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Abstract. We consider a Swiss Cheese model with a random arrangement of Lemâıtre–
Tolman–Bondi holes in ΛCDM cheese. We study two kinds of holes with radius rb =
50 h−1Mpc, with either an underdense or an overdense centre, called the open and closed
case, respectively. We calculate the effect of the holes on the temperature, angular diameter
distance and, for the first time in Swiss Cheese models, shear of the CMB. We quantify the
systematic shift of the mean and the statistical scatter, and calculate the power spectra.

In the open case, the temperature power spectrum is three orders of magnitude below
the linear ISW spectrum. It is sensitive to the details of the hole, in the closed case the
amplitude is two orders of magnitude smaller. In contrast, the power spectra of the distance
and shear are more robust, and agree with perturbation theory and previous Swiss Cheese
results. We do not find a statistically significant mean shift in the sky average of the angular
diameter distance, and obtain the 95% limit |∆DA/D̄A| . 10−4.

We consider the argument that areas of spherical surfaces are nearly unaffected by
perturbations, which is often invoked in light propagation calculations. The closed case is
consistent with this at 1σ, whereas in the open case the probability is only 1.4%.
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1 Introduction

Inhomogeneities, mean quantities and sampling in light propagation. Studies of
the non-linear effect of inhomogeneities on light propagation go back to at least the proposal
by Zel’dovich in 1964 that, due to clumping of matter, lines of sight could pass through
regions of the universe that are more underdense than the mean, changing the observed
distance-redshift relation [1]. The work that followed considered a modification to the optical
equations such that light rays see only a constant fraction of the density of a Friedmann–
Robertson–Walker (FRW) universe [2–5], now referred to as the Dyer–Roeder formula [6–9].
The applicability of the formalism has since been much studied [10–20], and it has been
generalised by making the density sampling factor redshift-dependent and by changing the
expansion rate along the light ray [18, 21–29]. The effect of inhomogeneities has been studied
also by a variety of other methods; for discussion and references, see e.g. [30].

It is sometimes claimed that even though inhomogeneities can change the distance-
redshift relation for some lines of sight, on average it will not deviate from the FRW result.
This was argued by Weinberg in 1976 [31], on the basis that because inhomogeneities do not
change the number of photons, the total flux through a spherical surface would be conserved.
It was already pointed out by Bertotti in 1966 [4] that this argument is wrong, because
it assumes that the area of the sphere is unchanged by inhomogeneities, which, however, is
precisely the question under study. In general, the area of a sphere can be strongly affected by
inhomogeneities, and explicit examples have been presented [32–34], including a case where
the metric perturbations around the FRW universe are small [35] (see also [36–40]). The
redshift can also change significantly, modifying the distance-redshift relation [41].

It seems that if structures are small compared to the distance travelled by the light and
their distribution is statistically homogeneous and isotropic and evolves slowly compared
to the time it takes for light to cross them –in short, if light rays sample the structures
fairly– then the change in the redshift and distance can be expressed in terms of the average
expansion rate [14, 16, 30, 41, 42]. Thus, if the average expansion rate is close to the FRW
case, this is expected to be true also for the redshift and the distance. (It is known that if
the metric is close to FRW, so are the redshift and the average expansion rate [43].)

Attention has thus focused either on studying the possibility of a large effect of structures
on the average expansion rate, i.e. backreaction [44, 45], or analysing the small deviations
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in the case when the average expansion rate is close to FRW. A useful treatment of the
latter situation is given by Swiss Cheese models, where inhomogeneities are modelled by
cutting holes into a spacetime (called the background, or cheese) and replacing them with
patches of another spacetime. This was originally done for an Einstein–de Sitter background
and Schwarzschild holes [46]. However, the setup can be easily generalised to any FRW
background and any Szekeres solution [47], provided the Darmois junction conditions are
satisfied [48–51]. If the Szekeres holes are small, long-lived and non-singular (including the
absence of surface layers), then the average expansion rate is close to (but not exactly the same
as) that of the background [41]. A Swiss Cheese model can be statistically homogeneous and
isotropic, if the holes are small and their distribution is chosen appropriately. As Swiss Cheese
is an exact solution of the Einstein equation, no perturbative or Newtonian approximations
are needed. The model is rather tractable in the sense that the solution to the Einstein
equation can be expressed in terms of elliptic integrals, and in the case when cosmological
constant is zero, it can be written parametrically in terms of elementary functions [52]. It
is also possible to treat more complicated structures than in those exact solutions in which
there is no FRW background and the sources are discrete [53–57] (see also [58–68]).

Light propagation in Swiss Cheese models has been extensively studied [13, 17, 18, 20,
69–97]. In particular, Swiss Cheese models have been used to study fluctuations in redshift
and distance of the cosmic microwave background (CMB) [81, 98, 99]. Some papers, includ-
ing recent ones, based either on Swiss Cheese and perturbative calculations, have claimed
surprisingly large effects on the distance, given that the average expansion rate has been
close to FRW [20, 78, 82, 94, 95, 99, 100]. Such deviations have been due to selection effects,
some of which are quite clear and others rather subtle.

We investigate the systematic shift and statistical fluctuations in the redshift, angular
diameter distance and shear of the CMB in a Swiss Cheese model. We consider a fully
randomized hole distribution in a single fixed spacetime, to avoid biased sampling. This is
the first Swiss Cheese CMB calculation of the distance fluctuations with randomised holes in
a ΛCDM background. It is also the first study of the CMB shear in a Swiss Cheese model.
We use the Lemâıtre–Tolman–Bondi (LTB) [52, 101–103] solution for the holes, and do the
calculation for two different density profiles, one with a central overdensity and another with a
central underdensity, for comparison. We calculate the sky maps and power spectra for large
scales (l . 100) for the perturbations in redshift, angular diameter distance and integrated
null shear generated by the holes between the CMB last scattering surface and the observer.
We also study sky averages, including the average of the flux and its inverse. In section 2 we
define our model. In section 3 we go through the light propagation calculation. In section 4
we present our results, compare to previous work, with a focus on selection effects and flux
conservation arguments, and in section 5 we summarise.

2 Model construction

The Lemâıtre-Tolman-Bondi solution. The LTB solution [52, 101–103] is the spheri-
cally symmetric special case of the Szekeres dust solution. The line element is

ds2 = −dt2 +
R′2(t, r)

1 + 2E(r)
dr2 +R2(t, r)dΩ2 , (2.1)

where E(r) quantifies the spatial curvature of the shell at coordinate radius r; we denote
derivative with respect to r by prime and derivative with respect to t by dot. In units where
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c = G = 1, the Einstein equation reduces to the equation of motion for R,

Ṙ2(t, r) = 2E(r) +
2M(r)

R(t, r)
+

1

3
ΛR2(t, r) , (2.2)

where Λ is the cosmological constant and M(r) is a free function related to the dust density
as

ρ(t, r) =
M ′(r)

4πR2(t, r)R′(t, r)
. (2.3)

The solution to (2.2) can be found by integrating

t− tB(r) =

∫ R(t,r)

0

dR
√

2M
R + 2E + 1

3ΛR
2
, (2.4)

and numerically finding the root(s). This integral cannot generally be expressed in terms
of elementary functions. We solve it by numerical integration and the algorithm presented
in [104, 105]. The bang time function tB(r) indicates the time of the initial singularity,
R(tB(r), r) = 0.

The expansion rate is

H(t, r) =
1

3

(

Ṙ′

R′
+

2Ṙ

R

)

. (2.5)

The local homogeneous FRW dust solution is a special case with

E = −1

2
Kr2, M =M0r

3, tB = 0 , (2.6)

where K and M0 are constants, leading to R(t, r) = a(t)r.

Junction conditions and shell crossings. Two LTB spacetimes can be joined together
into a solution of the Einstein equation without surface layers if and only if the metric and
the extrinsic curvature are continuous across the boundary. These are known as the Darmois
junction conditions [48, 49]. In order to have a physically viable model, shell crossings also
have to be avoided [106]. Since the LTB solution has only dust matter, there are no physical
processes that can stop two nearby radial shells from overlapping if they expand at different
rates. This leads to a divergence in density and a breakdown of the model. We construct
the models so that there are no shell crossings between the time of the big bang and today.
Requiring that the LTB holes are free of shell crossings, collapse singularities and surface
layers, and that their radius today is much smaller than the Hubble scale, constrains them
to have nearly the same volume, average density and total mass as the piece of cheese they
displace [41].

Choice of functions. The three free functions E(r), M(r) and tB(r) specify the model
completely. Models with t′B 6= 0 contain decaying modes [107], which would correspond to the
universe being far from homogeneous and isotropic at early times. We consider only models
where tB is constant; without loss of generality we then take tB = 0. Given the junction
conditions, which fix the value of M(r) on the embedding surface and the assumption that
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Figure 1. The function E(r) in units of r2
b
.

M(r) is monotonic, its functional form is completely degenerate with the definition of the
radial coordinate r. Our choice of M(r) and E(r) is given below, along with tB(r):

M(r) =M0r
3 (2.7)

E(r) = E0r
2

[

1− tanh

(

r − rt
rσ

)]

(2.8)

tB(r) = 0 , (2.9)

where M0 and E0 are constants. The junction conditions fix M0 =
4πr3b
3 ρ̄(t0), where bar

denotes background quantity and t0 is the present time. The form of E(r), shown in figure 1,
has been chosen because of its smoothness, which makes it possible to speed up the calculation
by evaluating R using cubic splines. The constant E0 determines the sign and magnitude of
the spatial curvature in the hole. Parameters rt and rσ are the transition radius and width,
respectively, where the profile changes smoothly from spatially curved to flat. We choose
these constants so that at the embedding boundary E(r) is zero within numerical precision
and therefore the Darmois junction conditions are satisfied to good precision, while keeping
the model free of shell crossings and also making sure it is very non-linear today; the values
are given in table 1. The fact that the Darmois conditions are not exactly satisfied is not a
problem. We could make the matching exact by multiplying E(r) with a function that is zero
at the boundary and switches rapidly to unity away from it, without affecting the results.

Swiss Cheese. We take the background to be a spatially flat FRW spacetime with dust
and a cosmological constant, with present day density parameters ΩΛ = 0.7, Ωm = 0.3.
We consider two kinds of LTB holes, called open and closed, to see how the results depend
on the details of the hole. In the open case, there is an underdense void in the centre,
surrounded by a thin overdense shell. The closed case has an overdense centre surrounded
by an underdensity. The spatial curvature closely follows the density profile, so it is negative
at the location of the underdensity and positive at the overdensity. Despite the names,
the average spatial curvature over one hole is positive in both cases, although very small,
〈(3)R〉V /(6H̄2

0 ) = 5.7 · 10−8 in the open model and 1.3 · 10−8 in the closed model, where 〈〉V
denotes proper volume average and H̄0 is the background Hubble rate today.
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Open Closed

rb 50 h−1Mpc 50 h−1Mpc
rt/rb 20/35 5/20
rσ/rb 1/35 1/20
E0 1.41 −5

〈δ̇〉V (t0) 0.156H0 0.010H0

〈∆H/H̄〉V (t0) −2.0 · 10−7 −1.8 · 10−9

Table 1. Parameters of the two models: the embedding radius rb, transition radius rt and transition
width rσ and the magnitude of spatial curvature E0. Also listed are the proper volume averages,
denoted by 〈〉V , of δ̇ and ∆H/H̄ today.
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Figure 2. The expansion rate (left) and density (right) of the holes normalised to the background
today, as a function of r/rb. Note that the density plot is logarithmic.

In both cases, the holes are embedded in the background on a comoving boundary with
coordinate radius rb = 50 h−1Mpc. However, the profiles are close to the background already
far from the boundary, so the size of the inhomogeneities is smaller than the embedding
radius, approximately 30 h−1Mpc for the open model and 20 h−1Mpc for the closed model,
as shown in figure 2. In order to avoid shell crossings, there is a trade-off between the non-
linearity of the profile and distance of the inhomogeneous features from the boundary, and
we have constructed the holes to be clearly in the non-linear regime today.

The energy density in our model does not have a radiation component, so we are missing
the early integrated Sachs–Wolfe (ISW) effect. In the real universe, the contribution of
radiation to the energy density at the last scattering surface is about 25%. However, we
are in any case not interested in modelling the effects at early times, when the holes are
in the linear regime. Therefore, we position the sources (as well as the observer) in the
cheese. We thus also do not have an ordinary Sachs-Wolfe effect, nor monopole or dipole
terms arising from the observer’s location (the dipole is generally the dominant contribution;
see e.g. [108]). The signal is generated only by secondary effects as the photons propagate
through the universe.

We arrange the holes randomly around the observer, with the locations drawn from
a uniform distribution and overlapping holes removed. Although this procedure generates
some correlation between voids, their distribution is close to uniformly random. The fraction
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of the total volume in holes, the packing fraction, is 0.34, close to the packing efficiency of
0.35 in [85, 86]. The effective packing fraction, defined as the fraction of volume in regions
that differ significantly from FRW, is smaller, as the profiles tend to the FRW case far from
the boundaries, as noted above. We use the same single arrangement of holes for both models
and for all geodesics, so correlations due to different rays having passed through the same
holes are included. In contrast, most earlier works ([85, 86] being a notable exception) have
considered a hole distribution that is dynamically generated along each beam separately or
treated statistically [13, 17, 20, 69–72, 74, 77, 81, 91, 92, 97, 99] (see also [109–116]), or have
arranged the holes straight on the line of sight [75, 78, 79, 84, 87–89, 99] or in a regular
lattice [85, 86, 94, 98].

In the real universe, there are correlated structures of various sizes. It would be possible
to construct a model with holes of different radii, profiles and correlated locations to try to
match the matter power spectrum. The packing fraction could be increased by using holes
of different sizes. By using holes that have a homogeneous region, it is also possible to pack
holes inside holes [67]. However, as the holes in Swiss Cheese cannot overlap, merge nor
otherwise affect each other gravitationally, its ability to model realistic large scale structure
is limited. We restrict ourselves to single size holes with an (almost) uniform distribution.

3 Light propagation

The setup. As long as the wavelength and the wavefront curvature radius are much smaller
than spacetime curvature radius, light propagation can be described in the geometrical optics
approximation, where light travels as plane waves on null geodesics [117] (p. 93). Let a null
geodesic xµ(λ) be parametrized by an affine parameter λ. Its tangent vector kµ = dxµ

dλ satisfies
the null condition kµk

µ = 0 and the geodesic equation kµ∇µk
ν = 0. If the wave vector is given

in units where the photon energy at observation is equal to 1, then the redshift measured
by an observer with four-velocity uµ is given by 1 + z = −uµkµ. We consider observers that
comove with the dust, so z = kt− 1. The temperature is related to the redshift as T ∝ 1+ z.

We start the light rays from the observer and follow the evolution of a bundle of null
geodesics back in time to the source, using the Sachs formalism to calculate the angular
diameter distance and the null shear. We continue the integration until the background
redshift reaches 1090, corresponding to the last scattering surface. This choice of direction
makes the calculation a lot simpler, and is natural in the sense that all observed geodesics
converge at the observer today. However, in reality photons travel from the source towards the
observer, so it might seem that this standard procedure solves the wrong physical problem.
For the distance, the resolution is well known: backwards integration gives the angular
diameter distance DA, whereas forwards integration gives the luminosity distance DL divided
by 1 + z [118]. As the distances are related due to the Etherington reciprocity theorem
[118, 119] as DL = (1 + z)2DA, it is simple to correct for this. In appendix A, we prove a
similar result for the shear: as long as the integrated null shear is small, it does not depend
on whether the initial conditions are set at the observer or the source.

Geodesic equations and redshift. Without loss of generality, we choose the LTB angular
coordinates in each hole separately such that the light ray travels on the equator, θ = π/2.
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Then the null geodesic equations reduce to

dθ

dλ
= 0 (3.1)

dφ

dλ
=
cφ
R2

(3.2)

dz

dλ
= − Ṙ

′

R′
(1 + z)2 +

c2φ
R2

(

Ṙ′

R′
− Ṙ

R

)

(3.3)

d2r

dλ
= −2

Ṙ′

R′
(1 + z)

dr

dλ
−
[

(1 + 2E)
R′′

R
− E′

](

dr

dλ

)2

+ (1 + 2E)
c2φ

R3R′
, (3.4)

where cφ is an integration constant related to the impact parameter. The initial condition for
the radial component of the tangent vector can be found using the null condition kµk

µ = 0,

dr

dλ
=

1

R′

√

(1 + z)2 −
c2φ
R2

. (3.5)

Distance and null shear. The angular diameter distance from observer O to source S is
defined as

DA ≡
√

δAS

δΩO
, (3.6)

where δAS is the surface area of the source and δΩO is the solid angle in which the source is
seen by the observer. We state our results in terms of DA, which is related to the luminosity
distance due to the Etherington reciprocity theorem as

DL = (1 + z)2DA . (3.7)

The evolution of the beam cross section A is given by the Sachs optical equations. The
area expansion rate of the beam is

θ̃ ≡ ∇µk
µ =

1

A

dA

dλ
, (3.8)

and the null shear tensor projected onto a hypersurface orthogonal to the wave vector kµ

with projection tensor h̃αµ is

σ̃µν ≡ h̃αµh̃
β
ν∇(αkβ) −

1

2
θh̃µν (3.9)

σ̃2 ≡ 1

2
σ̃µν σ̃

µν = (∇µkν)(∇µkν)− θ̃2 . (3.10)

The null shear tensor has two real degrees of freedom, and it can be written as

σ̃AB =

(

σ̃1 σ̃2
σ̃2 −σ̃1

)

, (3.11)

where A,B label directions along the lens plane defined by h̃αβ , and σ̃ =
√

σ̃21 + σ̃22 .
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The Sachs equations are

dθ̃

dλ
+

1

2
θ̃2 + 2σ̃2 = −Rµνk

µkν (3.12)

h̃αµh̃
β
ν

dσ̃αβ
dλ

+ θ̃σ̃µν = −Cγαδβk
γkδh̃αµh̃

β
ν , (3.13)

where Rµν is the Ricci tensor and Cγαδβ is the Weyl tensor. In terms of the angular diameter
distance, (3.12) reads

d2DA

dλ2
+

(

σ̃2 +
1

2
Rµνk

µkν
)

DA = 0 . (3.14)

Due to the spherical symmetry of individual LTB solutions, (3.13) and (3.14) can be simplified
to

d2DA

dλ2
+
[

σ̃2 + 4π(1 + z)2ρ
]

DA = 0 (3.15)

dσ̃1
dλ

+ θ̃σ̃1 =
cφ
R2

(

4πρ− 3
M

R3

)

cosψ (3.16)

dσ̃2
dλ

+ θ̃σ̃2 =
cφ
R2

(

4πρ− 3
M

R3

)

sinψ , (3.17)

where ψ is the angle between the line formed by intersection of the lens plane defined by
h̃αβ with the equator of the first LTB hole, and the line formed by its intersection with
the equator of the hole that the beam is going through, so ψ = 0 for the first hole. The
cosmological constant Λ does not enter into the source terms, as it only contributes via terms
proportional to gµν , and k

µ is null. We solve these equations backwards in time starting from
the observer with the initial conditions

DA|O = 0,
dDA

dλ

∣

∣

∣

∣

O

= −H−1
0 , σ̃n|O = 0 . (3.18)

Shear has been correctly treated in Swiss Cheese models only rarely [17, 41]. Usually
that is not important, because often only the distance is considered, and the effect of the
null shear on the distance is generally subdominant to the effect of the density. The shear is
also small in our case.

The covariant quantities θ̃ and σ̃n can be translated into the perturbative lensing for-
malism, where the relevant quantity is the amplification matrix [18, 117, 120–122] (see [123]
for the second order corrections)

AA
B =

(

1− κ− γ1 γ2
γ2 1− κ+ γ1

)

(3.19)

that relates the null geodesic direction at the source to the direction at the observer (see
[124] for discussion of the LTB case). The convergence κ corresponds to the change in the
bundle area and the integrated null shear γ gives the deformation of the source image. The
magnification

µ =
D̄2

A

D2
A

= det(A)−1 =
[

(1− κ)2 − γ2
]

−1
(3.20)
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gives the change in the source luminosity relative to the FRW background, with γ ≡
√

γ21 + γ22 .
In the weak lensing limit, |κ| ≪ 1 and |γn| ≪ 1, we have

µ =
D̄2

A

D2
A

≃ 1 + 2κ , γi ≃
∫

dλσ̃i , (3.21)

where D̄A is the angular diameter distance in the background FRW universe, so

∆DA

D̄A
≡ DA − D̄A

D̄A
≃ −κ . (3.22)

Another common way to describe lensing is to use the lensing potential ψ, defined via

AAB = δAB − ∂A∂Bψ , (3.23)

for example the Planck lensing results are given in terms of ψ [125]. For more on the relation
of the different measures of lensing, see [18, 126].

It is convenient to use the integrated null shear γ instead of σ̃, as γ describes the
cumulative shearing along the beam path and is independent of the propagation direction
(at least for small γ, see appendix A). We give our results in terms of ∆T/T̄ ≡ (T − T̄ )/T̄ ,
∆DA/D̄A and γ.

4 Results and discussion

Single hole. Let us first consider the effect of a single hole on the temperature, distance
and null shear. In the open model, the temperature perturbation is negative in the centre,
surrounded by a positive ring, corresponding to the underdense centre and the overdense shell,
respectively. For the closed model, the temperature perturbation is everywhere positive. The
temperature profiles are shown in figure 3. The maximum amplitude of ∆T/T̄ for a hole at
a distance of 200 h−1Mpc is 2 · 10−7 in the open case and 7 · 10−9 in the closed case, a ratio
of 30. In the open case, the amplitude decreases rapidly with the distance to the hole, as
shown in figure 4. For holes close to the observer, the maximum amplotude rises to 10−6.
In the closed case, the fall-off is less steep, because the proper volume average of δ̇ over one
hole (with δ ≡ ρ/ρ̄− 1) evolves more slowly.

The shell in the open case and the centre in the closed case are in the non-linear
regime, as shown in figure 2, so the Rees–Sciama effect [127] is expected to be important in
addition to the linear ISW effect. The spherical symmetry leads to stronger cancellation than
in ray-tracing through simulated structures [128, 129], where the typical amplitude of the
Rees–Sciama effect is ∼ 10−6, one order of magnitude above our open model and two or three
orders of magnitude above our closed model. In the case of a central underdensity, the linear
ISW effect and the Rees–Sciama effect enhance each other, whereas for a central overdensity,
they pull in opposite directions [129], which may partly explain why the temperature signal
in the closed case is smaller than in the open case.

However, the difference in amplitude also reflects the fact that the maximum value of |E|
is smaller in the closed model, to avoid shell crossings. To better understand the differences
in the two models, let us consider the proper volume averages 〈〉V of ∆H/H̄ ≡ H/H̄ − 1 and
δ̇ = −3(1+ δ)∆H over a single hole, given in table 1. Both models expand on average a little
slower than the background at present day, 〈∆H/H̄〉V = −2.0 · 10−7 in the open case and
−1.8 · 10−9 in the closed case. These numbers are not far from the maximum temperature
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amplitudes (though note that ∆T/T̄ can have different sign in the open and closed models).
The redshift can be expected to be calculable from the average expansion rate when passing
through many structures, but not necessarily in the case of one structure, and it is also
important to take the dust shear into account [14, 16, 41, 43], so such a close agreement can
be fortuitous, but the order of magnitude is right. In the closed model, the local expansion
rate is always positive, whereas in the open model, the volume element in the overdense shell
shrinks at late times, as shown in figure 2.

In linear perturbation theory, the temperature perturbation due to the ISW effect is

∆T

T̄
= 2

∫

dtΦ̇ , (4.1)

where the integral is taken along the null geodesic, and the metric perturbation Φ is propor-
tional to δ with a growth function that varies slowly compared to the time it takes to cross a
hole. As long as null geodesics sample the spacetime volume fairly, we expect the difference
in 〈δ̇〉V to be indicative of the difference in the temperature perturbation (as noted above, it
is a priori not obvious that such an argument applies in the case of a single hole). We have
〈δ̇〉V = 0.156H0 in the open model and 0.010H0 in the closed model, a ratio of 16, in rough
agreement with the ratio of temperature anisotropies.

Let us mention that nonlinear voids have been considered as a source of large tem-
perature anisotropies in the CMB [130–135], in particular as a way to explain the so-called
Cold Spot. However, no sufficiently large and deep void has been detected, and its existence
would be extremely unlikely in the ΛCDM model [108, 129, 136–148]. It has also been ar-
gued that the impact of large underdense and overdense regions on the CMB is significantly
stronger than predicted in linear theory in the ΛCDM model [149–151], though subsequent
studies have found a signal in agreement with such predictions [152–154]. For constraints on
exceptional voids from the CMB power spectrum, see [155].

In the open model, the distance perturbation is positive in the centre with a distinct
negative spike corresponding to the overdense shell, as shown in figure 5. That is, the image is
demagnified in the centre and magnified on the shell. The situation is reversed in the closed
model, though the profile is smoother, as in the case of the temperature. The maximum
amplitude varies from ∼ 10−4 to ∼ 10−3, depending on the distance to the hole. In contrast
to temperature perturbations, which are mostly generated by holes close to the observer,
perturbations in the angular diameter distance are most strongly produced by holes halfway
between source and observer, a common feature in gravitational lensing (see e.g. [117], p. 25).
The variation with distance is shown in figure 6 for an open hole; the closed case behaviour
is similar. For discussion of lensing by voids, see [93, 156, 157].

The amplitude of the distance perturbation is less sensitive to the choice of profile
than the amplitude of the temperature perturbation. The open and closed model results are
comparable in amplitude, but have distinct dependence on the viewing angle. There is an
argument that the maximum amplitude of the deviation would be of the order (H0rb)

3 for
the temperature and (H0rb)

2 for the distance [72, 158]. Our maximum amplitude of 10−6

for the temperature perturbation agrees with this scaling for nearby open holes (for closed
holes, the amplitude is smaller). The distance perturbation is indeed 10−4 ∼ (H0rb)

2 for
holes far from the midpoint between observer and the last scattering surface, but for holes
at the optimal distance, it is an order of magnitude larger.

The amplitude of the integrated null shear in both the open and closed cases is γ ∼ 10−4.
As with the distance, the angular profile is smoother in the closed case, with the open case
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Figure 3. The angular profile of ∆T/T̄ for the open and closed models (left) as a function of the
viewing angle α for a single hole, with its centre located at a coordinate distance of 200 h−1Mpc. The
result for the closed model is so much smaller that it is also plotted separately (right).
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Figure 4. Temperature shift for a radial light ray as a function of the distance to the centre in units
of rb, in the open (left) and closed (right) case.

characterised by a spike corresponding to the light ray passing through the overdense shell,
as shown in figure 5.

Multiple holes. As the calculation is too time-intensive to do on very small scales, we
focus on multipoles l . 100, corresponding to angles & 1◦. The angular size of a single hole
is plotted in figure 6. Therefore we do not have to populate the universe all the way to the
last scattering surface, we only need to include holes up to redshift z ∼ 6, corresponding to
an emission time of ∼ 1 Gyr and a distance of ∼ 6000 h−1Mpc. This is beyond half-way
to the last scattering surface (the distance to z = 1090 is 9600 h−1Mpc), so we would not
expect to find considerably more power on small scales even if we had holes all the way up
to z = 1090.

We propagate N = 12 288 beams. In table 2 we report the values of ∆T/T̄ , ∆DA/D̄A

and γ averaged over the sky, with errors calculated using a bootstrap algorithm where random
sky maps are generated from the original simulated map. We also give the variation for a
single beam for the same quantities. We also give the averages of (∆DA/D̄A)

2, µ and µ−1. If
the sky pixels were independent, we would expect the error on the mean to be roughly 1/

√
N
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times the variation for a single beam, and the numbers in table 2 agree quite well with this.
The histograms showing the detailed shape of the distribution for single beams are plotted
in figure 7, and the bootstrap errors for 〈∆DA/D̄A〉 are shown in 8.

The mean temperature shift is 〈∆T/T̄ 〉 = (2.15 ± 0.10) × 10−8 in the open case and
(3.17 ± 0.03) × 10−9, an order of magnitude smaller, in the closed case. (Our errors always
correspond to one standard deviation.) For the open model, the hot and cold regions cancel
to high precision, so the mean value is well below the typical fluctuation range ∼ 10−7 of
a single beam. For the closed model, the temperature perturbation is everywhere positive,
so there are no cancellations and the mean is of the same order of magnitude as a typical
fluctuation. As the effective packing fraction is small and the temperature signal falls off as
a function of distance to the hole, as shown in figure 4, the temperature perturbation along
a single line of sight typically gets contributions from only a few holes (more in the closed
than in the open case). Therefore the typical fluctuation is much smaller than the maximum
fluctuation for a single hole (obtained for a radial light ray), in both cases.
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Open Closed

〈∆T/T̄ 〉 (2.15 ± 0.10) × 10−8 (3.17 ± 0.03) × 10−9

σ∆T/T̄ (9.05 ± 0.10) × 10−8 (2.13 ± 0.04) × 10−9

〈∆DA/D̄A〉 (8.5± 4.3) × 10−5 (1.1 ± 2.4)× 10−5

〈(∆DA/D̄A)
2〉 (1.65 ± 0.02) × 10−5 (5.28 ± 0.08) × 10−6

σ∆DA/D̄A
(4.07 ± 0.03) × 10−3 (2.30 ± 0.02) × 10−3

〈γ〉 (1.78 ± 0.01) × 10−3 (9.85 ± 0.08) × 10−4

σγ (1.01 ± 0.02) × 10−3 (6.03 ± 0.11) × 10−4

〈µ〉 − 1 (−1.20 ± 0.85) × 10−4 (−0.5± 4.7) × 10−5

〈µ−1〉 − 1 (1.86 ± 0.85) × 10−4 (2.7 ± 4.8)× 10−5

Table 2. Mean shift and variation for a single beam for the temperature, distance and shear, as
well as the average of the square of the distance deviation, magnification and inverse magnification.
Errors are calculated using a bootstrap algorithm, and give one standard deviation. The probability
distribution for 〈∆DA/D̄A〉 is plotted in figure 8.

The mean shift of the angular diameter distance is 〈∆DA/D̄A〉 = (8.5 ± 4.3) · 10−5 in
the open model and (1.1±2.4) ·10−5 in the closed model. In contrast to the temperature, the
mean shift is not statistically distinguishable from zero, so we can only quote the 95% upper
limit |〈∆DA/D̄A〉| . 10−4, of the same order of magnitude as the signal for a single hole.
In both cases, the variation for single beams is at the level 10−3, which explains the large
errors. Because of this large variation, it is particularly important to evaluate the errors in
the case of the distance, and not just consider the shift in the mean evaluated over a single
sky. If the shifts 〈∆DA/D̄A〉 were the mean values reported above, we would expect to see
them clearly with 3 times more beams in the open case and 50 times more in the closed case.

The mean integrated null shear is 〈γ〉 ≈ 10−3 in both the open and closed case, of
the same order as the typical result for a single ray. The reason is that γ is by definition
non-negative, so there can be no cancellations across the sky. The sky average 〈γ〉 is also
about an order of magnitude larger than the result for a single hole. The variation for single
beams is of the same order of magnitude, so with 12 288 beams, the error on the mean is
below 1%.

We calculate power spectra from the CMB maps using the HEALPix [159] package.
HEALPix splits the sky into 12 equal sized regions, all of which have N2 pixels. We used
N = 32, giving Npix = 12 288 pixels in total, so we have one beam per pixel. This is enough
to calculate the power spectra up to l < 3N , though the statistical errors are considerable
for l > 2N . The resulting sky maps for ∆T/T̄ , ∆DA/D̄A and γ are shown in figure 9. As
the holes are spherically symmetric, the maps are missing dipolar structures characteristic
of the Rees–Sciama effect [129]; it would be possible to model them by using non-spherically
symmetric Szekeres holes. Already by eye it is clear that the temperature perturbations are
concentrated on large scales, whereas distance and shear have most of their power on small
scales. We quantify this by computing the power spectrum for f(θ, φ) = ∆T/T̄ ,∆DA/D̄A, γ
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by expanding in terms of the spherical harmonics Ylm,

Cff
l ≡ 1

2l + 1

l
∑

m=−l

|aflm|2 (4.2)

aflm ≡
∫ π

0
dθ

∫ 2π

0
dφ Y ∗

lm(θ, φ)f(θ, φ) . (4.3)

The coefficients alm are evaluated from the maps by summing over the pixels p,

alm =
4π

Npix

Npix−1
∑

p=0

Y ∗

lm(θp, φp)f(θp, φp) . (4.4)

The power spectra of ∆T/T̄ , ∆DA/D̄A and γ are plotted in figures 10 and 11, with the full
linear perturbation theory CMB spectrum and the linear ISW effect shown for comparison.
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Figure 9. Maps of ∆T/T̄ (top), ∆DA/D̄A (middle) and γ (bottom) for the open (left) and closed
(right) model.

The temperature power spectrum for the open model peaks at a multipole between 10
and 20, with an amplitude approximately three orders of magnitude below the linear theory
ISW power spectrum, and a bit below the Rees–Sciama effect calculated from perturbation
theory and ray-tracing in simulations [127–129]. At l = 100 the Swiss Cheese result is two
orders of magnitude below the linear ISW effect. The closed model spectrum at its maximum
is another three orders of magnitude below the spectrum of the open model. It does not have
a peak in the multipole range we consider. This is related to the fact that the temperature
profile has less structure, as shown in figure 3. The closed model only produces a faint hot
spot, whereas in the open model, the contrasts are stronger, with the cold center surrounded
by a hot ring. Also, in the closed case a single ray receives contributions from a larger number
of holes at different distances and angular scales, because the temperature perturbation due
to the holes goes down more slowly than in the open case, as mentioned above. The small
amplitudes of the power spectra, especially on large scales, reflect the fact that the observer
and sources are located in the background, and there are almost no correlations between the
holes.

The power spectra for the distance and shear are both featureless, with almost constant
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amplitude of CDD
l and Cγγ

l . The amplitude of the distance power spectrum is l(l+1)CDD
l (l =

100) = 2 · 10−4 in the open model, and a factor of 3 smaller in the closed model. For the
shear power spectrum, we have l(l + 1)Cγγ

l (l = 100) = 1 · 10−5 in the open model and; the
closed model result is again down by a factor of 3. These numbers are in agreement with the
values of σ∆DA/D̄A

and σγ listed in table 2.

Comparison with other studies. Let us discuss previous work, some of which has
claimed surprisingly large effects on the distance, despite the average expansion rate be-
ing close to the FRW case. Such results have come down to selection effects, which were
already the focus of the work of Zel’dovich [1]. We can distinguish four different cases of
sampling bias.

First, both the distribution of structures and the choice of lines of sight can violate
statistical homogeneity and isotropy1. In [78, 82, 85, 86, 99], there were large voids perfectly

1Models where the observer is at the centre of a void whose radius is of the order of the size of the visible
universe are an extreme case [35–40].
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aligned so that the light rays pass through their centres, leading to an effect of order unity;
a smaller but still sizeable effect on the distance with aligned voids was also found in [84].
Randomisation of the voids strongly reduces the effect [13, 85, 86].

Second, even though the though the distribution of holes may be statistically homoge-
neous and properly randomised lines of sight may be chosen, the distribution of structures
can lack statistical isotropy. In [98] the power spectra of the temperature and the angular di-
ameter distance were calculated in a Swiss Cheese model with a cubic lattice of LTB holes up
to z = 1.92. The dependence of the signal on the size of the hole was studied, with radii be-
tween 3.5 Mpc and 1.75 Gpc considered. The temperature power spectrum due to holes with
radius 35 Mpc was found to be of the same order of magnitude as the primary CMB signal.
This is unexpectedly large, especially as the model does not have a cosmological constant,
so the linear ISW effect vanishes. A possible reason is the higher regularity of the lattice, as
suggested in [85, 86]. The fact that tB 6= 0 in [98], and so there is a decaying mode, may
also enhance the temperature perturbation. In contrast, the amplitude of the distance power
spectrum on small scales is similar to that in our models, with l(l+1)CDD

l (l = 100) ∼ 10−4,
though on large scales the spectrum in [98] is considerably larger than in our case, because
it stays flat whereas our amplitude falls. The variation for single beams is comparable to our
results, σ∆DA/D̄A

= 4.3 · 10−3. We conclude that the distance spectrum appears to be less
sensitive to model details, and there is more room to change the distance-redshift relation in
Swiss Cheese models without having an unacceptably large effect on the CMB than estimated
in [98], in agreement with [85, 86].

A third form of bias can arise from not sampling all lines of sight. For example, [20,
94, 95] found the luminosity distance in a Swiss Cheese model to be of the order 10% larger
than in the background, using both a hexagonal and a random arrangement of holes with
radii from 1 Mpc to 200 Mpc. The large deviation is due to the fact that only light rays that
passed sufficiently far from the centres of the Schwarzschild holes were considered, to model
opaque clumps of matter. This leads to undersampling the density in the shell around the
Schwarzschild hole and a Dyer–Roeder-like distance-redshift relation. The level of bias in
point sources such as supernovae due to opaqueness in the real universe is not fully settled
[14, 18, 19, 29, 88, 99].

Fourth, even if all lines of sight are considered, such as when studying the CMB (leaving
aside sky cuts due to foregrounds), the result can be biased if the lines of sight are not correctly
weighted. In [100] it was claimed that there is a systematic increase in the mean angular
diameter distance of the order 1% from second order perturbation theory (for calculations of
the angular diameter distance in perturbation theory, see [160–172]). However, there was a
subtle sampling bias: the average was taken over the ensemble rather than sky directions, an
issue that can potentially also arise in other contexts where a statistical treatment of light
propagation is used (as opposed to considering one fixed spacetime, as in our case). It was
argued in [173] that even though the distance perturbation for a typical light ray is positive,
the negative contributions outweigh the positive ones when averaged over the sky. Also, one
has to make a careful distinction between perturbations in the flux and in the luminosity
distance, as they are not linearly dependent. With these biases taken into account, the effect
is reduced by orders of magnitude [173–175] (see also [172]).

These arguments have been related to the assumption of [31] that the area average of the
flux (proportional to µ) is conserved if the area of a sphere is unaffected by inhomogeneities. It
can be shown that in the same situation the angular average of the inverse flux (proportional
to µ−1) is conserved [175, 176]. As discussed in the introduction, this is not true in general.
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We can now see how well the conservation holds in our Swiss Cheese universe, whose average
properties are by construction close to the FRW case. We have considered angular averages,
in which case it follows from 〈µ−1〉 = 1 straightforwardly, using (3.20) and (3.21), that
〈∆DA/D̄A〉 = −1

2〈κ2〉 = −1
2〈(∆DA/D̄A)

2〉. In particular, this implies that 〈∆DA/D̄A〉 < 0.
As we have noted, we do not have enough beams to see a statistically significant deviation
of 〈∆DA/D̄A〉 from 0, but we can see whether it is as negative as required by the above
relation. The distribution of 〈∆DA/D̄A〉 is shown in figure 8, and some numbers are given
in table 2. In the closed case, the errors are large, and our results are consistent with the
relation 〈∆DA/D̄A〉 = −1

2〈(∆DA/D̄A)
2〉. In the open case, the errors are smaller, and the

probability that 〈∆DA/D̄A〉 is as small as −1
2〈(∆DA/D̄A)

2〉 is only 1.4%. Another way of
viewing the same thing is to look at 〈µ−1〉 − 1, given in table 2. In the closed case, zero
is within 1σ, whereas in the open case, the probability for zero is 1.4%. We note that, in
contrast, 〈µ〉 − 1 is consistent with zero at the 1σ level in the closed case and 2σ level in the
open case, and the corresponding relation 〈∆DA/D̄A〉 = 3

2〈(∆DA/D̄A)
2〉 is easily satisfied.

The studies [91, 96], discussed below, also find 〈∆DA/D̄A〉 > 0. Therefore, the assumption
that the area of spheres is unperturbed, central to the arguments in [31, 175, 176], does not
seem to be a good approximation in these Swiss Cheese models. Using more beams would
allow to study the issue in our model with higher statistical significance.

In [162], the power spectrum for the luminosity distance was calculated in linear per-
turbation theory in a ΛCDM universe (see also [160, 161]). At multipoles l > 10 and large
redshifts, lensing by structures is the dominant effect. Because of the distance duality re-
lation (3.7), perturbations of the angular diameter and luminosity distance are comparable,
∆DA

D̄A
≃ ∆DL

D̄L
, as long as the redshift perturbation is much smaller. Their distance power spec-

trum has a similar shape as in our case, and the amplitude l(l + 1)CDD
l (l = 100) = 3 · 10−5

is close to our result for the closed model. In our open model the amplitude is an order of
magnitude higher.

In [91], a ΛCDM Swiss Cheese model with spherical voids of 35 Mpc radius was studied
with N = 2 · 106 beams up to z = 2.1. For z = 1, the authors report (translating from the
distance modulus to the angular diameter distance) 〈∆DA/D̄A〉 = (1.4 ± 0.5) · 10−3. The
variation for individual beams is σ∆DA/D̄A

= 0.01. The shift in the mean is an order of
magnitude larger than in our case, and the variation for single beams is a factor of a few
larger. One reason may be that in [91] the time spent by the light rays in the cheese is
minimised. In [92] halos were included, but the resulting holes are no longer solutions of
the Einstein equation, and the treatment is statistical rather than exact. The results were
〈∆DA/D̄A〉 = −(5 . . . 6) · 10−4 and σ∆DA/D̄A

= 0.03, an order of magnitude higher than in
our open model. The sign of the mean shift is also the opposite of that in exact in Swiss
Cheese calculations.

In [96], a ΛCDM Swiss Cheese model with Szekeres holes that are not spherically sym-
metric was considered, up to z = 1.5. Holes with different radii were studied, including ones
with radius 35 Mpc, close to our case, and a density profile somewhat similar to that of our
open model. For z = 1 the authors report 〈∆DA/D̄A〉 = 4.5 · 10−4 and σ∆DA/D̄A

= 1.8 · 10−3

for sources at z = 1. They have N = 1000, so the error estimate for 〈∆DA/D̄A〉 is 0.6 · 10−4,
and the positive mean shift is statistically highly significant. It is somewhat surprising that
their standard deviation is smaller than in our model, while the mean distance shift is larger.
As noted, we do not find a statistically significant shift in the mean distance, only a limit
of |〈∆DA/D̄A〉| . 10−4. Given that the Szekeres holes in [96] are less symmetric than our
spherical holes, we would have expected the deviation for a single beam to be larger [177],
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as it takes longer for the inhomogeneities along a light ray to average out.
Observational constraints on fluctuations in the distance to the CMB are mainly from

studies of the variation of the multipole location of the acoustic peaks [178, 179], which (for
fixed matter content) is a measure of the angular diameter distance [180–182]. The current
precision is below the theoretically expected signal.

5 Conclusions

Effect of random holes on the CMB. We have done the first calculation of the redshift,
distance and shear of the CMB in a Swiss Cheese model with randomised holes in a ΛCDM
background. We have been careful about sampling lines of sight fairly, and have used a
spacetime with fixed hole positions drawn from a uniform distribution. We have considered
two kinds of LTB holes, with either an over- or underdensity in the centre, called the open
and closed model, respectively. The hole radius is rb = 50 h−1Mpc, but the profile becomes
close to the FRW cheese at a radius of about 30 h−1Mpc in the open and 20 h−1Mpc in the
closed model.

We find a maximum temperature perturbation for a single hole of |∆T/T̄ | ∼ 10−6 ∼
(rbH0)

3 in the open case, for a hole close to the observer; the amplitude falls off sharply with
the distance to the hole. The result is sensitive to the hole profile, for the closed case the
amplitude is an order of magnitude smaller and the fall-off is less strong. The difference in
the order of magnitude corresponds, roughly, to the ratio of the average expansion rate in the
open and closed models, and somewhat more closely to the ratio of the proper volume average
of the time derivative of the density contrast. The distance perturbation is less sensitive to
the details of the hole. For a single hole the distance perturbation has nearly the same
amplitude in both models, although the dependence on the viewing angle is distinctive. The
maximum amplitude is ∼ 10−3 for holes located at a distance of ∼ 100rb from the observer,
whereas the typical amplitude is 10−4 ∼ (rbH0)

2. The amplitude of the integrated null shear
is similar, with γ ∼ 10−4 in both the open and closed case.

For the entire distribution of holes, we have calculated the the shift in the mean, vari-
ation for a single beam and power spectra for ∆T/T̄ , ∆DA/D̄A and γ, using 12 288 beams
and an equal number of pixels on the sky. The errors are estimated using a bootstrap algo-
rithm. The sky average of the shift in the temperature is 〈∆T/T̄ 〉 = (2.15 ± 0.10) × 10−8

for the open model and (3.17 ± 0.03) × 10−9 for the closed model, a difference of an order
of magnitude, as in the single hole case. For the open model, the power spectrum peaks at
a multipole between 10 and 20, but even there it is below the Rees–Sciama effect estimated
from perturbation theory and ray-tracing simulations. On all the scales we consider, l . 100,
the open model power spectrum is two or more orders of magnitude below the linear theory
ISW power spectrum. The closed model power spectrum, in turn, is at least two orders of
magnitude below that of the open model.

For the angular diameter distance, we find 〈∆DA/D̄A〉 = (8.5± 4.3) · 10−5 in the open
model and (1.1± 2.4) · 10−5 in the closed model. In other words, we do not see a statistically
significant systematic shift, we can only quote a 95% limit of |〈∆DA/D̄A〉| . 10−4. It
is important to account for the variation between different sky realisations when drawing
conclusions about the mean shift, especially as the typical variation between lines of sight
is ∼ 10−3 for both the open and closed model, much larger than the possible change in the
mean. The amplitude of the power spectrum is l(l + 1)CDD

l (l = 100) = 2 · 10−4 in the open
model, and a factor of 3 smaller in the closed model.
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For the integrated null shear, we find 〈γ〉 = (1.78± 0.01)× 10−3 in the open model and
(9.85± 0.08)× 10−4 in the closed model. Its shift when passing through many holes is larger
than the shift for a single hole, unlike for the temperature and distance. The amplitude of
the power spectrum is l(l + 1)Cγγ

l (l = 100) = 1 · 10−5 for the open model, and the closed
model result is again a factor of 3 smaller.

We have compared our results to earlier work, some of which has had selection biases
leading to larger results for the distance or temperature. The temperature power spectrum is
rather sensitive to the details of the inhomogeneities, with variations of orders of magnitude
between different models. The distance power spectrum is more robust and, taking selection
effects in account, our results are comparable to most previous Swiss Cheese calculations, as
well as results from perturbation theory. However, some works have reported larger mean
shifts in the distance, up to ∼ 10−3.

We have considered the argument that the areas of spheres are unaffected by pertur-
bations, leading to conservation of the angular average of the inverse flux, and the relation
〈∆DA/D̄A〉 = −1

2〈(∆DA/D̄A)
2〉 [31, 175, 176]. Our closed model is consistent with this

relation, whereas in the open model the probability that the two sides agree is only 1.4%.
Using more beams than our 12 288 would make it possible to draw more definite conclusions.

The CMB null shear has not been calculated using a Swiss Cheese model before. There
is much room for refinement, including correlations among the holes, changing the packing
fraction and using holes of different sizes and profiles, including non-spherical Szekeres holes.
As lensing of the CMB (and large scale structure) is an increasingly important cosmological
probe, more realistic Swiss Cheese models could potentially be an interesting way to study
it, as they automatically include all relativistic and non-linear effects, without the need for
perturbation theory.
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A Integrated null shear proof

Let us show that when the null shear σ̃ is small, the integrated null shear γ does not depend
on whether the initial conditions are set at the observer or at the source. If the null shear
is small, we can neglect the term σ̃2 in the distance equation (3.14). In that case (3.14)
becomes independent of the shear equation (3.13), which correspondingly becomes linear.
The resulting equations can be written as

d2S

dλ2
+QS = 0 (A.1)

dσ̃

dλ
+ θ̃σ̃ = f , (A.2)

where we have denoted the distance by S, Q ≡ 1
2Rµνk

µkν , θ̃ = 2 1
S

dS
dλ and f is the Weyl

tensor source term. There are no indices in (A.2), as σ̃ can be considered a complex variable
that contains both of the independent degrees of freedom of σ̃µν (see e.g. [117], p. 106), in
which case f is also complex. Equivalently, we could write (A.2) separately for σ̃1 and σ̃2.
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We have two different initial conditions for the equations (A.1), (A.2). We can either
start from the observer, so that, as in (3.18),

S|O = 0,
dS

dλ

∣

∣

∣

∣

O

= −H−1
0 , σ̃|O = 0 , (A.3)

or from the source, in which case we have

S|S = 0,
dS

dλ

∣

∣

∣

∣

S

= A, σ̃|S = 0 , (A.4)

where A > 0 is a constant. (Note that setting the initial conditions for S and σ̃ at different
ends would be inconsistent.) We denote the two cases by the subscripts O and S, so we have
four functions, SO(λ), SS(λ), σ̃O(λ) and σ̃S(λ).

From (A.2) we get the solution

σ̃O = SO(λ)
−2

∫ λ

λO

dλ′SO(λ
′)2f(λ′) , (A.5)

and correspondingly for σ̃S with the substitution O → S. We define

γO ≡
∫ λS

λO

dλσ̃O(λ) =

∫ λS

λO

dλSO(λ)
−2

∫ λ

λO

dλ′SO(λ
′)2f(λ′) (A.6)

γS ≡
∫ λO

λS

dλσ̃S(λ) =

∫ λO

λS

dλSS(λ)
−2

∫ λ

λS

dλ′SS(λ
′)2f(λ′) . (A.7)

It is well known that SO = DA and that SS gives (1 + z)DA [118, 119]. Let us now
show that the integrated null shear satisfies γO = γS (in the case when σ̃ small, so that (A.1)
applies). As SO and SS are solutions of the same differential equation (A.1), they are related
as [183]2

SO(λ) = COSS(λ)

∫ λ

λO

dλ′SS(λ
′)−2 (A.8)

SS(λ) = CSSO(λ)

∫ λ

λS

dλ′SO(λ
′)−2 , (A.9)

where CO = −SO(λS)dSS

dλ (λS) and CS = −SS(λO)dSO

dλ (λO). Taking a derivative of either
(A.8) or (A.9) shows that CO = −CS. Partial integration of (A.6) gives

γO = −
∫ λS

λO

dλ

[
∫ λ

λS

dλ′SO(λ
′)−2

]

SO(λ)
2f(λ)

= −C−1
S

∫ λS

λO

dλSO(λ)SS(λ)f(λ) , (A.10)

where we have on the second line applied (A.9). Repeating the exercise with γS gives the
same result, with the change O ↔ S. Given that CO = −CS and changing the direction of
integration also gives a minus sign, we have the desired equality γO = γS .

This result also follows from the reciprocity relation for the Jacobi matrix (eq. (35) of
[184])3. The reciprocity relation is not limited to the case when σ̃ is small, but if σ̃ is large,
its relation of the lensing parameters of the Jacobi matrix is more complicated, and γO = γS
does not hold, given the definitions (A.6) and (A.7).

2We have a different convention for the sign and normalisation of the affine parameter than [183].
3We thank Pierre Fleury for pointing this out.
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