
CMD: Classification-based Memory
Deduplication through Page Access

Characteristics

Licheng Chen, Zhipeng Wei, Zehan Cui, Mingyu Chen,
Haiyang Pan, and Yungang Bao

Institute of Computing Technology (ICT)

Chinese Academy of Sciences (CAS)

VEE 2014

March 1-2, 2014

Background

• Limited main memory size is the major bottleneck
to consolidate more virtual machines on a hosting
server.

– Increasing number of cores integrated into processor

– Larger working set of workloads running in VMs.

Background

• Limited main memory size is the major bottleneck
to consolidate more virtual machines on a hosting
server.

– Increasing number of cores integrated into processor

– Larger working set of workloads running in VMs.

• Content Based Page Sharing (CBPS) is an efficient
memory deduplication technique

– Perform page scan transparently in the hypervisor layer

– Identical pages (with same content) are detected and
shared into a single copy

– KSM: A widely used implementation of CBPS

KSM
• Kernel Samepage Merging

– Integrated into Linux kernel archive since 2.6.32

– The whole memory pages are maintained into two
global comparison trees

• Stable tree: already shared pages with COW protection

• Unstable tree: pages that are not shared
System

Memory

KSM

Scan

Page

… …

Global

Stable

Tree

… …

Global

Unstable

Tree

No identical

page found

Problems with KSM

• Pages are directly compared with content (e.g.
memcmp in Linux): CPU overhead

• Futile Comparison:

– Page comparisons that fail to find any page with the
same content (including the stable tree and unstable
tree)

– Pages are compared with a large number of
uncorrelated pages in the global trees

System

Memory

KSM

Scan

Page

… …

Global

Stable

Tree

… …

Global

Unstable

Tree

No identical

page found

KSM
• Two parameters to control KSM performance

– Pages_to_scan: the number of pages to be scanned
before sleep, it is 100 by default

– Sleep_millisecs: the time to sleep (in milliseconds), it
is 20 by default

KSM
• Two parameters to control KSM performance

– Pages_to_scan: the number of pages to be scanned
before sleep, it is 100 by default

– Sleep_millisecs: the time to sleep (in milliseconds), it
is 20 by default

• KSM run-time overhead breakdown
– Page Comparison: page content comparison in both

global stable tree and unstable tree.

– Page Checksum: calculating page checksum to
determine whether a page is volatile

– Others: other overhead, such as inserting pages in
the tree, break COW when a shared page is written

Outline

• Background & Motivation

– The profiling of KSM

• CMD: Classification based Memory Deduplication

• Experimental Results

• Conclusion

Motivation: Profiling of KSM
• The page_comparison contributes about 44% of the

overall run-time overhead

• The CPU Utilization increases as more frequent page
comparisons:
– It is about 7% for C0, 24% for C2 and up to 52% for C5

0%

10%

20%

30%

40%

50%

60%

0%

20%

40%

60%

80%

100%

C0 C1 C2 C3 C4 C5

C
P

U
 U

ti
li

za
ti

o
n

R
u

n
ti

m
e

O
v

er
h

ea
d

B
re

a
k

d
o

w
n

Page_Checksum Page_Comparison Others CPU_Utilization

Pages_to_scan: 100 200 400 800 1600 3200 With 4 VMs

Motivation
• With more frequent page comparisons, the

KSM can detect more page sharing
opportunities

– Detect more short-lived page sharing quickly

Motivation
• The total page comparison and futile comparison

increase proportionally as the KSM scans
periodically

Motivation
• The total page comparison and futile comparison

increase proportionally as the KSM scans
periodically

• Futile_Rate: the ratio between Futile_Comparison
and Total_Comparison
– It becomes steady at about 83%

Motivation
• The total page comparison and futile comparison

increase proportionally as the KSM scans periodically

• Futile_Rate: the ratio between Futile_Comparison and
Total_Comparison
– It becomes steady at about 83%

More frequent scan can detect more page sharing
opportunities, but it also results in a large number of
futile page comparisons and thus heavy CPU overhead

Motivation
• The total page comparison and futile comparison

increase proportionally as the KSM scans periodically

• Futile_Rate: the ratio between Futile_Comparison and
Total_Comparison
– It becomes steady at about 83%

More frequent scan can detect more page sharing
opportunities, but it also results in a large number of
futile page comparisons and thus heavy CPU overhead

Our Goal: reduce futile page comparisons
meanwhile detect page sharing opportunities
effectively

Outline

• Background & Motivation

– The profiling of KSM

• CMD: Classification based Memory Deduplication

• Experimental Results

• Conclusion

The Overview of CMD

0x398f24a, r
0x398f24b, r
0x398f24c, w

……
0x1af4aa, w
0x1af4a6, r
0x1af4a8, w

……
0x38d2cfc, r

0x38d2cfd, w
……

Physical
Address Trace

Page Access
Monitor

The Overview of CMD

0x398f24a, r
0x398f24b, r
0x398f24c, w

……
0x1af4aa, w
0x1af4a6, r
0x1af4a8, w

……
0x38d2cfc, r

0x38d2cfd, w
……

Physical
Address Trace

pfn

Page Access
Characteristics

12 17 25 8

31 28 2 11

3 0 53 1

0 0 0 0

36 0 0 1

0

……

1

2

N-2

N-1

Page Access
Monitor

The Overview of CMD

0x398f24a, r
0x398f24b, r
0x398f24c, w

……
0x1af4aa, w
0x1af4a6, r
0x1af4a8, w

……
0x38d2cfc, r

0x38d2cfd, w
……

Physical
Address Trace

pfn

Page Access
Characteristics

12 17 25 8

31 28 2 11

3 0 53 1

0 0 0 0

36 0 0 1

0

……

1

2

N-2

N-1

Page
Classification

Classification
based KSM

Classification 0

Classification 1

Classification 2

Classification 3

Page Access
Monitor

Page Access Monitor
• HMTT: Hybrid Memory Trace Toolkit

– A DDR3 SDRAM compatible memory monitoring system

– Adopts hardware snooping technology

FPG
A

Ethernet
Interface

PCIe
Interface

DDR3
DIMM

DDR3 DIMM
DRAM DIMM Plugged on the back side

Memory Trace:
• Fine granularity: cache block
• <time_stamp, r/w, phy_addr>

Page Access Monitor
• HMTT: Hybrid Memory Trace Toolkit

– A DDR3 SDRAM compatible memory monitoring system

– Adopts hardware snooping technology

FPG
A

Ethernet
Interface

PCIe
Interface

DDR3
DIMM

DDR3 DIMM
DRAM DIMM Plugged on the back side

Memory Trace:
• Fine granularity: cache block
• <time_stamp, r/w, phy_addr>

Advantages:
• Platform independent
• Negligible overhead
• Full-system real memory

traces

Pace Access Characteristics

• Page Access Characteristics are
maintained by the HMTT
– E.g. write access count of a page,

write distribution of sub-pages
– Implement a Page Access Buffer on

the HMTT
– Updated in the buffer when a

memory access is monitored

Ethernet
Interface

Page Access BufferDDR3
Bus

Memory
Access

HMTT

Ethernet
Interface

KSM
Shared
Buffer

Software

Hardware

Pace Access Characteristics

• Page Access Characteristics are
maintained by the HMTT
– E.g. write access count of a page,

write distribution of sub-pages
– Implement a Page Access Buffer on

the HMTT
– Updated in the buffer when a

memory access is monitored

• Fed back to the software (KSM)
periodically through Ethernet
Interface
– We have implemented a shared

(software) buffer as a kernel module
– The KSM thread can utilize it to

perform page classification and CMD

Ethernet
Interface

Page Access BufferDDR3
Bus

Memory
Access

HMTT

Ethernet
Interface

KSM
Shared
Buffer

Software

Hardware

Classification on KSM
• The large global comparison trees

are divided into multiple small
trees

– Pages are grouped into classifications
based on page access characteristics

– Local comparison trees dedicated to
each page classification

– Pages are just compared with nodes
in the local trees

– Pages from different classifications
are never compared, probably result
in futile comparisons

Classification 0

Classification 1

Classification 2

Classification 3

Page Classification Approaches

• We have implemented 3 different page
classification approaches

• 1. CMD_Address (CMD_Addr):

– Pages are classified based on physical address (pfn)

– Static and simple, but page-access unaware

– E.g. 8GB memory is evenly divided into 8 classifications

0 1 2 3 4 5 6 7
Classifi
cation

0-1GB 1-2GB 2-3GB 3-4GB 4-5GB 5-6GB 6-7GB 7-8GB
Address
Range

• 2. CMD_PageCount:

– Pages are classified based on write access count.

– Write access modifies page content and thus affects
page sharing opportunities.

– Page-access aware, slightly improve page classification
accuracy, but still coarse granularity

– E.g. page count threshold is set to 64

Page Classification Approaches

[0,64)
Page Write
Access Count
(With HMTT)

Classification 0

[64,128)

1

>=1024

15

...

Page Classification Approaches
• 3. CMD_Subpage_Distribution:

– Pages are divided into multiple sub-pages, and we
monitor write access count on sub-page granularity

– Pages are classified based on the write distribution of
sub-pages

– Fine granularity, improve classification accuracy

– E.g. 4 sub-pages with write threshold of 16

31

4

28

0

Sub-Page

0

1

2

3

Threshold
16

1

0

1

0

Sub-Page Distribution

0

1

2

3

Classific
ation

10
(1010)

Put them all together

Page Access

Characteristics

System

Memory

Page

Classification

Manager

Classification 0

Classification 1

Classification 2

Classification 3

Memory

Access

HMTT

Outline

• Background & Motivation

– The profiling of KSM

• CMD: Classification based Memory Deduplication

• Experimental Results

• Conclusion

Experimental Methodology
• Intel Xeon E5504 processor (2GHz)

– 4 physical cores with Hyper-Thread disabled
– 3-level cache, 16-way 4MB shared L3 cache

• Dual-ranked DDR3-800MHz physical memory, 8GB
capacity in total

Experimental Methodology
• Intel Xeon E5504 processor (2GHz)

– 4 physical cores with Hyper-Thread disabled
– 3-level cache, 16-way 4MB shared L3 cache

• Dual-ranked DDR3-800MHz physical memory, 8GB
capacity in total

• Host server: CentOS 6.2 with Linux kernel 3.6.10
(implement CMD)

• We adopt libpcap to capture fed-back Ethernet packets
from HMTT

• QEMU with KVM (qemu-kvm-1.2.0) to support guest VMs:
– 4 VMs as default, each with 1 virtual CPU and 2GB memory

• Guest VMs: CentOS 6.3 with Linux kernel 2.6.32-279
• Workloads: Kernel Build, Apache (ab), MySQL (SysBench)

Page Sharing Opportunities
• CMD_Addr fails to detect page sharing opportunities,
it is worst for Apache with ~39% compared with KSM
• CMD_PageCount is medium, it is about 87% of KSM for

Kernel Build workload
• CMD_Subpage has the best ability to detect page sharing

opportunities, it can even detect more page sharing for
the MySQL workload
– Because it can detect more short-lived page sharing

Kernel Build

Apache MySQL

Page Comparisons
• CMD_Addr can reduce the most page

comparisons, because it divides the global trees
in most balance

• CMD_Subpage can also effectively reduce page
comparisons

Kernel Build
Apache MySQL

Futile Rate Reduction
• CMD_Addr can reduce the least futile rate by about 4.8%

• CMD_PageCount can reduce by about 6.4%

• CMD_Subpage can reduce the most by about 12%
– But it still has space to find the best page classification

approach

0%

5%

10%

15%

Kernel Build Apache MySQL Gmean

P
er

ce
n

ta
g
e

o
f

F
u

ti
li

ty

R
a
te

 R
ed

u
ct

io
n

CMD_Addr CMD_PageCount CMD_Subpage

CPU Utilization Reduction
• The CPU Utilization of the KSM thread (ksmd) is got

from top measurements taken every second

• All of the three approaches can reduce CPU Utilization
because of the reduction of page comparisons

0

10

20

30

40

Kernel Build Apache MySQL

C
P

U
 U

ti
li

za
ti

o
n

 R
a
te

 (
%

)

KSM CMD_Addr CMD_PageCount CMD_Subpage

Outline

• Background & Motivation

– The profiling of KSM

• CMD: Classification based Memory Deduplication

• Experimental Results

• Conclusion

Conclusion
• We perform a detailed profiling of KSM

– Page comparison contributes a certain portion of the
overall KSM run-time overhead

– There exists massive futile comparisons because of
adopting two large global comparison trees

Conclusion
• We perform a detailed profiling of KSM

– Page comparison contributes a certain portion of the
overall KSM run-time overhead

– There exists massive futile comparisons because of
adopting two large global comparison trees

• We propose a lightweight approach called CMD
– Pages are divided into different classifications based on

page access characteristics with the help of HMTT

– It maintains local comparison trees dedicated to each
page classification, and pages comparisons are just
performed in local.

– CMD can reduce futile comparisons, meanwhile detect
page sharing opportunities effectively

Thanks！
&Questions?

HMTT Homepage: http://asg.ict.ac.cn/hmtt/

http://asg.ict.ac.cn/hmtt/

