
with non-zero and constant correlations extenting arbi-
trarily far from the diagonal, Ñ is almost diagonal. These
correlation functions were computed as follows. Eq. (40)
shows that the spectral function of D is λ(ϕ) = eiϕ − 1,
so that of the matrix DDt is |eiϕ − 1|2 = 4 sin2(ϕ/2).

Ñ = DNDt ≈ DNcD
t = NcDDt can therefore be com-

puted explicitly by combining equations (39) and (44),
which gives

cn ∝
∫ ∞

0

j20

(x
2

)
sin2

(x
2

)
xα cos(nx)dx, (48)

where α =0, -1 and -2 corresponds to white, 1/f and
brown noise, respectively. Performing the integral for
these three cases gives
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cn ∝




2δ0n − δ1|n| for white noise,
φ(n) for 1/f noise,
δ0n for brown noise,

(49)

where the function φ is given by

φ(n) = (n− 2)2 ln |n− 2| − 4(n− 1)2 ln |n− 1|+ 6n2 ln |n|
− 4(n+ 1)2 ln |n+ 1|+ (n+ 2)2 ln |n+ 2|, (50)

and 0 ln 0 is to be interpreted as 0. For n > 2, this is
accurately approximated by

φ(n) ≈ −
[
2

n2
+

2

n4
+

3

n6

]
, (51)

which shows that even the 1/f noise, which produces the
widest correlation function of the three types, is roughly
band-diagonal and can be safely truncated at say n >
L ∼ 100.
As the figure shows, brown noise has the property that

all the differences are uncorrelated. Thus the noise n(t)
exhibits Brownian motion over time, which explains its
nickname. Brown noise drifts like t1/2 over time, whereas
1/f noise is much milder in that it drifts only logarith-
mically in t.
When faced with a noise time stream n from real data,

a good way to diagnose is is to compute the differences
ñi = ni+1−ni and estimate ck as the time average of the
product ñiñi+k. Fitting this with a linear combination
of the three templates in Fig. 7 will indicate the level at
which the three basic types of noise are present, although
for a more accurate model, it is better to compute the
noise spectral function directly by substituting the mea-
sured cn-coefficients into Eq. (40).
d. Pre-whitening To be able to make maps with

Eq. (47), we want all the circulant matrices that appear
to be close to diagonal. We saw that whenD is simply the
differencing matrix, D and Ñc are indeed band-diagonal.
But what about M, the inverse of Ñc? Fig. 9 shows the
spectral function λ(ϕ) of Nc and Ñc when all three types
of noise are present. For this case, λ(ϕ) > 0 for all ϕ, so
its inverse, which is the spectral function of M, will be
smooth and well-behaved, giving a band-diagonal M as
desired. If there is no brown noise component, however,
we will have λ(ϕ) ∝ |ϕ| for |ϕ| ≈ 0 (lower panel), so the
spectral function of M blows up near the origin and M
will have inconvenient non-zero elements arbitrarily far
from the diagonal. (Differencing multiplies by f2 near
the origin, so this “overkill” of 1/f noise produces an M-
matrix with 1/f noise.) This can be remedied by a better
choice of D, whose spectral function exactly neutralizes
the 1/f-noise at the origin. A simple choice that does
this is the D whose spectral function is | sin(ϕ/2)|1/2,
and is a “half-difference” in the sense that doing it four
times is equivalent to double differencing, which we saw
multiplied the spectral function by sin2(ϕ/2). The ex-
plicit convolution filter is plotted in Fig. 8, and is seen
to keep both white and 1/f noise close to diagonal. An-
other attractive option [15] is to prewhiten the data, by

chosing the high-pass filter D to have a spectral function
that is the inverse square root of the spectral function of
Nc. This reduces Nc (and hence also M) to the identity
matrix, so DtD is the only circulant matrix remaining in
Eq. (47). We remind the reader that all choices of D pro-
duce the exact same answer, so the choice is merely one
of numerical convenience. The choice of D makes very
little difference in practice as well, as long as one ensures
that the resulting spectral function of Ñc is smooth and
non-zero, since multiplying the various circulant matrices
together in Eq. (47) is virtually instantaneous compared
to the other numerical steps.

B. Case study 3: four scan patterns

Let us consider a square sky patch of diameter 8◦, di-
vided into N = 32 × 32 pixels, scanned in four different
ways as illustrated in Fig. 10:

1. Serpentine scan: the beam sweeps back and
forth horizontally, gradually shifting downward,
not crossing its path until the entire patch has been
covered. This is reversed, then everything is re-
peated.

2. Grating scan: a serpentine scan is augmented
with an equal amount of time spent scanning up
and down along the left and right edges.

3. Fence scan: two sets of serpentine scans are per-
formed in succession, one horizontal and one verti-
cal (rotated by 90◦).

4. Random scan: The beam jumps to a random
pixel after each observation, but in such a way that
all pixel pairs are connected equally many times.

In all cases, we make M = 221 ∼ 2 × 106 observations.
These simple scanning strategies span the entire range
of “connectedness” available in real-world experiments,
with the serpentine scan being the least connected one
possible and the random scan at the other extreme. An
experiments with disjoint strips such as Tenerife is more
similar to the serpentine case, whereas double-beam dif-
ferencing experiments such as COBE are very well con-
nected and more similar to the random case. A Planck

scan strategy pattern with great circles (pointing 90◦

away from the spin axis) would be reminiscent of the grat-
ing case, with disjoint strips (in this case circular arcs)
connected together at two points (at the poles, where
they circles). Several recently flown and proposed bal-
loon experiments have linear or circular scans intersect-
ing at a variety of angles, which makes them similar to
the fence case. If Planck points 70◦ away from the spin
axis, as originally proposed, its scan pattern would also
be rather fence-like.
To be able to isolate how the features of these scan pat-

terns affect the ability to minimize various types of noise,
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let us first study the effect of white and 1/f noise sepa-
rately, then compute some cases where they are present
in combination.

C. Measuring the noise power spectrum

We first note that pixel noise strictly speaking does not
have a power spectrum at all in general, since its statis-
tical properties are not isotropic. Rather, the quantity
of interest is how much power it adds to our estimates of
the CMB power spectrum coefficients (the expectation
value of this noise contribution is of course subtracted
out to make the Cℓ-estimates unbiased, but the noise
still contributes to the error bars on these estimates). We
will therefore compute the noise power just as we would
compute the CMB power, using the minimum-variance
method [17]. Using a simple white noise prior, this cor-
responds to computing

Cnoise
ℓ =

trPℓΣ

trPℓC
, (52)

where the matrix Pℓ is given by

Pℓ
ij = Pℓ(r̂i · r̂j) (53)

and the Pℓ are Legendre polynomials. C is the covari-
ance matrix that would result from a white noise power
spectrum; C =

∑
ℓ(2ℓ+ 1)PℓB2

ℓ /4π.

D. Pure white noise

Our four scan patterns were chosen such that all pixels
are observed the same number of times (except for the
pixels on the left and right edges of the grating scan).
This means that if only white noise is present, we will
have uniform uncorrelated map noise (Σ ∝ I), and the
simple expression in Eq. (1) applies. This is the lower-
most line plotted in Fig. 12. To draw attention to the
simple shapes of the noise power spectra, we are not in-
cluding the beam smearing effect here (Bℓ = 1), which
would otherwise make Cnoise

ℓ blow up exponentially for
large ℓ. Note that the curve is only horizontal (as pre-
dicted by Eq. (1)) on the scales probed by the experi-
ment. On scales comparable to the pixel separation, ar-
tifacts appear (this is irrelevant when the map is properly
oversampled, since beam smoothing destroys any CMB
signal on these scales). On scales larger than the patch
size (corresponding to ℓ <∼ 30), the noise power drops as
ℓ2 since the mapmaking algorithm is insensitive to the
monopole (mean) of the map – this occurs automatically
when 1/f noise is present, as the method removes base-
line drifts. (The matrix [AtDtMDA] to be inverted in
Eq. (47) will have one vanishing eigenvalue, correspond-
ing to the mean, which is dealt with using the pseudo-
inverse approach described in the appendix of [17]).

E. Pure 1/f noise

The other curves in Fig. 12 show the effect of pure 1/f-
noise. Note that there is no scale in the problem other
than the patch size (to the left of which the monopole
removal starts suppressing the power) and the pixel sep-
aration scale (where irrelevant artifacts appear and we
have truncated the curves), so it should come as no sur-
prise that the curves are rather featureless between these
two scales. (The 1/f knee frequency cannot imprint a
feature here, since it is of course only defined when there
is white noise present.) The normalization is arbitrary
– doubling the receiver noise merely doubles the power
spectrum.
The random scan pattern is seen to produce a beau-

tiful white noise power spectrum, indistinguishable in
shape from the above-mentioned white noise spectrum
plotted beneath it. This is quantitative verification of
the claim [15] that a well-connected “messy” scan differ-
encing widely separate parts of the sky produces a map
with virtually uncorrelated pixel noise. This is also seen
in Fig. 11, which shows how correlated different map pix-
els are with the one in the center. Numerical inspection
of the covariance matrix Σ shows that it is to a good
approximation proportional to the identity matrix, with
the mean of all rows and columns subtracted off due to
the monopole removal. Both the fence and grating scans
have roughly

Cnoise ∝ ℓ−1 (54)

over the range of scales probed by the experiment. In
other words, their angular power spectrum obeys the
same power law in ℓ as their time power spectrum does
in f . Thus although the r.m.s. noise per pixel (which is
dominated by the contribution from ℓ around the pixel
separation scale, where the three power spectra are com-
parable in magnitude) are quite similar for the grating,
fence and random scans, the first two give substantially
more power than the third on larger scales. This is be-
cause there are no “short cuts” from one part of the map
to the other, so that large-scale drifts inevitably leak from
the time stream into the spatial noise distribution. An-
other way of interpreting this excess large-scale noise is
that although the pixel r.m.s. may be small, neighbor-
ing pixels are correlated so that the effective number of
independent pixels is reduced.
Small-scale connectedness helpful as well, as the figure

shows. The four power spectra rank in the same order
as their degree of connectedness on all scales (the only
exception being the grating scan, where the small-scale
noise is raised since half of the time was spent on the
side bars). The serpentine scan is a particularly poor
performer, with a full order of magnitude more noise
power than the fence scan on most scales. The source
of the problem with the serpentine scan is illustrated in
Fig. 11. The fence scan would produce correlation stripes
shaped like a + symbol if the map were made by simply
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averaging the observations of each pixel, as is optimal
for white noise. Because of the high degree of intercon-
nectedness, however, the data analysis method is able to
eliminate this striping, and the correlation region is seen
to be fairly round. For the serpentine scan, however, the
correlation stripe along the scan path persists. This is
because, as is easy to show, the matrix W of Eq. (25)
becomes the same as for the white noise case in the ab-
sence of interconnections, apart from removing an overall
drift over the entire serpentine. In other words, the so-
phisticated mapmaking method is powerless against 1/f
noise when the scan pattern is poorly connected.
The situation is seen to be rather intermediate for the

grating scan: the correlation is strong along the scan path
until it reaches the side bars, where it gets connected with
all the other rows.

F. White and 1/f noise combined

Fig. 13 shows the noise power spectra resulting from
a combination of white and 1/f noise, where the knee
frequency is a tenth of the sampling rate. Once again,
the better connected scan strategies are seen to produce
less noise power, although the fence scan is actually very
marginally better at the smallest scales. The random
scan is seen to produce white noise as usual, whereas
the logarithmic slope of Cnoise

ℓ for the other scan strate-
gies is intermediate between the 1/f and white cases of
−1 and 0. (We have omitted the grating case to avoid
over-crowding this plot.) The noise power from maps
containing the white and 1/f components alone are also
plotted here for comparison, and it should be noted that
the total power when both are present is always slightly
greater than the sum of these curves (even though all
noise components of course add when W is held fixed),
since we cannot optimize for two different types of noise
at the same time.

G. Lesson 3: how to choose the scan strategy

Connectedness is clearly desirable since it reduces the
contribution from 1/f noise to Cnoise

ℓ . It is also use-
ful for reducing the susceptibility to systematic errors
[15], and makes the maps easier to analyze by making
noise correlations more isotropic. However, complicated
interconnected scan patterns can also create problems.
They might complicate the experimental design, perhaps
requiring additional moving parts which can cause sys-
tematic problems. For ground and balloon based exper-
iments, a strategy requiring scans with non-constant el-
evation can introduce systematic modulations, since the
amount of atmosphere that the beam must penetrate will
vary with time. The relevant question is therefore how
great efforts it is worth expending to increase the con-
nectivity of the scan pattern.

Eq. (14) shows that to accurately constrain cosmolog-
ical models, we want to minimize the variance (∆Cℓ)

2

for each multipole. As we discussed in Section IID, it
is best to chose the map size so that noise and sample
variance contribute roughly equally to ∆Cℓ on the pixel
scale, i.e., at the right edge of the curves in Fig. 13. The
sample variance scales with ℓ like the CMB power spec-
trum, which is included in Fig. 13 for comparison. It lacks
the familiar rise at the Doppler peaks simply because we
have plotted Cℓ rather than the more familiar quantity
ℓ(ℓ+1)Cℓ. Since we found that Cnoise

ℓ never falls of faster
than ℓ−1 (this was for pure 1/f noise, and a white noise
component further reduces the slope) whereas Cℓ ∝∼ ℓ−2,
∆Cℓ will be almost completely dominated by sample vari-
ance for all but the largest ℓ-values probed. This means
that the huge visual differences between the noise power
spectra are in fact relatively unimportant when it comes
to measuring cosmological parameters, with the only re-
ally important quantity being the power on the pixel
scale, which is roughly proportional to the pixel variance
σ2. σ turns out to to be only 16% smaller for the random
scan than for the fence scan for pure 1/f noise, and when
we included white noise, the fence scan was actually the
marginally better one (by 6%). Our only clearly unde-
sirable scan is the serpentine option, which adds noise
power even on the smallest scales and whose r.m.s. pixel
noise is almost a factor of two worse than the fence and
random scans (this ratio of course depends strongly on
the knee frequency fk).
In conclusion, it is desirable to invest a moderate but

not extreme effort into making the scan pattern more
connected than the technically most convenient option.
For a ground- or balloon-based experiment, a serpentine-
like scan can be readily made more fence-like by moving
the sky patch to be mapped further away from the equa-
tor, so that repeated scans at constant elevation will cross
due to Earth’s rotation. Likewise, a grating-like Planck

great circle scan pattern can be made more fence-like by
reducing the angle between the beam and spin axis, and
still more by occasionally tilting the spin axis out of the
ecliptic plane. On the other hand, going beyond fence
connectivity, where one already has nice isotropic pixel
noise with good systematics cross-checks, does probably
not warrant the effort unless it can be done in a techni-
cally elegant way such as for MAP that does not intro-
duce new potential systematic problems.

IV. CONCLUSIONS

We have discussed the various tradeoffs faced when
designing a CMB mapping experiment from the point of
view of maximizing the scientific “bang for the buck”.
Although the traditional approach to this problem

has been numerically expensive Monte Carlo simulations,
we have taken a no-simulation approach. We found
that although state-of-the art data analysis techniques
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such as signal-to-noise eigenmode analysis and minimum-
variance power spectrum estimation are normally treated
as black-box methods, their results can often be accu-
rately approximated by simple analytic expressions. This
allows an intuitive understanding of how changing the
various experimental parameters affects the ability to
constrain cosmological models. Illustrating these causal
relationships with simple case studies, we arrived at the
following rules of thumb.

• Size: For a given resolution and sensitivity, it is
best to cover a sky area such that the signal-to-
noise ratio per resolution element (pixel) is of order
unity.

• Shape: It is best to avoid excessively “skinny” ob-
serving regions, narrower than a few degrees.

• 1/f-noise: Scan strategies of both the fence type
and the random type allow the map-making al-
gorithm to substantially reduce the effect of 1/f
noise, which makes the noise correlations more
isotropic and produces a noise power spectrum of
slope between ℓ0 and ℓ−1. Since this is much flat-
ter than the true CMB spectrum is expected to be,
slight large-scale noise modulations are cosmologi-
cally unimportant when the map size is chosen as
suggested above, being dwarfed by sample variance.
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APPENDIX A: THE NOISE POWER SPECTRUM
WITH INCOMPLETE SKY COVERAGE

In this Appendix, we derive Eq. (1). Knox first treated
the case fsky = 1 [3,4], and early incorrect generalizations
to the general case were corrected by Magueijo & Hobson
[12]. Since no detailed derivation has yet been published
for this case, we provide one here for completeness.
When the pixel noise is uniform and uncorrelated, the

quantities ni (the noise in the ith pixel) are random vari-
ables satisfying

〈ninj〉 = δijσ
2. (55)

Ignoring beam smoothing for the moment, we want to
show that the effect of this discrete pixel noise is the same
as if there were a continuous random field n(r̂) on the sky
with power spectrum Cnoise

ℓ = C ≡ Ωσ2/N . This is a

white noise power spectrum, since it is independent of ℓ,
which corresponds to a Dirac delta correlation function

〈n(r̂)n(r̂′)〉 = Cδ(r̂, r̂′). (56)

As long as the pixelization is uniform and fine enough,
we can approximate the integral of any function f over
our patch (of solid angle Ω) by a sum:

∫
f(r̂)dΩ ≈ Ω

N

N∑

i=1

f(r̂i). (57)

When performing a statistical analysis of a CMB map
(for instance a signal-to-noise eigenmode analysis), we
always expand it in some functions, say ψ, ψ′, ..., so the
noise in these expansion coefficients, say a, a′, ..., is given
by

a =
Ω

N

N∑

i=1

ψ(r̂i)ni. (58)

For Gaussian noise, the statistical properties of these
coefficients are completely specified by their covariance,
which using Eq. (55) is given by

〈aa′〉 =
(
Ω

N

)2 N∑

i=1

N∑

j=1

ψ(r̂i)ψ
′(r̂j)〈ninj〉

=

(
Ωσ

N

)2 N∑

i=1

ψ(r̂i)ψ
′(r̂i) (59)

When computing this covariance as if the noise where a
continuous random field, Eq. (57) gives

a ≈
∫
ψ(r̂)n(r̂)dΩ, (60)

and using Eq. (56), we obtain

〈aa′〉 ≈
∫ ∫

ψ(r̂)ψ′(r̂′)〈n(r̂)n(r̂′)〉dΩdΩ′

= C

∫
ψ(r̂)ψ′(r̂)dΩ (61)

≈ ΩC

N

N∑

i=1

ψ(r̂i)ψ
′(r̂i). (62)

Comparing equations (59) and (61), we see that the two
ways of treating the noise give the same answer if C =
Ωσ2/N . All that remains to prove Eq. (1) is to divide
the right hand side by the beam correction B2

ℓ , noting
that the noise is added to the sky signal after it has been
smoothed by the experimental beam.
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FIG. 1. The signal-to-noise eigenmodes are plotted for a circular sky patch of 10◦ diameter using a flat fiducial power
spectrum. The modes plotted are, from left to right, top to bottom, 1, 2, 3, 4, 6, 10, 30, 50, 100, 150, 300 and 500.
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FIG. 2. The window functions are shown for three of the signal-to-noise eigenmodes from the previous figure.
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FIG. 3. Understanding signal-to-noise eigenmodes: exact calculations and approximations. The signal-to-noise ratio λ1/2 is
plotted (dots) for three exact numerical calculations together with the approximation of Eq. (11) (dashed lines). From top to
bottom, the three cases correspond to complete sky coverage with w−1 = 7×10−15, a disk of diameter 10◦ with w−1 = 9×10−16,
and a 5◦ disk with w−1 = 2× 10−15.
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FIG. 4. Eigenmodes in real space and Fourier space. The window functions are plotted for the signal-to-noise eigenmodes
with ℓeff ∼ 220 for three rectangular sky patches of the same area (64 square degrees), and are seen to be wider for the skinnier
patches. The spatial eigenmodes themselves are also shown (inset).
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FIG. 5. The signal-to-noise eigenmodes 53, 52 and 51 (from top to bottom) and the corresponding window functions are
plotted for a 2◦ × 32◦ rectangular sky patch.
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FIG. 6. Understanding window functions. The two-dimensional Fourier transforms of the three eigenmodes from the
previous figure are schematically illustrated by the ellipses at A, B and C. The width of the one-dimensional window functions
corresponds to their radial extent, i.e., to how many of the circles they cross, so C gives a much narrower window than A in
Fig. 5. The situation for the eigenmodes in Fig. 4 is illustrated by the ellipses to the lower left.
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FIG. 7. When each measurement is subtracted from the one following it (using the differencing filter in the top panel), the
correlation functions resulting from white, 1/f and brown noise take the form shown in the three lower panels.
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FIG. 8. When the time stream is convolved with the “half differencing” filter in the top panel, the correlation functions
resulting from white and 1/f noise are as shown in the lower panels. As opposed to in the previous figure, the 1/f correlation
function does not sum to zero, which makes M band-diagonal.
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FIG. 9. Spectral functions. The top panel shows the spectral function for a sample noise covariance matrix (solid line) and
its decomposition into white, 1/f and brown noise (dashed curves). The bottom panel shows the same spectral function after
differencing the data (dashed curve), corresponding to multiplication with sin2(ϕ/2). In the absence of brown noise (lower solid
curve), λ(0) = 0 which is inconvenient for computing N−1, but this problem can be eliminated by using different high-pass
filter – the upper solid curve differs by a factor | sin(ϕ/2)|.
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FIG. 10. Schematic illustration of the four scan patterns described in the text.
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FIG. 11. The correlation between the various pixels and the one in the center is plotted for the serpentine (upper left),
grating (upper right), fence (lower left) and random (lower right) scan patterns for the case of pure 1/f noise.
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FIG. 12. The noise power spectrum Cnoise
ℓ is plotted for our four scan patterns given pure 1/f noise. The corresponding

noise power for white detector noise (which is identical for the serpentine, fence and random scans) is plotted below for
comparison, as well as a standard CDM power spectrum (top). The straight line has slope ℓ−1, just like the serpentine and
fence power spectra.
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FIG. 13. The noise power spectrum Cnoise
ℓ is plotted for the serpentine, fence and random scans with a combination of

white and 1/f noise (solid curves), only the 1/f component (dashed curves) and only the white component (dotted curve,
identical for all three scan patterns). A standard CDM power spectrum is plotted for comparison (top).
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