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Abstract 

I/O parallelism appears to be a promising approach to 
achieving high performance in parallel database sys- 
tems. In such systems, it is essential to decluster 
database files into fragments and spread them across 
multiple disks so that the DBMS software can exploit 
the I/O bandwidth reading and writing the diiks in 
parallel. In this paper, we consider the problem of 
declustering multidimensional data on a parallel disk 
system. Since the multidimensional range que-q is the 
main work-horse for applications accessing such data, 
our aim is to provide efficient support for it. A new 
declustering method for parallel disk systems, called 
coordinate modulo distribution (CMD), is proposed. 
Our analysis shows that the method achieves optimum 
parallelism for a very high percentage of range queries 
on multidimensional data, if the distribution of data 
on each dimension is stationary. We have derived the 
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exact conditions under which optimality is achieved. 
Also provided are the worst and average case bounds 
on multidimensional range query performance. Exper- 

imental results show that the method achieves near 
optimum performance in almost all cases even when 
the stationarity assumption does not hold. Details of 
the parallel algorithms for range query processing and 
data maintenance are also provided. 

1 Introduction 

In a database processing environment, the fact that 
disk I/O is the main bottleneck has been a consen- 
sus according to researchers. In recent years, the in- 
crease in processor speed has been very rapid. The 
performance of disks has also improved but at a much 
lower rate, resulting in a significant mismatch between 
the processor performance and I/O performance, es- 
pecially in parallel computer systems. It is highly un- 
likely that the performance of individual disk units 
will improve significantly in the near future. Thus, we 
need to consider how to exploit multiple disk systems 
[13]. Th’ p bl rs ro em is usually addressed today by data 
declustering. Declustering a database file involves dis- 
tributing the data in the database file among multiple 
disks. One of the key reasons for using declustering 
in parallel database systems is to enable the DBMS 
software to exploit the I/O bandwidth for reading and 
writing multiple disks in parallel. In general, increas- 
ing the degree of declustering reduces the response 
time for an individual query and increases the over- 
all throughput of systems. 

Declustering has its origins in the concept of horizon- 
tal partitioning initially developed as a distribution 



mechanism for distributed DBMS [19]. Since then, the 
declustering problem has received extensive attention 

[l, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 
181. In recent years, many researchers have,concen- 
trated on declustering techniques for parallel database 
machines. Three kinds of declustering methods have 
been applied in well known parallel database machines, 
namely round-robin [20], hashed declustering [21] and 
range-partition declustering [22]. 

Most of the research on declustering cited above con- 
centrates on declustering the data in a database file 
using the values of a single attribute or a few key at- 
tributes so that operations applied on the partition- 
ing attribute can be performed very efficiently. How- 
ever, these storage structures would not be able to ef: 
ficiently support queries that involve non-partitioning 
attributes, especially range queries. Thus, multidi- 
mensional declustering methods need additional re- 

search. However, only a little attention has been f+ 

cused on this area so far. 

In 1982, Du and Sobolewski proposed a heuristic data 
allocation method, called Disk Module [l], which has 
been explored by many researchers [2, 3, 4, 5, 61. 
The method considered the multidimensional access 
method, but was restricted to static files and-partial- 
match queries only. 

In 1987, Wu and Burkhard proposed a dynamic file al- 
location method [7], called M-cycle allocation scheme, 
which was the first to adapt dynamic hash files to 
process range queries in parallel disk systems. The 
method initially partitions the key-space into regions 
and allocates the regions among multiple disks. In 

each disk the data is organized by hashing, with a 

chain for each region. When the storage utilization fac- 

tor exceeds a threshold, a region is split and all regions 
are reallocated. In the M-cycle method, the dynamic 
region splitting and reallocation incur the transmis- 
sion of a lot of data among the multiple disks. Ad- 
ditionally, the hashing chain can not efficiently sup 
port range queries, as the grid file structure does. The 
cost of retrieval strongly depends on the data distri- 
bution. When data is nonuniformly distributed the 
performance of the method degrades significantly. 

In 1990, Hua and Lee presented an adaptive placement 
scheme which distributes data of a relation baaed on 
the grid file structure [18]. However, thii method con- 

siders the balance only in terms of the datapvolume 
without distributing the neighbour grid blocks on dif- 

ferent disks, so that the disk accessing concurrency can 
not be sufficiently achieved. 

In this paper, we consider the problem of decluster- 

ing multidimensional (i.e. multi-attribute) data on a 
parallel disk system such that arbitrary range queries 

on it can be efficient. Our motivation comes from 
the introduction of database technology to a number 
of new data-intensive applications that exhibit multi- 
dimensionality, viz. scientific data, marketing data, 

population data, image data, etc. Our approach di- 
rectly addresses the following characteristics of such 

data: 

1. Multidimensionality is a dominant feature in such 
data. This makes multidimensional data structures, 
such as grid file, quad tree, or k-d tree, attractive op 
tions. 

2. In many such applications the data distribution is 
fairly stationary, i.e. even though the database itself 
changes, the distribution from which the values are 

drawn remains almost fixed. 

3. A high percentage of the data usage is for large-scale 

analyses, making the multi-dimensional range query 
the principal workhorse. Thus efficient support for this 

type of query becomes of paramount importance. 

The multidimensional declustering problem discussed 
in the paper can be defined as follows. Given a multi- 
dimensional file and a multidisk system with M simul- 
taneously accessible disks, how to distribute the data in 
the file among the M disks so that the mazimum disk 
accessing concurrency is achieved for range queries. 

A new multidimensional declustering method, called 
coordinate module declustering (CMD for short), is 
proposed in this paper. Given a d-dimensional file, 
there must be a d-dimensional space, of which the 

file is a subset. The CMD method partitions the 

d-dimensional space into M subsets, where M is the 
number of disks. Thus, the file is also divided into 
M subfiles. Each subspace is uniquely assinged to 
a disk and the subfile in the subspace is allocated 
to the same disk. By a mapping, the subspace on 
each disk is compressed into a d-dimensional hyper- 
rectangle such that the grid file, which is very efficient 
for range queries, can be used to organize the subfile 
on a single disk. This method has following advantages 
over other declustering methods: 

1. Since data declustering is based on all dimensions, 
database operations that involve any of the partition- 
ing dimensions can be performed very efficiently. 

2. The method can efficiently support range queries 
due to the advantages of the grid file structure. 

3. Since the method is balanced in terms of data vol- 

ume, and neighbouring regions are on different disks, 
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maximum disk accessing concurrency can be achieved. 

4. The grid block split and merge are localized to 
a single disk so that data transmission among disks 
during data maintenance is avoided. Thus, the method 
reduces the cost of insertion and deletion. 

5. The retrieval cost of the method is independent of 
the data distribution. 

6. The method is balanced for files with stationary 
data distribution, and thus expensive data rebalanc- 
ing is usually not needed. Experimental results show 
that the method works well even for databases without 
stationary data distributions. 

It should be noted that the CMD method may some- 
times become unbalanced so that expensive rebalanc- 
ing is needed in an environment where data distri- 
bution is not stationary and extremely skewed. Our 
ongoing research focuses on methods to dynamically 
adapt the partition of the data space with a small 
amount of data transmission among disks, so that the 
method can work well also on extremely skewed data. 
The CMD method has been used in a statistical and 
scientific database management system which is being 
developed in Heilongjiang University of China. 

This paper is organized as follows. The terminology 
and background is introduced in the next section. The 
CMD method is described in section 3. In section 4, 
we present the conditions under which the method is 
optimal and show the performance analysis. The data 
organization on a single disk and algorithms for im- 
plementing the data maintenance and processing range 
queries are given in sections 5 and 6. The expeiimental 
results are given in section 7. We conclude the paper 
in section 8. Due to the space limitations, proofs of all 
lemmas and theorems have been omitted. They are 
available in [23]. 

2 Terminology and Background 

Let Di (1 5 i < d) be an ordered set. A record is an 
ordered d-tuple (rr, rz, . . . . rd) E D1 x D2 x . . . x Da. Di 
is defined to be the domain of the ph attribute, and 
ri is the value of the ph attribute of the record. A 
d-dimensional file is a non-empty set of records. 

There are two classes of operations on a file. One is 
data maintenance, i.e. operations such as insertion, 
deletion and update. The other is information re- 
trieval operations to retrieve the set of records that 
match a user’s query. Let F be a d-dimensional file. 
There are three common information retrieval opera- 

tions on F, the ezact-match query, the partial-match 
query and the range query. The range query is denoted 

by 
Q= Wl,W>[~2,~2h ..-,Wd,~d)). 

The answer to the range query Q is 

A(Q) = {(rl, . . ..rd) E F 1 Li 5 ri < Vi, 1 < i 5 d}. 

The exact-match query is 

Q = ([%I = 011, [m = ad, . . . . [a = ad]), 

where ai’s are constants. The answer to the exact- 
match query Q is a record (rr, r2, . . . . fd) in F with 
ri - - ai for 1 5 i 5 d. 

The partial-match query is defined as 

Q = ([til = aill, [xi2 = aia] , --, [Zir = ai,]), 

where, k < d. The answer to the partial-match query 

&is 

A(Q) = {(rl, . . . . rd) E F 1 rjl = ail, . . . . rik = ajk}. 

Note that the exact-match query and the partial- 
match query can be treated as special cases of the 
range query. 

Now, we introduce some concrete cost measures. For 
a given query Q, let costi denote the number of 
accesses to disk i for processing query Q, 1 5 i 5 
M. We w rsp(Q) = MAXl<i<M(costi(Q)) a~ 
the measure of the response time 07 the query Q. The 
total number of disk accesses to process the query Q is 

~049) = L<~<M co&(Q). The optimal response 
time for the query Q by distributing data over M disks 
is then [cost(Q)/M], where the number of processors 
is greater than or equal to M. 

We have assumed that any processor can access any 
disk in unit disk access time. In practice this assump 
tion is satisfied by crossbar interconnection networks. 

For ease of illustration, we assume that all files con- 
sidered in the following sections are subsets of the unit 
space S = [0 , l)d, d 2 2. However, one should note 
that the CMD method is not limited to the space S. 

In the following sections, these notations will be used: 

F: d-dimensional file with pre-known data distribu- 
tion. 

M > 1: Number of disks in the multidisk system. 

S: d-dimensional unit data space. 

n: Parameter of data space partitioning. 

Iki: The th interval of the kih dimension. 



3 CMD Declustering Method 

First, we consider the partition of S. The partition 
rule of S is that all partitions of S contain the same 
volume of data in F. The rule can be approximately 
followed by properly dividing each dimension of S ac- 
cording to the stationary data distribution of F,. Based 
on the data distribution, F can be coverted to a uni- 
formly distributed file by a hashing approach. Thus, 
we can discuss the CMD method with the assump 
tion of F being uniformly distributed in S. Clearly, 
the method and the results in this paper is not lim- 
ited to the uniform distribution. For databases with- 
out stationary data distributions, the partitions may 
in pathological cases become unbalanced and need re- 
balancing. The experimental results in section 7 show 
that in practice the method works quite well even on 
random files without rebalancing. 

Now, we present the partition method. We divide 
each dimension of S into nM intervals, each of length 
l/nM: 

[0, l/nM), [l/nM, 2/nM), . . . , [(nM - l)/nM, 1). 

The intervals on each dimension are numbered from 0 
to nM - 1. The gh interval of the kth -dimension is 
denoted by Iki = [i/nM , (i + l)/nM), for 0 < i 5 
nM - 1. We define the coordinate of the interval Iki to 
be i. Hereafter, we use [IkiT hki) to represent-interval 
Ihi. Consider tW0 intervals Iki, and Iki,. If jr < &, 
then every point in interval Ii;i, is less than every point 
in interval Ihi,,. 

Thus, S is divided into (nM)d regions, where a region 
is the cross product of d intervals, eg: 

[hi,, hli,) X [hia, hia) X *-- X [idid, hdir), 

where, 0 s it 2 nM - 1, 1 < k 5 d. We define the 
coordinate of the region above to be (ir, is, . . . . id). In 
the rest of the paper, we use capital letters X, Y, . . . 
to represent the coordinates of regions in S and x, y, 
. . . to represent the coordinates of the records in F or 
the points in S. 

Now, we give an illustrative 2diiensional example to 
convey the idea of the partitions of S. Let S = [0, 1)2, 
M = 4 and n = 2. Thus nM = 8, i.e. each dimension 
is divided into 8 intervals with length 0.125 each. The 
partitions of S are shown in Fig. 1. The coordinate of 
the region [0.125, 0.25) x [0.125, 0.25) is (1, !). 

Next, we discuss the data distribution method which 
allocates the regions of S among M disks. The alloca- 

tion function, denoted by CMD, is as follows: 

CMD(X1 ,..., Xd) = (X, + . . . + Xd) mod M. 

The region (Xl, X2, . . . . Xd) is assigned to disk 
CMD(Xl, X2, . . . . Xd), where the M disks are num- 
bered 0, 1, . . . . M - 1. The allocation of the 64 regions 
of S among 4 disks is shown in Fig. 1. For example, 
the region (6, 6) is assigned to disk 0. 

Now we show that the CMD method is balanced, 
where balance is defined as follows: 

Definition 1. Two regions RI and R2 in S are 
neighbows if R1 = (Xl, . . . . Xi, . . . . Xd) and R2 = 
(Xl, e*e, Xi + 1, .+., xd) for some i, 1 5 i < d. 

Definition 2. An allocation method is balanced if the 
same number of regions is assigned to each disk and 
any two neighbouring regions are on different disks. 

Theorem 1. The CMD method is balanced. 

Proof. Given in [23]. 
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Fig. 1. The partition and allocation of 
S = [0, 1) x [0, 1) among 4 disks 
withM=4andn=2. 

4 Performance Analysis 

Definition 4. Let Q = ([LI, VI), [Lz, Ls), m-s, 

[&j, ud)) be a range query. The length of Q on di- 
mension i is the number of the intervals intersecting 
[Li, Vi) on dimension i. 

If the hyper-rectangle required by Q intersects a region 
R of S, we assume that all of R must be accessed in 
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response to Q. We can let n in the partition of S be 
large enough so that all the data in each region can be 
put into one diik page. Considering that the page of a 
disk is the basic access unit of the disk, our assumption 
is meaningful. 

Definition 5. A declustering method is optimal for 
a query if a maximum of [P/M] regions need to be 
accessed on any one of the given M disks to examine 
the P regions in response to the query. 

Theorem 2. The CMD method is optimal for all 
range queries whose length on some dimension is equal 
to kM where k 1 1. 

Proof. Given in [23]. 

For range queries that do not specify some partitioning 
attributes, the ranges of the queries on the missing at- 

tributes are the complete domains of these attributes, 
i.e., [0, 1). For example, a range query that misses 
the first attribute can be represented as Q=([O, l), 

b52, u21, ***, [Ld, ud)). Since each dimension Of s, 

i.e., domain of an attribute, is divided into nM in- 
tervals, a range query that misses some partitioning 
attributes has length nM on these dimensions. Thus, 
we have the following corollary. 

Corollary 1. The CMD method is optimal for all 
range queries that miss some partitioning attributes. 

In the following let (L, U) be a set of adjacent intervals 
on a dimension of S whose coordinates are L, L + 
1, ‘..) u. 

Lemma 1. Let Q be a range query which needs to 
examine hyper-rectangle A = ~id,~(Li, Li + Zi - l), 
whereO<LisnM-liandl<Zi<Mforl<isd. 
If Ii, <_ li, 5 * * - 5 Iid, where lib E (11, . . . . Id) for 

1 < k 5 d, Q is required to access at most nti’, liL 
regions on each disk. 

Proof. Given in [23]. 

Lemma 2. Let 

A= X$l(Li, Li + kiM + fi - l), 

Al = (L1, Li+kiM-l)x(x$z(Li, Li+kiM+Zi-l)), 

AI = (A - & At) n RI for 2 5 12 d where, 

RI = (x;;‘,(Lt, Lt + ktM + It - 1))‘~ 

(LI, Lr + klM - 1) x 

<XL+, (L, Lt+hM+& - l)), 

&+I = xid,l(Li + kiM, Li + kiM + 4 - I), 

where, 0 5 Li 5 nM - kiM - li, 0 < li < M ad 

0 5 ki 5 n for 1 < i 5 d. A is a hyper-rectangle in 

S, all Ai’s are hyper-rectangles in S for 1 5 i 5 d + 1 

and have the following properties: 

1. A = &iAi. 

2. The length of Ai on dimension i is ki M (1 < i 5 d). 

3. AinAt = 0 if i # t for 1 2 i, t 5 d + 1, where 0 
is empty set. 

Proof. Given in [23]. 

It is obvious that any range query, which does not sat- 
isfied the condition of theorem 2, can be represented by 

A = ([Ll/nM, (LI +klM +h)lnM), [-h/nM, (~52 + 
kzM + h)/nM), . . . . [L&M, (Ld -t kdM -t ld)hM)), 
where, 0 2 Li < nM - kiM - li and 1 < Ii < M for 

llisd. 

Theorem 3. Let Q be the range query A as above. 
CMD method is optimal for Q if (l/B + lid/M) > 1, 

where B = n,“,: lij, lil 5 li3 5 + * * 5 lia, and lik E 

(11, -.., Id)- 

Proof. We partition A, the hyper-rectangle required 
by Q, into d + 1 sets as in lemma 2. Let Pi be the 
number of regions in Ai for 1 5 i 5 d. By the 

properties 1 and 3 in lemma 2, the number of re- 
gions required by Q is P = Ci”=‘,’ Pi. From the prop- 
erty 2 in lemma 2 and theorem 2, there are at most 

[pi/Ml = Pi/M g re ions of Ai on any one of the M 

diks for 1 2 i 5 d. Clearly, Pd+l = nf=, Zi = B x lid. 
Since l/B + Zi,/M > 1, i.e. B(l - Zi,/M) < 1, 
[Pd+l/Ml = [B X lid/Ml = [B-B(l-lid/M)1 = B. 
By lemma 1, there are at most B regions of Ad+1 on 
any disk. In summary, there are at most 

(f:P,IM)+B = (kPi/M)+ rPd+lIMI 
id id 

d+l 

= [C pi/Ml = [P/MI 

i=l 

regions of A on any one of the M disks. Therefore, 

CMD is optimal for Q. Q.E.D. 

The theorems 4 and 5 below show the worst and av- 

erage case bounds, respectively, on the performance of 
the CMD method. 

Theorem 4. For any range query Q required to ex- 
amine P regions, at most [P/Ml + (M - l)d-’ - 1 
regions are accessed per disk in response to Q. 

Proof. Let Q be required to examine hyper-rectangle 
A= Xid,l(Li,Li+kiM+Zi-l), where05 Li 5 nM- 
kiM - li and 0 5 Zi < M. If there is some i (1 2 i 5 d) 
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such that Ii = 0, then by theorem 2, the number of re- 
gions accessed per disk is [P/M]. Let 0 < li < M for 

1 5 i 5 d. We partition A into the same d + 1 hyper- 
rectangles as in lemma 2, Al, AS, + - . , Ad+1 . Let Pi 
be the number of regions in Ai for 1 5 i 5 d + 1. 
Thus P = CfL’,’ Pi. By lemma 1, there are at most 

B = nfzi li, regions in &+I on any disk. By theorem 
2, there are at most Pi/M regions in Ai on any disk for 
1 _< i 5 d. Thus, the number of regions accessed per 
disk in response to Q is at most B + C$:, Pi/M. 

Since [P/M] = EL1 E/M + rPd+l/M], 

B + Cf.-l E/M = P=/Ml + B - fpd+l/Ml. 

Since B 5 (M - l)d-’ and [Pd+r/Ml 1 1, B + 

Cf=, Pi/M 5 [P/M] + (M - l)d-’ - 1, i.e., the num- 
ber of regions accessed per disk in response to Q is at 
most [P/M] + (M - l)d-’ - 1. Q.E.D. 

Lemma 3. Assuming each value in { 1, 2, , .., nM) 
is equally possible, the probability of any range query 
being optimal is greater than 

p=l- 
nM*-(n-l)M-2 

nM2 

Proof. Let A be the number of points in an interval of 
any dimension, which can be the start or end points of 
ranges of range queries on the dimension. The number 
of ranges with length 1 on any dimension is the sum 
of the number of ranges in each interval of the nM 

intervals, that is nM(l + 2 + . . e + A) = v. 
The number of ranges with length k (2 5 k 2 nM) on 
any dimension is the sum of the number of ranges with 

length k in every k adjacent intervals (k-intervals for 
short) of the nM-k+l k-intervals, that is A*(nM-k+ 

1). Thus, the total number of ranges on any dimension 
is 

R iota1 = 
A(A + 1)nM 

2 
+ F(nM - k + 1)A2 

k=2 

= 
AnM(AnM + 1) 

0 
L 

Hence, the total number of range queries is 

For any dimension, the number of ranges with length 
kM (1 5 k 5 n) is the sum of the number of ranges 
with length kM (1 5 k 5 n) starting from the ith 
interval for 0 5 i 5 (n - 1) M. The sum of the number 
of ranges, starting from the Oth interval, of length M, 
2M, . . . . nM, is nA*.. Similarly, the sums starting from 

the intervals ZM + 1, 1M + 2, . . . . (I + 1)M are each 
(n - 1 - l)A*. This holds for 0 5 1 5 n - 2. Thus, 

the total number of ranges with length kM on any 
dimension is 

n-2 

&u = nA2 + xM(n-I-1)A2 
I=0 

= 
2nA2 + Mn(n - l)A* 

r) 
Y 

The number of ranges with length # EM on any di- 
mension iS Rtotal - RkM, i.e 

A2(n2M2 + nM - n2M - 2n) + AnM 

2. 

The number of range queries with all lengthes # kM 
on all dimension is 

( 

A2(n2M2 + nM - n2M - 2n) + AnM d 
Q;M = 

2 >- 

Thus, the total number of range queries with at least 
one range of length kM on some dimension is 

Qkzu = Qtotal - Q:,w = 
( 

AnM(AnM + 1) d 

2 >- 

-( 

A2(n2M2 + nM - n2M - 2n) + AnM d 

2 >- 

Let P(A) = e. Then, 

p * 
= d’rnm P(A) = 1 - 

nM2-(n-l)M-2 

nM* 

is the probability of a range query having a range of 

length kM on some dimension. Since the set of range 
queries with at least one range of length kM on some 
dimension is a strict subset of the set of all optimal 
range queries on S, the probability of a range query 
being optimal is greater than p. Q.E.D. 

Clearly, we can make p large enough by properly select- 
ing n. The above result shows that the performance 

of the CMD method improves with increased dimen- 

sionality of the data. 

Let range query Q = ([Lr/nM, (LI +hM+ll)/nM), 
[Lz/nM, (Lz + k2M + h)/nM), . . . . [Ld/nM, (Ld + 

kdM + &i)/nM)) be required to examine P regions, 
where 0 5 Li < nM - kiM - li and 0 < li < M. 
Assuming Ii’s are independently and uniformly dis- 
tributed in (0, 1, . . . . M - l}, we have the following 
theorem. 
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Theorem 5. In response to the range query Q, at 
most 

[P/M, + (1 - p)((M - 1)d-‘/2d-’ - 1) 

regions are accessed per disk on the average. 

Proof. If Q is optimal, the number of regions accessed 
per disk is [P/Ml. Let Q be not optimal. We partition 
A into the same d + 1 hyper-rectangles as in lemma 2, 

AI, -42, v-e, Ad+l. Let Pi be the number of regions in 

Ai for 1 5 i < d + 1. Thus P = cfzi Pi and Pd+r = 

nf=, Zi. By lemma 1, there are at most B = ntzt Ii, 
regions in Ad+1 on any disk. From theorem 2, there are 
at most Pi/M regions in Ai on any disk for 1 5 i 5 d. 
Since li is independently and uniformly distributed in 

{O, 1, **-, M - 1) for 1 5 i 5 d, the average value 

of li is (M - 1)/2. Thus the average value-of B is 

(M - l)d-1/2d-‘. Therefore, the number of regions 
accessed per disk in case of Q being not optimal is 

at most (M - l)d-‘/2d-1 + Cf=, Pi/M. Considering 
that the probability of Q being optimal is greater than 
p and the probability of Q being not optimal is less 
than 1 -p, the number of regions accessed per disk in 
response to Q is at most 

acost = p[P/M,+(l-p)((M-l)d-‘/2d-1+~Pi/M) 
i=l 

on the average. Since 

[P/Ml = f: Pi/M + [Pd+l/M] 
kl 

= f: Pi/M + [(fi ii)/Ml) 
id i=l 

(M - l)d-1/2d-1 + &Pi/M = 
0 

= [P/M, + (“,!!“;’ [P/M, + kPi,M 
i=l 

= [P/Ml + (M - l)d-‘/2d-’ - [(fi li)/M, . 
i=l 

Since li = (M - 1)/2 for 1 < i 5 d on the average, 

[(nf=l &)/Ml = [(M - l)d/(2dM)1 2 1. Thus, 

acost < [P/M, + (1 -p)((M - l)d-‘/2d-1 - 1). 

Q.E.D. 

Theorems 4 and 5 give two very loose upper bounds. 
The actual performance of the CMD method is much 

better. For example, in the case of 2 and 3 dimensions 
the worst case upper bounds are M/4 and M2/16, 
respectively. It should noted that range queries are 

usually required to examine a very big subspace of S, 
i.e. P in theorems 4 and 5 is very large. Thus [P/M], 
the optimai number of disk accesses, is much greater 
than (M - l)d-l - 1 or (1 -p)((M - l)d-‘/2d-1 - 1). 
And hence, the CMD method is nearly optimal for 
any range query. 

5 Organizing Data on Single 

Disk 

In the following discussion, Fi and Si are used to rep- 
resent the subfile of file F and the subspace of space 
S on diik i, respectively, for 0 2 i 2 M - 1. 

In this section, we will solve the problem of how to 
organize the subfile Fi on disk i such that data main- 
tenance and range queries can be efficiently supported. 
We are going to use the grid file structure to organize 
the subfile Fi in subspace Si on disk i, since this has 
been shown to have superior performance for multiat- 
tribute range queries on single disk systems. In the 
CMD method, Si is not a hyper-rectangle so that Fi 
is very skewed in [0, l)d. Thus, the grid file method 
cannot be directly used to organize Fi in Si. Using 
the example in Fig. 1, Fig. 2 shows the distribution 
of the subspace Sc of [0, 1)2 on disk 0. In Fig. 2, Oi’s 
are the regions in S assigned to disk 0. 

7 1 04 I 012 

6 I I 1 06 I I I 014 I __ 
OS “16 

4 02 010 

Fig. 2. The distribution of 

SO in [0, 1)2 on disk 0. 

We use a coordinate transformation function on Si to 
map Si into a d-dimensional rectangle, [0, l)d-l x 

[O, l/M) for 0 < i 5 M - 1. Let (zi,zz, . . . , zd) E S. 
Since zd must be in an interval on dimension d of S, 
there must exist integers k and I and a real number a, 

whereO<k<n-1,0<15M-landO<acl/nM, 
such that Z,j = (kM + Z)/nM + a. The coordinate 



transformation function, denoted by CTF, is defined 
a3 

CTF(tl, 22, . . . . zd) = (21, 22, . . . . ~-1, k/nM+a). 

Fig. 3 illustrates the result of CTF mapping Sc into 
[0, 1) x [0, l/4), where S = [0, l)‘, M = 4 and n = 2. 

Let CTF(Si) be the image of Si under CTF in-the rest 
of the paper. Theorem 6 below shows that CTF(Si) 
is a d-dimensional rectangle and theorem 7 shows that 
CTF is a one to one and onto function. 

1 02 04 06 OS 010 012 014 016 

0 01 OS 011 013 015 03 07 09 

01234567 

Fig. 3. The result of CFT mapping 
SO into [0, 1) x [0, l/4). 

Theorem 6. For 0 5 i 5 M - 1, CTF(Si) = 
[0, l)d-’ x [0, l/M). 

Proof. Given in [23]. 

Theorem 7. CTF is a one to one and onto function 
from Si to [0, l)d-’ x [0, l/M) for 0 5 i < M - 1. 

Proof. Given in [23]. 

In the following discussion, we use numbers of the form 
kM+l to represent the coordinates of the intervals and 
use the cross product of intervals to represent regions, 

where 0 5 k < n and 0 2 1 < M. For example, R = 
x;‘=l[(ktM + It)/nM, (ktM + Zt + l)/nM) represents 
region R = (kl M + II, k2M + 12, . . . . k,jM + Id). 

Theorem 8. If R = xfcl[(ktM + &)/nM, (ktM + 
It + l)/nM) E Si for 0 2 i 5 M - 1, then 

CTF(R) 

= x::,‘[(ktM + Z,)/nM, (k&f + It + l)/nM) 

x[kd/nM, (kd + l)/nM) = R1 E CTF(Si). 

Proof. Given in [23]. 

Clearly, R is a region in Si and RI is a region in 
CTF(Si). Theorems 7 and 8 tell us that the regions in 
Si are in one to one correspondence with the regions 
in CTF(Si). 

Based on theorems 6,7 and 8, we can use the grid file 
structure to organize CTF(Fi) in space CTF(Si) on 
disk i for 0 < i < M - 1, and design an effective and 

efficient range query processing algorithm. 

6 Data Maintenace and Range 

Query Processing 

First, we discuss the data maintenance operations, 
i.e. insertion, deletion and update. Given a record 

+1, 22, --*, zd), ah data maintenance operations can 
be processed using the following 4 steps. 

1. Determine the coordinate of the region in 
which r lies; 

2. Determine the disk number i of the disk on 
which r is, using the CMD function; 

3. COmpUte (yl, . . . . vd) = CTF(Z1, . . . . Zd)j 

4. usiqic (91, Y2, --a, yd) as input, process the 
data maintenance operation on disk i using 
the data maintenance algorithm of the grid file 
structure. 

Since each dimension of S is divided into nM in- 
tervals of equal length each, the coordinate of the 
region to which the record ~(21, 22, . . . . zd) be- 
longs is (Xi, X2, . . . . Xd), where Xi = [zi x nMJ. 
With the region coordinate determined, the disk num- 
ber i of the disk on which the record r resides is 
(x1+x2$...+&) mod M. 

Note that we only use CTF(q, . . . . 2d) = (~1, . . . . gd) 
to determine the location in which record (ti , . . . . zd) 
is. The actually stored data is still (21, . . . . 21). This 
can avoid the inverse mapping from (yi, . . . . yd) to 

(21, . . . . td). 

Now we describe the algorithm for range query pro 

c=ing. Let Q = WI, VI), [L2, V2>, . . . . [Ld, ud)) be 

a range query, where Li and Vi are in [0, 1). The op 
eration Will retUrn a set of records, {r(zr, 22 , . . . . 2d) 
] Listi<Ui forlsi5d). 

The first step of the algorithm is to determine the set 
of regions that must be examined. From the range 
[L,, Urn) for 1 5 m 5 d, the set of intervals related 
to Q on dimension m, denoted by I”, can be obtained 

as follows: 

AJa = {Lkm I Lnk, (-)L, Urn) # 01, 

where, I&,,, is interval k, on dimension m. The set 
of regions that must be examined is 

R = {Xk,lh, 1 Imk, E I,, 1 I m I d}, 

which can be represented by region coordinates 

R= {(XI, x2, a-*> xd) 1 (x;,,kc,) E R’}. 
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The second step of the algorithm is to divide the set 
R into M subsets using the CMD function such that 
each subset only contains regions that are assigned to 
the same disk. The subset of regions assigned to disk 
i, &, can be computed as follows: 

Ri = {(Xl, --*, Xd) E R 1 (Xl +- . .+X,i) mod M = i}. 

The third step of the algorithm is to get the set of re- 
gions which need to be examined on disk i by theorem 

8, 

cTF(&) = {(yt, . . . . yd) 1 3(x1, . . . . xd) E & 

such that CTF(XL, . . . . X,j) = 

(KY . . . . yd))* 

Since CTF(&) may not be a hyper-rectangle in 
CTF(Si), it perhaps can not be represented as a sin- 
gle range query in CTF(Si). The fourth step of the 
algorithm is to transform CTF(&) into batched range 
queries since cTF((&, ..,, xd)) = (yl, . . . . yd) is 

one and only one region in CTF(Si), by theorems 6, 7 

and 8, we simply transfer each region in CTF(&) into 
a range query in CTF(Si). Thus, the batched range 
queries on disk i are 

Finally, process all range queries in Qi on disk i, for 

O<i<M-1. 

The algorithm can be summarized as follows: 

RANGE-QUERY 

INPUT: Q = ([LI, VI), [Lz, uz), . . . . [Ld, ud)). 

OUTPUT: A = (r(z1, 22, . . . . fd) 1 Lj < Xj < 
Uj for 0 5 j 5 d} 

METHOD: 

1. For 1 5 m 5 d, compute 

I m = {Imk, 1 Imk, n[Lm, urn) # 0); 

2. Compute 

R= {(XI, X2, . . . . xd) I LX, E 1, for 1 5 m I 4; 

3. For 0 5 i 5 M - 1, compute 

R-i = {(Xl, a*-, xd) 1 (xl-k.-.+&) mod %f =i}; 

4. For 0 5 i < M - 1, compute 

CTf’(Ri) = {(YI, Y2r . . . . yd)}; 

5. For 0 < i 2 M - 1, compute 

Qi = 
(0 

Z&j s), . . . . [Z&, 9)) 1 

(K, a*-, yd) E CTf’(Ri)}. 

6. For 0 5 i 5 M - 1, if Qi # 0 process the 
batched queries Qi on disk i according to the 
given grid file retrieving policy and return the 
(IPSWW in Ai; 

7. Return A = UE,‘Ai. 

In a multiprocessor system with at least M processors, 
all the Qi’s in step 6 can be processed concurrently. 
Using buffering techniques in step 6, the batched Qi 
can be efficiently processed by retrieving the related 
directory and data only once. 

‘7 Simulation Results 

To examine the CMD method in practice, we imple- 
mented the data maintenance and range query pro 
cessing algorithms. The simulation runs of the algo 
rithms described below had the following objectives: 

1. Estimation of the degree of balance. 

2. Estimation of the performance of range query pro- 
cessing. 

The simulations were performed on a Cdimensional 
data space. 

Degree of balance. To observe the degree of the 
balance of the CMD method, we created 4 files of 4 
dimensional records of random numbers, which were 
uniformly distributed in the space S = [0, 1)4 (which 
we call uniformly distributed files), and 4 files of 4 
dimensional records of random numbers, which were 
non-uniformly distributed in S = [0, 1)4 (which we 
call non-uniformly distributed files). Using n = 3 and 
M = 3, the space S was divided into 6561 regions. The 
size of a disk block was 512 bytes. The blocking factor 

was 0.75, which means that each disk block must have 

approximately 512 x 0.75 = 384 bytes. The sizes of the 
uniformly and the non-uniformly distributed files were 
the same, i.e. 1000, 10000, 15000 and 20000 records. 

Table 1 shows the distribution of the data in the uni- 
formly distributed files among 3 disks. Table 2 shows 
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the distribution of the data in the non-uniformly dis- 
tributed files among 3 disks. 

Table 1 shows that the data in the uniformly dis- 
tributed files is equally distributed among disks. Ta- 
ble 2 shows that the data in the non-uniformly dis- 

tributed files is nearly equally distributed among disks 
even without using any rebalancing algorithm. 

Number Data Distribution on Disks 
of Number of Number of Number of 

Records Blocks Blocks Blocks 
in Files on Disk 1 on Disk 2 on Disk 3 

1000 14 13 14 

10000 138 138 137 
15000 1 209 I 210 208 
20000 1 279 279 279 

Table 1. The distribution of the data in 
uniformly distributed files 
among 3 disks. 

Number Data Distribution on Disks 
of Number of I Number of I Number of 

Table 2. The distribution of the data in 
nonuniformly distributed files 

among 3 disks. 

Performance of range query processing. Toex- 
amine the range query processing algorithm of the 

CMD method in practice, we generated a file of 20000 
Cdimensional records of random numbers, which were 
uniformly distributed in the unit space S = [O, 1)4, 
and a file of 20000 Cdimensional records of random 
numbers, which were non-uniformly distributed in 
space S. Using n = 3 and M = 3, the space 4 was di- 

vided into 6561 regions. The size of a disk block is 512 
bytes. The blocking factor is 0.75. The following 10 

range queries were randomly generated and performed 

on each file: 

1. ([O.OOl, 0.550), [0.021, 0.620), 
[0.034, 0.675), 10.256, 0.320)); 

2. ([O.OOl, 0.890), [0.022, 0.032), 
IO.008, 0.567), tO.070, 0.534)); 

3. ([0.659, O.SSO), tO.661, 0.890), 

[0.043, 0.225), [0.030, 0.612)); 
4. (tO.445, 0.910), [0.347, 0.893), 

10.543, O.SOO), [0.337, 0.810)); 
5. ([0.253, 0.324), [0.400, 0.764), 

[0.410, 0.627), IO.067, 0.637)); 
6. ([0.003, 0.615), [0.028, 0.512), 

[0.030, 0.352), [0.511, 0.758)); 
7. ([O.OOS, 0.870), [0.650, O-700), 

[0.260, 0.270), [0.077, 0.601)); 
8. ([0.340, 0.920), 10.440, 0.870), 

[0.507, 0.873), [0.025, 0.671)); 
9. (tO.012, 0.502), [0.020, 0.883), 

[0.570, 0.637), [0.004, 0.128)); 
10. ([O.lOl, 0.670), [0.003, 0.608), 

[0.508, 0.712), [0.031, 0.601)). 

Table 3 shows the number of blocks accessed on each 
disk for processing the 10 queries for the uniformly 
distributed file. Let pi, Pz and P3 be the number of 
blocks accessed on disk 1, disk 2 and disk 3 respec- 

tively. Clearly, for 1 5 i 5 3, Pi is almost the same as 

MAX(Pl, P2, Ps). Thus, the CMD method is almost 
optimal for queries on uniformly distributed files. 

9 4 4 4 
10 36 36 36 

Table 3. The performance of the algorithm 
of range query processing on 
uniformly distributed file, 
where, Di = Disk i. 

Table 4 shows the numbers of blocks accessed on each 
disk for processing the 10 queries on the non-uniformly 
distributed file. It was observed that for 1 5 i 5 3, 

Pi is nearly the same a~ MAX(Pl, P2, Pa). Thus, 
CMD shows very good performance even for queries 

on non-uniformly distributed files. 

In order to compare the performance of range query 
processing of the CMD method with that of the M- 
cycle method [7], which is the only other method for 
multidimensional range query processing in multidisk 

systems, we also implemented the algorithms of the 
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M-cycle method. We used the M-cycle method to dis- 
tribute the same two files and performed the same 

10 range queries on the two files. Tables 5 and 6 
compare the performance of range query processing of 
the two methods on uniformly and non-uniformly dis- 
tributed files. As we can see from the tables, the CMD 
method behaves much better than the M-cycle method 
in terms of the total number of blocks accessed, which 
is cost = PI + P2 + Ps, and the response time, which 
is rsp = MAX(Pl, P2, Ps), for both uniformly and 
non-uniformly distributed files. 

I 
10 I 43 46 1 49 

Table 4. The performance of the algorithm 

of range query processing on 
nonuniformly distributed file, - 
where, Di = Disk i. 

Range 

c 

Comparison of cost and response Time 

Query cost 1 cost 1 rsp =P 
Number M 1 C 1 M 1 C 

1 38 30 16 10 
2 65 37 24 13 
3 35 31 16 11 
4 48 43 19 16 
5 10 11 4 4 
6 77 52 29 18 

Table 5. The Comparison of performance of 
range query processing on uni- 
formly distributed file, where 
M=M-cycle and C=CMD. 

Range Comparison of cost and response Time 

Query cost 1 cost w rsP 
Number M I C I M I C 

Table 6. The Comparison of performance of 
range query processing on non- 

uniformly distributed file, where 
M=M-cycle and C&MD. 

8 Conclusions and Future Re- 

search 

We have presented the CM D multidimensional declus- 
tering method for parallel disk systems that is geared 
towards providing efllcient performance for multidi- 
mensional range queries. Analysis of the method 

shows that it achieves optimum performance in almost 
all cases. Theorems 4 and 5 and the experimental re- 
sults show that the performance of the CMD method 
is much better than that of the M-cycle method, which 

is the only other existing method for range queries in 
multidisk systems. Since data declustering is based on 
all dimensions in a symmetric manner, range queries 

involving any of the partitioning dimensions can be 
performed with equal efficiency. Grid block split 
and merge are localized to single disks so that data 
transmission across disks during data maintenance is 
avoided. Thus, the method reduces the cost of inser- 
tion and deletion. The method is balanced for files 
with stationary data distribution, and expensive data 
rebalancing is not needed. Simulation results show 
that the method works well even for files without a 
stationary data distribution, and is superior to the M- 

cycle method. Bounds for the worst and average case 

performance of range queries have been provided, and 
parallel algorithms for query processing and update 
handling were described. 

It should be noted that when the method is used on 
very skewed databases, it may become unbalanced so 
that some expensive data rebalancing algorithm has 
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to be used. Our ongoing research is addressing the 
issue of dynamically adapting the partitioning of the 

space. Finally, we are developing parallel algorithms 
for relational operations that can take advantage of 
the proposed declustering scheme. 
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