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Background

• Limited main memory size is the major bottleneck 
to consolidate more virtual machines on a hosting 
server. 

– Increasing number of cores integrated into processor

– Larger working set of workloads running in VMs. 
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• Limited main memory size is the major bottleneck 
to consolidate more virtual machines on a hosting 
server. 

– Increasing number of cores integrated into processor

– Larger working set of workloads running in VMs. 

• Content Based Page Sharing (CBPS) is an efficient 
memory deduplication technique

– Perform page scan transparently in the hypervisor layer

– Identical pages (with same content) are detected and 
shared into a single copy

– KSM: A widely used implementation of CBPS



KSM
• Kernel Samepage Merging

– Integrated into Linux kernel archive since 2.6.32

– The whole memory pages are maintained into two 
global comparison trees

• Stable tree: already shared pages with COW protection

• Unstable tree: pages that are not shared
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Problems with KSM

• Pages are directly compared with content (e.g. 
memcmp in Linux): CPU overhead

• Futile Comparison: 

– Page comparisons that fail to find any page with the 
same content (including the stable tree and unstable 
tree)

– Pages are compared with a large number of 
uncorrelated pages in the global trees
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KSM
• Two parameters to control KSM performance

– Pages_to_scan: the number of pages to be scanned 
before sleep, it is 100 by default

– Sleep_millisecs: the time to sleep (in milliseconds), it 
is 20 by default



KSM
• Two parameters to control KSM performance

– Pages_to_scan: the number of pages to be scanned 
before sleep, it is 100 by default

– Sleep_millisecs: the time to sleep (in milliseconds), it 
is 20 by default

• KSM run-time overhead breakdown
– Page Comparison: page content comparison in both 

global stable tree and unstable tree.

– Page Checksum: calculating page checksum to 
determine whether a page is volatile

– Others: other overhead, such as inserting pages in 
the tree, break COW when a shared page is written
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Motivation: Profiling of KSM
• The page_comparison contributes about 44% of the 

overall run-time overhead

• The CPU Utilization increases as more frequent page 
comparisons: 
– It is about 7% for C0, 24% for C2 and up to 52% for C5
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Motivation
• With more frequent page comparisons, the 

KSM can detect more page sharing 
opportunities

– Detect more short-lived page sharing quickly
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• Futile_Rate: the ratio between Futile_Comparison and 
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More frequent scan can detect more page sharing 
opportunities, but it also results in a large number of 
futile page comparisons and thus heavy CPU overhead



Motivation
• The total page comparison and futile comparison 

increase proportionally as the KSM scans periodically

• Futile_Rate: the ratio between Futile_Comparison and 
Total_Comparison
– It becomes steady at about 83%

More frequent scan can detect more page sharing 
opportunities, but it also results in a large number of 
futile page comparisons and thus heavy CPU overhead

Our Goal: reduce futile page comparisons 
meanwhile detect page sharing opportunities 
effectively
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The Overview of CMD
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Page Access Monitor
• HMTT: Hybrid Memory Trace Toolkit

– A DDR3 SDRAM compatible memory monitoring system

– Adopts hardware snooping technology
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• Fine granularity: cache block
• <time_stamp, r/w, phy_addr>



Page Access Monitor
• HMTT: Hybrid Memory Trace Toolkit

– A DDR3 SDRAM compatible memory monitoring system

– Adopts hardware snooping technology
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Memory Trace: 
• Fine granularity: cache block
• <time_stamp, r/w, phy_addr>

Advantages:
• Platform independent
• Negligible overhead
• Full-system real memory 

traces



Pace Access Characteristics

• Page Access Characteristics are 
maintained by the HMTT
– E.g. write access count of a page, 

write distribution of sub-pages
– Implement a Page Access Buffer on 

the HMTT
– Updated in the buffer when a 

memory access is monitored
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Pace Access Characteristics

• Page Access Characteristics are 
maintained by the HMTT
– E.g. write access count of a page, 

write distribution of sub-pages
– Implement a Page Access Buffer on 

the HMTT
– Updated in the buffer when a 

memory access is monitored

• Fed back to the software (KSM) 
periodically through Ethernet 
Interface
– We have implemented a shared 

(software) buffer as a kernel module
– The KSM thread can utilize it to 

perform page classification and CMD
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Classification on KSM
• The large global comparison trees 

are divided into multiple small 
trees

– Pages are grouped into classifications 
based on page access characteristics

– Local comparison trees dedicated to 
each page classification

– Pages are just compared with nodes 
in the local trees

– Pages from different classifications 
are never compared, probably result 
in futile comparisons

Classification 0

Classification 1

Classification 2

Classification 3



Page Classification Approaches

• We have implemented 3 different page 
classification approaches

• 1. CMD_Address (CMD_Addr): 

– Pages are classified based on physical address (pfn)

– Static and simple, but page-access unaware

– E.g. 8GB memory is evenly divided into 8 classifications
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• 2. CMD_PageCount:

– Pages are classified based on write access count.

– Write access modifies page content and thus affects 
page sharing opportunities. 

– Page-access aware, slightly improve page classification 
accuracy, but still coarse granularity

– E.g. page count threshold is set to 64 
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Page Classification Approaches
• 3. CMD_Subpage_Distribution: 

– Pages are divided into multiple sub-pages, and we 
monitor write access count on sub-page granularity

– Pages are classified based on the write distribution of 
sub-pages

– Fine granularity, improve classification accuracy

– E.g. 4 sub-pages with write threshold of 16

31

4

28

0

Sub-Page

0

1

2

3

Threshold
16

1

0

1

0

Sub-Page Distribution

0

1

2

3

Classific
ation

10
(1010)



Put them all together
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Experimental Methodology
• Intel Xeon E5504 processor (2GHz)

– 4 physical cores with Hyper-Thread disabled
– 3-level cache, 16-way 4MB shared L3 cache

• Dual-ranked DDR3-800MHz physical memory, 8GB 
capacity in total



Experimental Methodology
• Intel Xeon E5504 processor (2GHz)

– 4 physical cores with Hyper-Thread disabled
– 3-level cache, 16-way 4MB shared L3 cache

• Dual-ranked DDR3-800MHz physical memory, 8GB 
capacity in total

• Host server: CentOS 6.2 with Linux kernel 3.6.10 
(implement CMD)

• We adopt libpcap to capture fed-back Ethernet packets 
from HMTT

• QEMU with KVM (qemu-kvm-1.2.0) to support guest VMs:
– 4 VMs as default, each with 1 virtual CPU and 2GB memory

• Guest VMs: CentOS 6.3 with Linux kernel 2.6.32-279
• Workloads: Kernel Build, Apache (ab), MySQL (SysBench) 



Page Sharing Opportunities
• CMD_Addr fails to detect page sharing opportunities, 
it is worst for Apache with ~39% compared with KSM
• CMD_PageCount is medium, it is about 87% of KSM for 

Kernel Build workload
• CMD_Subpage has the best ability to detect page sharing 

opportunities, it can even detect more page sharing for 
the MySQL workload
– Because it can detect more short-lived page sharing

Kernel Build

Apache MySQL



Page Comparisons
• CMD_Addr can reduce the most page 

comparisons, because it divides the global trees 
in most balance

• CMD_Subpage can also effectively reduce page 
comparisons

Kernel Build
Apache MySQL



Futile Rate Reduction
• CMD_Addr can reduce the least futile rate by about 4.8%

• CMD_PageCount can reduce by about 6.4%

• CMD_Subpage can reduce the most by about 12%
– But it still has space to find the best page classification 

approach
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CPU Utilization Reduction
• The CPU Utilization of the KSM thread (ksmd) is got 

from top measurements taken every second

• All of the three approaches can reduce CPU Utilization 
because of the reduction of page comparisons
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Conclusion
• We perform a detailed profiling of KSM

– Page comparison contributes a certain portion of the 
overall KSM run-time overhead 

– There exists massive futile comparisons because of 
adopting two large global comparison trees



Conclusion
• We perform a detailed profiling of KSM

– Page comparison contributes a certain portion of the 
overall KSM run-time overhead 

– There exists massive futile comparisons because of 
adopting two large global comparison trees

• We propose a lightweight approach called CMD
– Pages are divided into different classifications based on 

page access characteristics with the help of HMTT

– It maintains local comparison trees dedicated to each 
page classification, and pages comparisons are just 
performed in local.

– CMD can reduce futile comparisons, meanwhile detect 
page sharing opportunities effectively



Thanks！
&Questions?

HMTT Homepage: http://asg.ict.ac.cn/hmtt/

http://asg.ict.ac.cn/hmtt/

