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Abstract: The emergent universe provides a possible method to avoid the Big Bang singularity by
considering that the universe stems from a stable Einstein static universe rather than the singularity.
Since the Einstein static universe exists before inflation, it may leave some relics in the CMB power
spectrum. In this paper, we analyze the stability condition for the Einstein static universe in general
relativity with k-essence against both the scalar and tensor perturbations. Furthermore, we find the
emergent universe can be successfully realized by constructing a scalar potential and an equation of
state parameter. Solving the curved Mukhanov–Sasaki equation, we obtain the analytical approxima-
tion for the primordial power spectrum, and then depict the TT-spectrum of the emergent universe.
The results show that both the primordial power spectrum and CMB TT-spectrum are suppressed on
large scales.
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1. Introduction

While most problems in the standard Big Bang cosmological model can be solved by
the inflationary scenario [1–3], the Big Bang singularity problem at the beginning of the
universe remains open. To avoid the Big Bang singularity, by considering a form of energy
named as quintessence which is a dynamic, time-dependent canonical scalar field φ with
a potential V(φ) to drive the late-time cosmic acceleration, a cosmological model called
the emergent universe was proposed [4,5]. In the emergent universe, it is assumed that the
universe originated from an Einstein static universe rather than a Big Bang singularity.
After the universe exits from the Einstein static state, it can evolve into an inflationary
era and then exit from this era. When the emergent universe was proposed, it received
lots of attention [6–13]. For a successful emergent universe, it requires the Einstein static
universe to exist past-eternally, i.e., it is stable against both scalar perturbations and tensor
perturbations. However, the original model of the emergent universe is unsuccessful since
the Einstein static solution in general relativity with quintessence is unstable against inho-
mogeneous scalar perturbations [14]. Subsequently, a large amount of efforts have gone
into theories of modified gravity, and the stable Einstein static universe against homoge-
neous and inhomogeneous scalar perturbations was found in Mimetic gravity [13], scalar-
fluid theory [15], non-minimal derivative coupling model [16,17], braneworld model [18],
Jordan–Brans–Dicke theory [19], Eddington-inspired Born–Infeld theory [20], hybrid metric-
Palatini gravity [21], GUP theory [22], f(R,T) gravity [23], f(R,T,Q) gravity [24], and massive
gravity [25].

In slow-roll inflation, nearly scale-invariant primordial scalar perturbations caused
by quantum fluctuations during inflation can explain the cosmic microwave background
(CMB) radiation anisotropy observed today, and provide seeds for the large-scale structure
of the observable Universe [26,27]. CMB observations show that there exists a suppression
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of the CMB TT-spectrum at large scales, which was first observed by COBE [28] and recently
confirmed by Planck 2018 [29]. This might correspond to the physics before inflation. In
order to explain this suppression, several approaches are proposed. One approach is to
introduce the spatial curvature in the inflationary model [30,31]. Recently, by considering
the universe starting with a kinetically dominated regime followed by a slow-roll epoch,
it was found that the suppression of the CMB TT-spectrum exists in general relativity
by considering the spatial curvature [32,33]. Another approach is to construct some new
models, such as pre-inflation [34,35], pre-inflationary bounce [36], non-flat XCDM inflation
model [37], warm inflation [38], Double inflation [39], hybrid new inflation [40], emergent
universe [41], and so on. In the emergent universe, when the Einstein static state is assumed
as a superinflating phase, the suppression of the CMB TT-spectrum at large scales was
realized [41]. In this work, the positive curvature is just used to ensure the existence of
Einstein static state rather than having an influence on the primordial perturbations. Taking
into consideration both the effect of the positive curvature on the primordial perturbations
and the postulate of the universe originating from an Einstein static state followed by a
slow-roll inflation, the suppression of the CMB TT-specturm at large scales is weakened [42].
It is also worthwhile to note is that the work in Refs. [41,42] are analyzed in general relativity
with quintessence, and the Einstein static universe is unstable against the inhomogeneous
scalar perturbations. Therefore, the emergent universe fails to explain the suppression of
CMB TT-spectrum in general relativity.

K-essence is characterized by a scalar field with a non-canonical kinetic term [43,44].
It was first proposed as a model for inflation [45,46], and then as a model for dark
matter [47,48]. After it was proposed, it received lots of attention and was widely stud-
ied in cosmology, such as k-essence cosmology [49], classical stability [50], behavior in
phase space [51], slow-roll conditions [52], thermodynamic properties [53], and so on. In
cosmological observation, it was found that k-essence was hard to be distinguished from
quintessence [54] but it might have some imprints on the perturbation spectrum [55]. In
addition, when the spatial curvature is considered in k-inflation, it was found that the
CMB TT-spectrum is suppressed [33]. Thus, in this work, we plan to explore whether a
successful emergent universe, in which the universe stems from a stable Einstein static
state and then evolves into a slow-roll inflation, can be realized in general relativity with
k-essence, and then study whether the suppression of CMB TT-spectrum can be realized in
the emergent universe.

The paper is organized as follows. In Section 2, we give the field equations and
the Einstein static solutions. In Section 3, the stability of Einstein static solutions against
tensor perturbations is analyzed. In Section 4, we study the stability conditions under the
homogeneous and inhomogeneous scalar perturbations. In Section 5, we design how the
universe exits from the Einstein static state and evolves into a slow-roll inflationary epoch.
In Section 6, we solve the curved Mukhanov–Sasaki equation and obtain the analytical
primordial power spectra of the emergent universe, and then we plot the CMB TT-spectra
of the emergent universe. Finally, our main conclusions are shown in Section 7.

2. Field Equations and Einstein Static Solutions

In this section, we begin with the general action

S =
∫

d4x
√
−g
[1

2
R + P(X, φ)

]
+ Sm, (1)

with

X = −1
2

gµν∇µφ∇νφ, P(X, φ) = αX−V(φ), (2)

where R is the Ricci curvature scalar, V(φ) is the potential of the scalar field φ, and Sm
represents the action of a perfect fluid. α is a coupling parameter, α = 1 and α = −1
corresponds to the case of quintessence and phantom, respectively.
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Varying the action (1) with respect to gµν and φ, we obtain the Einstein field equation
and the scalar field equation

Gµν +
α

2
gµν∇αφ∇αφ + gµνV − α∇µφ∇νφ− Tµν = 0, (3)

∇µ(αgµν∇νφ)−V,φ = 0, (4)

where V,φ = dV
dφ , Tµν is the energy–momentum tensor of the perfect fluid.

To find an Einstein static solution, we consider a closed Friedmann–Lemaitre–Robertson–
Walker (FLRW) universe

ds2 = −a(η)2dη2 + a(η)2γijdxidxj,

γijdxidxj =
dr2

1− r2 + r2(dθ2 + sin2θdϕ2), (5)

where a represents the scale factor and η denotes the conformal time. Then, the (00) and
(ij) components of Equation (3) give

H2 + 1 =
1
3

(α

2
φ′2 + a2V + a2ρ

)
, (6)

2H′ +H2 + 1 = −
(α

2
φ′2 − a2V + a2 p

)
, (7)

where ′ = d/dη,H = a′/a, ρ, and p are the energy density and the pressure of the perfect
fluid which satisfies p = ωρ with ω being equation of state parameter. Eliminating ρ from
the above equations, we get

2H′ + (3ω + 1)(H2 + 1) =
α

2
(ω− 1)φ′2 + (ω + 1)a2V. (8)

From Equation (4), we obtain

αφ′′ + 2αHφ′ + a2V,φ = 0. (9)

For the Einstein static solutions, the static condition a′0 = a′′0 = 0 indicates a = a0 =
constant andH0 = H′0 = 0. Then, Equation (8) reduces to

a2
0 =

3ω0 + 1
(ω0 + 1)V0

− α

2
(ω0 − 1)φ′2

(ω0 + 1)V0
, (10)

where the subscript 0 represents the corresponding value at the Einstein static state. In
order to obtain an Einstein static solution, ω0, φ′0, and V0 must be constants in the Einstein
static state. So, the scalar potential V is flat at the Einstein static state in which φ = φ0.
Considering these conditions, Equation (9) becomes

dV
dφ
|φ=φ0 = 0, (11)

which indicates the potential of the scalar field φ is flat. From Equation (6), we obtain

ρ0 =
−2(αφ′20 − 2)V0

2(3ω0 + 1) + α(1−ω0)φ
′2
0

. (12)

Since a0 and ρ0 are required to be positive, the existence conditions of the Einstein
static solutions are a2

0 > 0 and ρ0 > 0, which imply

α <
2

φ′20
, ω0 >

αφ′20 + 2
αφ′20 − 6

(13)
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or
2

φ′20
< α <

6
φ′20

, ω0 <
αφ′20 + 2
αφ′20 − 6

(14)

Here, φ′0 > 0 and V0 > 0 are taken into consideration.
For a stable Einstein static universe, it requires to be stable against both scalar perturba-

tions and tensor perturbations. In the following, we will discuss the stability of the Einstein
static solutions. To simplify this discussion, the tensor perturbations will be studied firstly
since they are easy to analyze.

3. Tensor Perturbations

For the tensor perturbations, the perturbed metric takes the form [56]

ds2 = −a(η)2dη2 + a(η)2(γij + 2hij)dxidxj. (15)

To study the stability of the Einstein static solutions, we perform a harmonic decom-
position for the perturbed variable hij

hij = HT,klm(t)Yij,klm(θ
n). (16)

Since the quantum numbers m and l do not play a role in the perturbed differential
equations, they will be suppressed hereafter. Then, the harmonic function Yk = Yklm(θ

n)
satisfies [57]

∆Yk = −K2Yk = −k(k + 2)Yk, k = 0, 1, 2, . . . , (17)

where ∆ is the three-dimensional spatial Laplacian operator. Then, substituting the per-
turbed metric (15) into the field equations (3) and using the static conditions, we obtain the
equation of tensor perturbations

H′′T + (k2 + 2)HT = 0. (18)

For the stable Einstein static solutions, k2 + 2 > 0 must be satisfied for any k. Since
k = 0, 1, 2, ..., it can be seen that the Einstein static solutions are stable against the tensor
perturbations in the closed universe.

4. Scalar Perturbations

In the previous section, by considering the tensor perturbation, we find the Einstein
static solutions are stable in the closed universe and the tensor perturbations do not
constrain any parameter. Since a stable Einstein static solution requires stability against
both the scalar perturbations and tensor perturbations, we will discuss the stability of
the Einstein static solutions against scalar perturbations in the closed universe. Once
the Einstein static solutions are stable against both the scalar perturbations and tensor
perturbations, the universe can stay at the Einstein static state past-eternally. To achieve
this goal, we take the perturbed metric in the Newtonian gauge [56]

ds2 = −a(η)2(1 + 2Ψ)dη2 + a(η)2(1 + 2Φ)γijdxidxj, (19)

where Ψ denotes the Bardeen potential and Φ represents the perturbation to the spatial
curvature. In the Newtonian gauge, the perturbed metric still has the diagonally form
and the perturbed variables are gauge invariant. Then, substituting the above perturbed
metric (19) into the field Equations (3) and (4), we obtain

2∇2Φ + 6Φ− αφ′20 Ψ + αφ′0δφ′ + a2
0δρ = 0, (20)

Φ + Ψ = 0, (21)

6Φ′′ − 6Φ− 2∇2(Ψ + Φ)− 3αφ′20 Ψ + 3αφ′0δφ′ + 3a2
0δp = 0, (22)

δφ′′ −∇2δφ− φ′0Ψ̇ + 3φ′0Φ′ = 0. (23)
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Here, the static conditions and the perturbation of the field φ→ φ0 + δφ are used. The
relation between density and pressure perturbations is δp = c2

s ρ0δ with δ = δρ/ρ0 and
c2

s = ω.
Similar to discussing the stability of the Einstein static solutions against tensor pertur-

bations, we perform the harmonic decomposition for all perturbed variables

Ψ = Ψk(η)Yk(θ
n), Φ = Φk(η)Yk(θ

n),

δ = δk(η)Yk(θ
n), δφ = δφk(η)Yk(θ

n). (24)

Substituting these variables into Equations (20)–(23) and eliminating Φk and δk, we
get two independent perturbed equations

2Φ′′k +
[
2(ω0k2 − 3ω0 − 1) + α(1−ω0)φ

′2
0

]
Φk + α(1−ω0)φ

′
0δφ′k = 0, (25)

δφ′′k + k2δφk + 4φ′0Φ′k = 0. (26)

Introducing two new variables Ak = Φ′k and Bk = δφ′k, the perturbed Equations (25)
and (26) can be reduced as

A′k + a11Bk + a12Φk = 0, (27)

B′k + b11 Ak + b12δφk = 0, (28)

Φ′k − Ak = 0, (29)

δφ′k − Bk = 0, (30)

with

a11 =
1
2

α(1−ω0)φ
′
0, (31)

a12 =
1
2

α(1−ω0)φ
′2
0 + ω0k2 − 3ω0 − 1, (32)

b11 = 4φ′0, (33)

b12 = k2, (34)

The stability of the Einstein static solutions can be determined by the eigenvalues of
the coefficient matrix of this dynamical system, which are

µ2 =
−M±

√
N

2
, (35)

where

M = a12 − a11b11 + b12, (36)

N = (a12 − a11b11 + b12)
2 − 4a12b12. (37)

For µ2 > 0, one perturbation from the Einstein static state will leads to an exponential
deviation from the Einstein static state, and the corresponding Einstein static solution is
unstable. While for µ2 < 0, a small perturbation from the Einstein static state will result
in an oscillation around this state, and the corresponding Einstein static state is stable,
which means that it is stable both in the past and in the future. Thus, under the scalar
perturbations, the stability conditions are given by µ2 < 0, which indicate

M > 0, N > 0, M2 − N > 0. (38)
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Since the homogeneous scalar perturbations correspond to the case K2 = 0, we obtain
b12 = 0 and M2 = N. Therefore, the stability conditions for the homogeneous scalar
perturbations reduce as M > 0 which require

φ′ > 0, V > 0, α < 0,
αφ′20 + 2
αφ′20 − 6

< ω0 <
3αφ′20 + 2
3αφ′20 − 6

. (39)

Here, the existence conditions Equations (13) and (14) are taken into consideration.
The stability region for homogeneous scalar perturbations is shown in the first panel of
Figure 1.
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Figure 1. Stability regions in (ω0, α) plane under homogeneous and inhomogeneous scalar perturba-
tions with k = 0, 2, 3, 4. k = 0 represents the homogeneous scalar perturbations. These figures are
plotted for φ′0 = 1 and V0 = 5.

For the inhomogeneous scalar perturbations, Since k = 1 mode represents a gauge
degree of freedom corresponding to a global rotation, the modes have k ≥ 2 which indicates
K2 ≥ 8.

Since the Einstein static solutions must be stable against all kinds of perturbations, we
will discuss the stability conditions against inhomogeneous scalar perturbations under the
existence conditions and the stability conditions for the homogeneous scalar perturbations.
Thus, the stability conditions are given by Equation (38) which indicate

φ′ > 0, V > 0, α < − 2
φ′20

,
αφ′20 − 2
αφ′20 − 10

< ω0 <
3αφ′20 + 2
3αφ′20 − 6

. (40)
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In Figure 1, we plot some examples of the stable regions of the homogeneous and inho-
mogeneous scalar perturbations. In this figure, the values of k are taken to be k = 0, 2, 3, 4,
and k = 0 represents the homogeneous scalar perturbations. For the inhomogeneous scalar
perturbations, the stable regions become larger and larger with the increase in the value of
k. It is obvious that the smallest stability region is obtained in the case k = 2.

In Figure 2, the evolutionary curves of a and φ̇ against η are depicted. In this figure,
the solid line represents that the initial value of a is the Einstein static solution a0, while the
dashed line denotes that the initial value of a has a slight deviation of a0. When the initial
value of a is chosen as the Einstein static solution a0, it can be seen that the evolutionary
curves of a and φ̇ parallel to the η-axis. Considering a slight deviation of the initial value a0,
the evolutionary curves of a and φ̇ oscillate near the Einstein static state, which are depicted
by the dashed line in Figure 2. These figures show that the Einstein static solutions are
stable under the stability conditions (40).

-6 -4 -2 0 2 4 6
0.30

0.31

0.32

0.33

0.34

η

a

-6 -4 -2 0 2 4 6
0.90

0.95

1.00

1.05

1.10

η

ϕ′

Figure 2. Evolutionary curves of a and φ′ with η. The solid line represents that the initial value of a
is the Einstein static solution a0, while the dashed line denotes that the initial value of a has a slight
deviation of a0. These figures are plotted for φ′0 = 1, V0 = 5, α = −10, and ω0 = 0.6.

In Ref. [14], the Einstein static universe was studied in general relativity with quintessence,
and it is unstable against inhomogeneous perturbations. Comparing with quintessence,
the action (1) in this paper has a coupling parameter α and the case α = 1 corresponds to
quintessence. Due to the presence of parameter α, the stability conditions are extended, so
that a wider range of Einstein static solutions can be obtained. It is found that the Einstein
static universe is stable against both scalar and tensor perturbations under conditions (40)
which suggest that a stable Einstein static solution requires a negative α.

5. Leaving the Einstein Static State

In the previous section, we find that the Einstein static solutions are stable, which
indicates the universe can stay at Einstein static state past-eternally. In the emergent
universe, we require the universe can exit from the stable Einstein static state and enter
into an inflationary era. In this section, we will discuss how to realize this transition.

In the Einstein static state, since a0, φ′0, and V0 are constant, a0 is given in Equation (10)
and the scalar potential V0 is flat, we can take φ = β(η − ηt). Here, β is a constant and
ηt denotes the transition time that the universe exits from the Einstein static state. After
the universe exits from the Einstein static state, it evolves into the inflationary era. In
the inflationary era, the universe is dominated by the scalar field φ, and the effect of the
perfect fluid is negligible. By ignoring ρ and p in Equations (6) and (7) and considering
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φ′2 � a2V(φ) in the slow-roll inflation stage, we eliminate φ′2 in Equations (6) and (7).
Then, combining Equations (6) and (7) to eliminate the scalar potential V, we get

H′ −H2 − 1 = 0, (41)

with the solution
a =

a0

cos(η − ηt)
(42)

which is obtained in Ref. [33], and it can also be obtained by solving Equations (8) or (9).
Assuming the scalar potential takes the form

V1 =
3
a2

0
+

αβ2(1−ω) cos2(φ/β)

2(1 + ω)a2
0

(43)

with ω = −1/3, and then solving Equation (8) or (9), we find that both Equations (8) and (9)
can give the solution (42). An example of V1 is plotted by the red line in the first panel of
Figure 3. As a result, the expression of scale factor a can be written as follows

a(η) =

{
a0, η < ηt

a0
cos(η−ηt)

, ηt ≤ η < ηt +
π
2 . (44)

In order to realize the exit of the universe from the stable Einstein static state and
evolve into the inflationary era, it is necessary to break the stability conditions of the
Einstein static state. To achieve this goal, we need to construct a scalar potential V and an
equation of state parameter ω to realize this transition. According to previous discussion,
both V and ω are constants in the Einstein static state, while V has the form in Equation (43)
and ω takes the value −1/3 in the slow-roll inflationary era. So, we require that the scalar
potential V and the equation of state parameter ω vary with the conformal time η slowly,
they approach to a constant in the Einstein static state η → −∞ and decrease rapidly when
inflation begins η → ηt. Considering these conditions, we construct a scalar potential

V2 =
1
2

[
1− tanh

( ξ

β
φ
)]

V0

+
1
2

[
1 + tanh

( ξ

β
φ
)][ 3

a2
0
+

αβ2(1−ω) cos2( φ
β )

2(1 + ω)a2
0

]
(45)

and a equation of the state parameter

ω =
1
2
[
1− tanh(ξ(η − ηt))

]
ω0 +

1
2
[
1 + tanh(ξ(η − ηt))

]
ω1 (46)

with ω1 = −1/3.
An example of V2 and ω is shown in the upper panels of Figure 3. The potential V2

(Equation (45)) is plotted by the green dashed line in the first panel, while the equation of
state parameter ω (Equation (46)) is plotted in the second panel. With the time passage and
approaches to the transition time 0, the potential V2 deviates from the static value V0 and
decreases to less than 0, and ω deviates from the static value ω0 and decreases to −1/3.
Thus, the stability conditions for the Einstein static state are broken, the universe exits from
the stable Einstein static state and inflation begins.

Using the expression of V2 (Equation (45)) and ω (Equation (46)), we solve the dynam-
ical Equations (8) and (9) numerically and depict the evolution of universe in the early
time in the lower panels of Figure 3. In these two panels, the static value of scale factor a0
(Equation (10)) is plotted by the green dashed line, the scale factor a in the inflationary era
(Equation (42)) is shown by the red dashed line, and the scale factor depicted by the blue
line is the numerical simulation result obtained by solving the dynamical Equations (8)
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and (9) numerically. For convenience, we adopt η = 0 as the time at which the universe
exits from the Einstein static state and the transition time takes the value ηt = 0. In the
case of Figure 3, when the scalar potential decreases to a negative value, the stability condi-
tion is broken and the universe exits from the Einstein static state, and then the potential
bounces back and becomes positive again. Then, inflation begins at the time when the
potential becomes positive. It can be seen from these figures in the lower panels that the
numerical and analytical solutions of the Friedmann equations overlap and the evolution
of scale factor a can be described by Equation (44). Furthermore, the right panel depicts
that, after the universe leaves the initial Einstein static state, the factor a increases rapidly
and the universe evolves into the inflationary era. Thus, the emergent universe can be
realized successfully and the Big Bang singularity can be avoided in general relativity with
k-essence.
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Figure 3. Evolutionary curves of V, ω, and a against η with φ′ = 1, V0 = 5, α = −10, ω = 0.6, and
ξ = 100.

6. CMB Power Spectrum

In the previous section, we find that the Einstein static universe can be stable against
tensor and scalar perturbations in k-essence, and can exit the stable static state and then
evolve into a subsequently inflationary era. In this section, we will analyze the CMB
TT-spectrum for the emergent universe and discuss whether the suppression of CMB
TT-spectrum can be realized in this successful emergent universe.



Universe 2023, 9, 221 10 of 14

To study the primordial power spectrum in emergent universe, we introduce a gauge
invariant comoving curvature perturbation

R = Ψ +
H
φ′

δφ (47)

which satisfies the curved Mukhanov–Sasaki equation in k-essence [33]

v′′k +
(

c2
sK2 − Z

′′

Z −
2
H
Z ′
Z + 1− 3c2

s

)
vk = 0 (48)

with

v = ZR, Z = z

√
D2

D2 − ε
,

z =
a2(ρφ + pφ)1/2

Hcs
, ε =

a2(ρφ + pφ)

2H2c2
s

, (49)

D2 = −k(k + 2) + 3.

Here, ρφ and pφ denote the energy density and pressure for scalar field, and the effect
of perfect fluid is not taken into account since ρφ dominates the evolution of the universe
before inflation ends. c2

s denotes the squared sound speed of inflation which is given as

c2
s =

P,X

P,X + 2XP,XX
. (50)

For the case P(X, φ) = αX − V(φ), we obtain c2
s = 1. Then, the curved Mukhanov–

Sasaki Equation (48) reduces to that in Refs. [32,42].
In the Einstein static state, considering the static condition, we get

Z = a0

√
2[k(k + 2)− 3] ∼ a0, (51)

and Equation (48) becomes

v′′k + k2
−vk = 0, k2

− = k(k + 2)− 4, (52)

which has the solution
vk(η) = Akeik−η + Bke−ik−η . (53)

Using the normalization conditions and choosing the Bunch–Davies vacuum, we get
the initial condition

Ak = 0, Bk =

√
1

2k−
. (54)

So, the solution of Equation (52) is determined as

vk(η) =

√
1

2k−
e−ik−η . (55)

In the inflationary era, since ε ≈ 0, we get

Z ′′
Z +

2
H
Z ′
Z + 2 ≈ a′′

a
+ 3. (56)
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Then, substituting Equations (42) and (56) into Equation (48), the curved Mukhanov–
Sasaki Equation (48) becomes

v′′k +
[
k2
+ −

2
(η − (ηt +

π
2 ))

2

]
vk = 0, k2

+ = k(k + 2)− 8
3

. (57)

The solution of the above equation takes the form

vk(η) =

√
π

4

√(
ηt +

π

2
)
− η

[
Ck H(1)

3/2

(
k+
(
(ηt +

π

2
)− η

))
+ Dk H(2)

3/2

(
k+
(
(ηt +

π

2
)− η

))]
, (58)

where H(1) and H(2) are the Hankel functions of the first and second kinds, and Ck and Dk
are integration constants. In order to determine Ck and Dk, we match Equations (55) and (58)
at the transition time ηt by using the continuity condition of vk and v′k, then we obtain

Ck =
1
4

e−ik−ηt

√
1

k−

[
iπk+H(2)

1/2

(π

2
k+
)
+ (−2i + πk−)H(2)

3/2

(π

2
k+
)]

, (59)

Dk = −
1
4

e−ik−ηt

√
1

k−

[
iπk+H(1)

1/2

(π

2
k+
)
+ (−2i + πk−)H(1)

3/2

(π

2
k+
)]

. (60)

The curved primordial power spectrum of the comoving curvature perturbationR is
defined as

PR =
k3

2π2 |Rk|2 =
k3

2π2

∣∣∣∣ vk
Zk

∣∣∣∣2. (61)

Substituting Equation (58) into Equation (61), we get the curved primordial power
spectrum ofR

PR =
k3

2π2 |Rk|2

≈ lim
η→ηt+

π
2

1
8a2π2ε

1[
η −

(
ηt +

π
2
)]2 k3

k3
+

|Ck − Dk|2 (62)

= As
k3

k3
+

|Ck − Dk|2.

in which the transition time parameter ηt, slow-roll parameter ε, and formally diverging
parameters are absorbed into the scalar power spectrum amplitude As [32].

Then, the analytical primordial power spectrum can be parameterized as

PR(k) = As

( k
k∗

)ns−1 k3

k3
+

|Ck − Dk|2, (63)

where k∗ = 0.05 Mpc−1 represents the pivot perturbation mode.
To depict the primordial power spectrum, we use the Planck 2018 results in the curved

universes best-fit data (TT, TE, EE + lowl + lowE + lensing) As = 2.0771± 0.1017× 10−9

and ns = 0.9699± 0.0090. In the left panel of Figure 4, we have plotted the primordial
power spectrum for the emergent universe. The red line denotes the primordial power
spectrum of the emergent universe, while the black one corresponds to the one of ΛCDM
with positive spatial curvature and we label it as KΛCDM. The left panel of Figure 4 shows
that the spectrum is suppressed for k < 30. Then, using CLASS code [58], we have plotted
the CMB TT-spectrum which is shown in the right panel of Figure 4. From this figure, we
can see that the CMB TT-spectrum of the emergent universe is suppressed at l < 30.
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Figure 4. Primordial power spectrum and CMB TT-spectrum for the emergent universe (EU).

Comparing with the results in Ref. [42], we can find that the primordial power spec-
trum and CMB TT-spectrum in those models are the same as ours. However, the Einstein
static universe in our model is stable against both scalar and tensor perturbations and the
emergent universe can be realized successfully, whereas in the case of Ref. [42] unstable
against inhomogeneous scalar perturbation.

7. Conclusions

In this paper, we have discussed the CMB power spectrum of the emergent universe
with k-essence. We analyze the stability of the Einstein static universe against both scalar
and tensor perturbations. When the inhomogeneous scalar perturbations are taken into
consideration, the stable regions of the Einstein static universe are compressed. We find
that the stable Einstein static universe can exist in the spatially closed spacetime and the
stability conditions are given in Equation (40). To realize the universe exiting from the
stable Einstein static state and evolving into an subsequent inflationary era, we construct a
scalar potential (45) to break the stable condition of the Einstein static universe and assume
a form of the equation of state parameter (46) to guarantee inflation occurs. An evolutionary
curve of the scale factor a is shown in Figure 3 which shows the emergent universe can be
realized in this theory. Thus, the Big Bang singularity can be avoided in general relativity
with k-essence.

As shown in Figure 3, since the numerical and analytical solution of the Friedmann
equations overlap, the evolution of scale factor a during inflation can be described by
Equation (42) entirely. By considering the evolutionary form of the scale factor and solving
the curved Mukhanov–Sasaki Equation (48), we obtain the analytical approximation for
the primordial power spectrum in the emergent universe. Then, we depict the primordial
power spectrum and CMB TT-spectrum in Figure 4 which shows the primordial power
spectrum is suppressed at k < 30 and CMB TT-spectrum is suppressed at l < 30.
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