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Abstract. The ice sheet model intercomparison project for

CMIP6 (ISMIP6) effort brings together the ice sheet and cli-

mate modeling communities to gain understanding of the ice

sheet contribution to sea level rise. ISMIP6 conducts stand-

alone ice sheet experiments that use space- and time-varying

forcing derived from atmosphere–ocean coupled global cli-

mate models (AOGCMs) to reflect plausible trajectories for

climate projections. The goal of this study is to recommend

a subset of CMIP5 AOGCMs (three core and three targeted)

to produce forcing for ISMIP6 stand-alone ice sheet simu-

lations, based on (i) their representation of current climate

near Antarctica and Greenland relative to observations and

(ii) their ability to sample a diversity of projected atmo-

sphere and ocean changes over the 21st century. The se-

lection is performed separately for Greenland and Antarc-

tica. Model evaluation over the historical period focuses on

variables used to generate ice sheet forcing. For stage (i),

we combine metrics of atmosphere and surface ocean state

(annual- and seasonal-mean variables over large spatial do-

mains) with metrics of time-mean subsurface ocean temper-

ature biases averaged over sectors of the continental shelf.

For stage (ii), we maximize the diversity of climate projec-

tions among the best-performing models. Model selection is

also constrained by technical limitations, such as availabil-

ity of required data from RCP2.6 and RCP8.5 projections.

The selected top three CMIP5 climate models are CCSM4,

MIROC-ESM-CHEM, and NorESM1-M for Antarctica and

HadGEM2-ES, MIROC5, and NorESM1-M for Greenland.

This model selection was designed specifically for ISMIP6

but can be adapted for other applications.

1 Introduction and objectives

The Greenland and Antarctic ice sheets represent the largest

and most uncertain contributions to global sea level rise

over multidecadal to millennial timescales. During the last

3 decades, satellite observation captured rapid mass loss
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from both ice sheets (Velicogna, 2009; Zwally et al., 2011;

Khan et al., 2014; Mouginot et al., 2014; Mouginot et al.,

2019; Shepherd et al., 2018). Both atmospheric and oceanic

changes have been identified as drivers of observed mass

loss, although regional mechanisms vary. For example, ris-

ing air temperatures over Greenland lead to increased surface

melt, causing direct mass loss (Trusel et al., 2018; Fettweis

et al., 2017). Enhanced surface meltwater production also

destabilizes the margins of the ice sheet (van den Broeke,

2005; Banwell et al., 2013) and lubricates the ice flow at the

bed (Andrews et al., 2014; Kendrick et al., 2018). Ocean in-

teractions with the ice sheet occur in Greenland fjords, where

a combination of onshore ocean heat transport, estuarine-

type circulation, subglacial meltwater runoff, and calving

processes influence glacier terminus position and ice dis-

charge (Straneo and Cenedese, 2015). In Antarctica, most

of the ice sheet’s mass loss is mediated through floating ice

shelves. Melting at the ice shelf underside, which affects ice

flow dynamics, is mainly controlled by the extent to which

ocean dynamics along the continental margin allow intru-

sion of offshore ocean heat into the ice shelf cavities, lead-

ing to distinct regimes operating in “warm” vs. “cold” con-

tinental shelf regions (e.g., Dinniman et al., 2016; Thomp-

son et al., 2018). Rising air temperatures and associated sur-

face melting are thought to be responsible for the collapse of

ice shelves around the Antarctic Peninsula (Domack et al.,

2005) and subsequent speedup of grounded ice flow (Rig-

not et al., 2004), while surface melting is currently limited in

most other parts of the continent (e.g., Trusel et al., 2013).

In the future, increased water vapor transport in a warmer

atmosphere may lead to increased surface accumulation in

Antarctica (Frieler et al., 2015; Palerme et al., 2017) together

with increased melting over Greenland (Franco et al., 2013)

and the Antarctic ice shelves (Trusel et al., 2015). Besides

this general pattern, the spatial distribution and magnitudes

of atmospheric and oceanic contributions to the mass bal-

ance of both ice sheets vary greatly and depend on synoptic-

scale climate variability and physical processes at regional

and smaller scales.

The ice sheet model intercomparison project for CMIP6

(ISMIP6) brings together the ice sheet and climate modeling

communities to gain understanding of the ice sheet contribu-

tion to sea level rise (Nowicki et al., 2016). Due to the delay

in the CMIP6 dataset release, ISMIP6 revised the protocol

described in Nowicki et al. (2016) to utilize climate forc-

ing from the CMIP5 dataset (Nowicki, 2019). ISMIP6 con-

ducts stand-alone ice sheet experiments that use space- and

time-varying forcing derived from atmosphere–ocean cou-

pled global climate models (AOGCMs) to reflect plausible

trajectories for climate projections, building on earlier coor-

dinated experiments which applied ad hoc boundary condi-

tions either constant in time or imposed as an abrupt pertur-

bation (Pattyn et al., 2013; Bindschadler et al., 2013; Lev-

ermann et al., 2014). However, this effort requires convert-

ing AOGCM output to forcing for ice sheet models, pos-

ing several challenges. First, climate models from the Cou-

pled Model Intercomparison Project (CMIP) have a horizon-

tal resolution that is too coarse to accurately represent sharp

ice sheet topographic gradients impacting the surface cli-

mate of the ice sheet (e.g., melt, wind, precipitation). Ocean

components cannot represent narrow fjords connecting the

deep ocean and tidewater glaciers around Greenland (Stra-

neo et al., 2012), the ocean eddies involved in poleward heat

transport across continental shelves (Stewart et al., 2018),

or ocean circulation beneath ice shelves (Asay-Davis et al.,

2017). Second, AOGCMs poorly represent polar-specific

processes that have a major impact on the ice sheet surface

climate (e.g., snowpack evolution, cloud and boundary-layer

processes) (Favier et al., 2017).

These limitations can be addressed by using regional cli-

mate models adapted for the polar regions. On the atmo-

sphere side, polar-oriented regional climate models (RCMs)

have proved to provide more realistic surface climate than di-

rect AOGCM outputs for both the Greenland ice sheet (e.g.,

Noël et al., 2018; Fettweis et al., 2013) and the Antarctic ice

sheet (e.g., van Wessem et al., 2018; Agosta et al., 2019). On

the ocean side, a number of models have recently added the

capability to represent ice shelf cavities and ice–ocean inter-

actions (e.g., Dinniman et al., 2016). However, ocean simula-

tions are still unable to provide non-biased solutions from a

pan-ice-sheet perspective, and they remain computationally

expensive, which probably explains the small number of ex-

isting projections of ice shelf basal melting (Timmermann

and Goeller, 2017; Naughten et al., 2018). Thus, the ISMIP6

steering committee has proposed the following strategy to

convert AOGCM outputs into ice sheet forcing: surface forc-

ing is provided by AOGCMs dynamically downscaled with

a polar-oriented atmospheric RCM (Fettweis et al., 2017),

while ocean forcing is computed by interpolating AOGCMs’

ocean temperature onto the continental shelf and by param-

eterizing ice shelf melt or retreat rates, as detailed in Slater

et al. (2019) and Nowicki (2019).

The goal of this study is to recommend a subset of CMIP

AOGCMs to produce forcing for ISMIP6 stand-alone ice

sheet simulations. This ensemble of AOGCMs aims to cap-

ture (i) plausible climate near Antarctica and Greenland over

the historical period and (ii) a diversity of atmosphere and

ocean warming rates over the 21st century. For evaluating

AOGCMs we focus on variables that are inputs of the down-

scaling methods defined to generate ice sheet forcing. Al-

though it is technically possible to select different AOGCMs

for atmosphere and ocean forcing, we choose to use the

same climate models across both realms due to their inter-

dependence in projections (e.g., Krinner et al., 2014; Brace-

girdle et al., 2018). We thus perform a combined assessment

of both the atmosphere and ocean components of AOGCMs.

This paper describes the process utilized to select six

AOGCMs to provide forcing for each ice sheet. This eval-

uation combines observational/reanalysis data, metrics from

existing studies, and data produced specifically for this study.
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The methodology to combine distinct metrics for the ocean

and atmosphere into a single ranking is detailed in Sect. 2.

The models are selected independently for the Antarctic

(Sect. 3) and the Greenland (Sect. 4) ice sheets. Finally, we

present some of the limitations of the selection procedure and

discuss perspectives for future research in Sect. 5.

2 Data and methods

2.1 General methodology

We analyze monthly output from 33 climate models of the

CMIP5 ensemble, listed in Table 1. The ISMIP6 stand-alone

experiment requires three coupled climate models to derive

forcing fields for their core experiments (core), plus three

additional models to extend the ensemble to a total of six

models (targeted). To select the models, we first rank them

according to their performance in reproducing observations

over the 1979–2005 historical period (historical metrics, de-

fined in Sect. 2.2). In a second step, we define climate change

metrics over the 21st century (21C) under the RCP8.5 sce-

nario (Sect. 2.3.1) in order to select a set of models that rep-

resents a diversity of 21C changes (Sect. 2.3.2). This two-

step process is performed independently for the Antarctic and

Greenland ice sheets.

The top three (core) models are those maximizing the di-

versity of climate change (Sect. 2.3.2, n = 3) among those

fitting the following criteria:

1. the model must provide 6-hourly wind, temperature,

and humidity to be able to run an atmospheric regional

climate model (18 models);

2. the model output must include required data fields un-

der both the RCP2.6 and RCP8.5 scenario projections,

following the revised ISMIP6 protocol (Nowicki, 2019)

(25 models);

3. the model must rank in the top half of the 33-model en-

semble with regard to the historical metrics defined in

Sect. 2.2 (17 models, Figs. 2a and 5a);

4. the model must not have any single climate change met-

ric defined in Sect. 2.3.1 above two interquartile ranges

(IQR, equal to the 75 % quantile minus the 25 % quan-

tile) from the multi-model median projection (Figs. 4a

and 7a).

For the additional three models (targeted), criteria used for

the top three are relaxed, now including models without sub-

daily frequencies for Antarctica, and including models with

projected 21C changes above 2 IQR of the multi-model me-

dian. The models are selected to maximize the diversity of

climate change across the ensemble of the top six models

(Sect. 2.3.2, n = 6). As the selection method maximizing di-

versity tends to favor models with extreme values, we impose

one model (within the top six) which features 21C climate

changes in the median range of the ensemble.

2.2 Historical metrics

2.2.1 Atmosphere and surface ocean metrics

For the atmosphere and surface ocean, we consider variables

that have an impact on RCM-modeled surface mass balance

and for which reanalyses are reliable, following Agosta et al.

(2015). All model outputs are bilinearly interpolated onto

a common regular longitude–latitude grid (1.5◦ × 1.5◦). For

each variable that retains spatial information (described in

the following paragraph), we calculate the spatial root-mean-

square error (RMSE) for annual- or seasonal-mean values

over 1980–2004 (25 years). We take the European Centre

for Medium-Range Weather Forecasts “Interim” re-analysis

(ERA-Interim, 1979–present; Dee et al., 2011) as a reference,

since differences between reanalyses are much smaller than

climate model biases (Agosta et al., 2015), and ERA-Interim

was assessed to be the most reliable contemporary global re-

analysis over Antarctica (Bromwich et al., 2011; Bracegirdle

and Marshall, 2012; Huai et al., 2019).

For Antarctica, we evaluate air temperature at 850 hPa

(ta850; average of summer and winter RMSE), annual pre-

cipitable water (prw), and annual sea level pressure (psl),

together with summer sea surface temperature (sst[s]) and

winter sea ice extent (sie[w]), for the domain extending

south of 40◦ S over the ocean (Fig. 1a). In addition to spa-

tially resolved variables, we include a metric of the histor-

ical CMIP5 vs. ERA-Interim bias in westerly jet strength

(Jstr), calculated as the maximum in annual mean zonal mean

850 hPa zonal wind between 10 and 75◦ S (m s−1), compared

to time-slice means of the overlapping 1979–2005 period, as

in Bracegirdle et al. (2018).

For Greenland, we evaluate air temperature at 700 hPa

(ta700; average of summer and winter RMSE), annual pre-

cipitable water (prw), and annual geopotential height at

500 hPa (zg500), inside the domain of the “Modèle Atmo-

sphèrique Regional” (MAR; Fettweis et al., 2017) and where

the Greenland ice sheet is below 2000 m a.s.l. (bright shaded

color in Fig. 1c). In this small domain, sea surface conditions

do not significantly impact MAR results (Noël et al., 2014).

Subsurface ocean metrics

The ISMIP6 stand-alone ice sheet oceanic forcing is derived

from “far-field” salinity and potential temperature (Slater

et al., 2019; Jourdain et al., 2019). Consistent with this ap-

proach, our evaluation of subsurface ocean properties is per-

formed on regionally averaged CMIP5 temperatures. Since

the oceans around Greenland and Antarctica are character-

ized by different geographic and dynamic regimes in obser-

vations (e.g., Straneo et al., 2012; Schmidtko et al., 2014;

Thompson et al., 2018) and models (Yin et al., 2011; Little

www.the-cryosphere.net/14/855/2020/ The Cryosphere, 14, 855–879, 2020
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Table 1. ERA-Interim reanalysis and CMIP5 models used in this study.

Name Modeling Atm. grid 6-hourly RCP2.6 RCP8.5

group spacing available available available

ERA-Interim ECMWF 0.7◦ x

ACCESS1-0 CSIRO-BOM 1.25◦ x x

ACCESS1-3 CSIRO-BOM 1.25◦ x x

BCC-CSM1-1 BCC 2.8◦ x x

BNU-ESM GCESS 2.8◦ x x

CanESM2 CCCma 2.8◦ x x x

CCSM4 NSF-DOE-NCAR 1.25◦ x x x

CESM1-BGC NSF-DOE-NCAR 1.25◦ x

CESM1-CAM5 NSF-DOE-NCAR 1.25◦ x x

CMCC-CESM CMCC 3.75◦ x x

CMCC-CM CMCC 0.75◦ x

CMCC-CMS CMCC 1.8◦ x

CNRM-CM5 CNRM-CERFACS 1.4◦ x x x

CSIRO-Mk3-6-0 CSIRO-QCCCE 1.9◦ x x x

EC-EARTH EC-EARTH 1.125◦ x x

FGOALS-g2 LASG-IAP 2.8◦ x x

FIO-ESM FIO 2.875◦ x x

GFDL-CM3 NOAA GFDL 1.8◦ x x x

GFDL-ESM2G NOAA GFDL 2.0◦ x x x

GFDL-ESM2M NOAA GFDL 2.0◦ x x x

HadGEM2-CC MOHC 1.25◦

HadGEM2-ES MOHC 1.25◦ x x x

INM-CM4 INM 1.5◦ x

IPSL-CM5A-LR IPSL 1.9◦ x x x

IPSL-CM5A-MR IPSL 1.3◦ x x x

IPSL-CM5B-LR IPSL 1.3◦ x x

MIROC-ESM MIROC 2.8◦ x x x

MIROC-ESM-CHEM MIROC 2.8◦ x x x

MIROC5 MIROC 1.4◦ x x x

MPI-ESM-LR MPI-M 1.9◦ x x

MPI-ESM-MR MPI-M 1.8◦ x x

MRI-CGCM3 MRI 1.1◦ x x x

NorESM1-M NCC 1.9◦ x x x

NorESM1-ME NCC 1.9◦ x x

and Urban, 2016; Levermann et al., 2014), individual met-

rics are obtained for several subregions surrounding both ice

sheets (Fig. 1b, d).

For this purpose, 1989–2009 time-mean ocean tempera-

tures from each CMIP5 model are interpolated onto a com-

mon tripolar ORCA025 grid (Ferry et al., 2012), which has a

quasi-isotropic resolution corresponding to 0.25◦ in latitude,

and 75 vertical layers with a thickness ranging from 1 m at

the surface to 200 m at the bottom. We use a conservative

3-D interpolation; if some parts of the ORCA025 grid are

not covered by the CMIP grid, we extrapolate from the clos-

est neighbor (horizontally above sills, then vertically to fill

troughs behind sills). The regridding tools are made avail-

able on https://github.com/nicojourdain/SCRIPTS_CMIP5_

ANOM_NOW (last access: 29 July 2019, Dutheil et al.,

2019). Regionally averaged coastal ocean temperatures are

then computed in six sectors around the Antarctic continent

(Fig. 1b), which capture different continental shelf and melt-

ing regimes. A maximum bottom depth criterion of 1500 m is

used, together with an explicit limit for the northern bound-

aries in the large embayments in the Ross and Weddell seas,

to select ORCA025 ocean cells that are located on the con-

tinental shelf near the coast. For Greenland, the ocean has

been separated into four connected regions based on the ma-

jor hydrographic regimes surrounding the ice sheet (Fig. 1d),

with a similar cutoff beyond 1500 m bottom depth and geo-

graphical distance from the ice sheet to select coastal ocean

cells near the ice sheet. For each subregion, volume-averaged

temperatures below 200 m depth are computed, providing a

scalar nearshore subsurface temperature metric. For Antarc-

tica, the full depth range down to 1500 m is included, while

for Greenland, the profiles are truncated below 500 m depth

to account for shallow continental shelf depths and bottom

sills that typically prevent inflows from greater depths to-

The Cryosphere, 14, 855–879, 2020 www.the-cryosphere.net/14/855/2020/
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Figure 1. Atmosphere and ocean regions defined for metric computation. (a) For Antarctic atmosphere and surface ocean metrics, we

considered the domain south of 40◦ S over ocean (color shading). The blue box shows standard lateral boundaries for regional climate

models. Color shading is ERA-Interim summer air temperature at 850 hPa over 1980–2004. (b) For Antarctic ocean metrics, we considered

six ocean sectors shallower than 1500 m. Color shading shows the depth-integrated temperature of our reference historical climatology.

(c) For Greenland atmosphere metrics, we considered the domain inside the usual boundaries of MAR simulations in that region, i.e., inside

the blue box, except where ice sheet topography is above 2000 m a.s.l. (bright color shading). Color shading is ERA-Interim summer air

temperature at 700 hPa over 1980–2004. (d) For Greenland ocean metrics, we considered the four sectors shown with different colored

outlines. Color shading shows the depth-integrated (200 to 500 m) temperature of our reference historical climatology.

ward the marine-terminating glaciers in Greenland fjords

(Morlighem et al., 2017).

Regional volume-averaged temperatures are also com-

puted from available observed ocean climatologies, using the

same algorithm as for the model output. For Greenland, ob-

servational data are taken directly from the annually aver-

aged statistical fields of the 2013 World Ocean Atlas (WOA;

Locarnini and Seidov, 2013). For Antarctica, a refined cli-

matology of coastal water masses was constructed by com-

bining the 2018 WOA data (Locarnini et al., 2019) with sta-

tistical fields from the EN4 ocean climatology (Good et al.,

2013) and publicly available temperature profiles from seals

equipped with satellite relay data loggers (Roquet et al.,

2018), with further details provided in Nowicki (2019). In

both cases, ocean measurements close to the ice sheets are so

sparse that all observations are included in the computation

of the regional averages, regardless of their acquisition date.

2.2.2 Aggregating historical metrics

In order to aggregate different metrics of varying nature and

magnitude, each of the historical metrics described above

(denoted as χ below) is normalized with regards to the 33-

model multi-model median and interquartile range (IQR).

For each model i,

χi,norm =
χi − median (χ)

IQR(χ)
. (1)

We average the normalized metrics into three realms: atmo-

sphere, surface ocean (for Antarctica), and subsurface ocean.

This decision was made to weaken the dependence of the fi-

www.the-cryosphere.net/14/855/2020/ The Cryosphere, 14, 855–879, 2020
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nal ranking on the number of variables used for each realm.

Normalization of metrics prevents highly variable or large-

amplitude metrics from being overly influential in the aver-

age (see Fig. A1) while still penalizing extremes. The final

aggregated score for each model is obtained by averaging

atmosphere and ocean for Greenland and atmosphere, sur-

face ocean, and subsurface ocean for Antarctica. An alter-

native aggregating method, where all normalized metrics are

weighted equally (12 for Antarctica, 7 for Greenland), is pre-

sented in Fig. A2 and does not change our conclusions.

2.3 Projected 21C changes

2.3.1 Climate change metrics

For atmospheric and surface ocean variables, climate change

metrics are calculated as the difference between the 2070–

2100 mean (RCP8.5) and the 1980–2010 mean (historical)

value of each variable, spatially averaged over the entire

Greenland and Antarctic atmospheric domains (Fig. 1), de-

noted with the 1 symbol. The only exception is for change

in precipitable water, computed as the difference between

the 2070–2100 mean (RCP8.5) and the 1980–2010 mean

(historical) divided by the 1980–2010 mean value of each

variable, then spatially averaged over the atmospheric do-

main, denoted with the δ symbol, because it follows a log-

normal distribution. For the subsurface ocean, we define met-

rics as the change in volume-averaged regional temperature

between the 1989–2009 and 2080–2100 periods. For Antarc-

tica, we consider four metrics for the atmosphere (change in

annual air temperature at 850 hPa, 1ta850[a]; in annual pre-

cipitable water, δprw[a]; and in position and strength of the

tropospheric westerly jet, 1Jpos and 1Jstr), two metrics for

the surface ocean (change in winter sea ice extent, 1sie[w];

and in summer sea surface temperature, 1tos[s]), and six

metrics for change in subsurface ocean temperature (1T ),

one for each of the sectors defined in Sect. 2.2. For Green-

land, we define two metrics for the atmosphere (change in

annual air temperature at 700 hPa, 1ta700[a]; and in annual

precipitable water, δprw[a]) and four metrics for change in

subsurface ocean temperature (1T ), one for each ocean sec-

tor defined in Sect. 2.2.

2.3.2 Maximizing diversity of projected 21C changes

To maximize the diversity of future projections covered in

a sub-selection of models of size n, we define the ensem-

ble inter-model spread E by combining the pairwise model

differences across the climate change metrics defined in

Sect. 2.3.1 (12 for Antarctica, six for Greenland). The spread

of a three-model ensemble is computed as the following:

En=3 =
∑

χ

|χmodel 1 − χmodel 2| + |χmodel 2 − χmodel 3|

+ |χmodel 1 − χmodel 3|, (2)

with χ the climate change metrics defined in Sect. 2.3.1. The

ensemble that maximizes E for a given ensemble size n (n =

3 for top three, n = 6 for top six) is the one qualified as “most

diverse” in its future projections.

3 Results for Antarctica

In this section, we focus on the model selection for the

Antarctic ice sheet, which is based on historical ranking

(Sect. 3.1) and projection diversity (Sect. 3.2). The selected

models are presented in Sect. 3.3.

3.1 Historical bias ranking

Over the Antarctic domain, the total normalized historical

metric ranges between −0.32 (model of the highest fidelity,

CanESM2) and 1.50 (model of the lowest fidelity, BMU-

ESM), with a median value of 0.13 (Fig. 2a). Figure 2a shows

the 33 climate models ranked by their historical metric, to-

gether with contributions of the subsurface ocean (blue), at-

mosphere (orange), and surface ocean (yellow) to the total

historical metric.

Models do not perform equally across the three realms. For

example, GFDL-CM3 and EC-EARTH perform well in the

atmosphere, with atmospheric metrics of −0.22 and −0.21

respectively, amongst the best models, but are ranked as low

fidelity (with total bias scores of 0.46 and 0.54) due to their

poor performance in ocean subsurface and surface condi-

tions. Conversely, IPSL-CM5B-LR performs well in the sub-

surface ocean (metric of −0.20) but is penalized by its poor

performance in the atmosphere (metric of 2.07) and surface

ocean conditions (metric of 1.77).

Models also do not perform equally within each realm, in-

dicating that biases originate due to regional processes for

subsurface ocean or variable-specific biases for surface ocean

and atmosphere. We provide the per-variable breakdown of

the ocean subsurface metric (Fig. 2b) and ocean surface and

atmospheric metrics (Fig. 2c). Although this paper cannot

address these differences in detail, we highlight a few no-

table sources of discrepancies between metrics. For example,

the subsurface heat in the Weddell Sea region is the largest

single contributor to the ocean bias metric in several mod-

els (Fig. 2b), including EC-EARTH, MRI-CGM3, and BNU-

ESM. The large ocean heat bias would warrant specific stud-

ies investigating the model representation of the ocean cli-

matology in that region. Similarly, in the atmosphere, pre-

cipitable water is the largest single bias for models such as

IPSL-CM5B-LR, INM-CM4, and MRI-CGCM3 and would

warrant further investigation to improve model representa-

tion of the historical period.

Models that perform better than the median (historical

metric < 0.13) have reasonable values for all three realms:

the worst metric for each realm is lower than 50 % of the IQR

away from the ensemble median for that realm (Fig. 2a). This

The Cryosphere, 14, 855–879, 2020 www.the-cryosphere.net/14/855/2020/
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result gives confidence that these models have a good overall

performance, rather than compensating biases across realms.

Our averaging method was effective in penalizing models

that have a low fidelity over an entire realm. For this rea-

son, selecting the top three models in the top half of the 33

models ensures overall good performance of these models in

both the ocean and atmosphere.

3.2 Projected changes

All 33 models considered in this study show an increase in

air temperature over the Southern Ocean and Antarctic conti-

nent between the end of the 21st century and the end of 20th

century climatologies (Fig. 3a), with a multi-model mean in-

crease of 2.54 ◦C. Nevertheless, the ensemble shows a spread

of transient climate sensitivity, with an atmospheric warm-

ing ranging from 1.3 ◦C (GFDL-ESM2G) to 3.6 ◦C (BNU-

ESM), with a median of +2.5 ◦C. We highlight the three

core (red) and three targeted (yellow) AOGCMs selected in

Sect. 3.3, to illustrate the spread that they cover compared

to the 33-model ensemble. Although the projected change

in air temperature is only one of the variables we use to di-

agnose projected atmospheric changes, it provides a good

representation of projected changes in the atmosphere. In-

deed, the changes in annual air temperature are strongly cor-

related (R2 > 0.82) to the projected changes in seasonal air

temperature and in annual and seasonal precipitable water

and strongly anti-correlated to changes in winter sea ice ex-

tent (R2 = 0.70). Projected changes in wind jet strength, as

quantified in Bracegirdle et al. (2018), show a weaker nega-

tive correlation with air temperature changes, although a de-

crease in jet strength is generally associated with a decrease

in annual sea ice extent (R2 = 0.46), as noted in Bracegirdle

et al. (2018).

Climate models also overwhelmingly project a 21st cen-

tury increase in ocean temperatures around Antarctica. For

example, the 33 models project a warming of the Amundsen

shelf (Fig. 3b), ranging from no significant warming (low-

est warming, MRI-CGCM3) to +1.10 ◦C (highest warm-

ing, IPSL-CM5B-LR), with a median value of +0.45 ◦C.

Other regions show a qualitatively similar range of projected

changes, with the highest warming (as quantified by the

median value of the ensemble) occurring in the Dronning

Maud Land (DML), Amery, and Totten regions (DML me-

dian: +0.76 ◦C; Amery median: +0.70 ◦C; Totten median:

+0.59 ◦C). The lowest projected warming occurs in the Wed-

dell and Ross regions (Weddell median: +0.21 ◦C; Ross me-

dian: +0.30 ◦C). The Amundsen region, presented in Fig. 3b,

is currently under scrutiny due to ice shelf thinning and accel-

erating ice discharge in the last decade (Kimura et al., 2017;

Mouginot et al., 2014; Barletta et al., 2018), but this region is

projected to warm moderately in the future according to the

33-model ensemble (Amundsen median: +0.45 ◦C).

Unlike the atmospheric warming, which is a good proxy

for other atmospheric changes, the projected ocean warm-

ing in the Amundsen region is only weakly correlated (R2 ≤

0.016) to other ocean regions. Some significant correlation

can be found for neighboring regions in East Antarctica,

such as between the Dronning Maud Land and Amery re-

gions (R2 = 0.71) and between the Amery and Totten re-

gions (R2 = 0.48), but it is low across other regions (R2 ≤

0.25). Projected changes in the ocean are relatively indepen-

dent across regions (detailed in Fig. B1), which confirms the

added value of quantifying regional ocean metrics rather than

metrics integrated over all Antarctic shelves.

3.3 Recommended ensemble

3.3.1 Top three (core experiments)

In the case of the Antarctic domain, the selection crite-

ria described in Sect. 2 led to six suitable coupled mod-

els (CanESM2, NorESM1-M, CSIRO-Mk3-6-0, CCSM4,

MIROC-ESM-CHEM, MIROC-ESM), where availability of

required data from RCP2.6 projections is the strongest con-

straint. We then select the three models that maximize the

ensemble diversity En=3, as defined in Sect. 2.3.2. The se-

lection is robust to removing one of the metrics at a time and

to changing the weight of the metrics in the calculation (Ap-

pendix C1).

The top three models selected are, in alphabetical order,

CCSM4 (pink), MIROC-ESM-CHEM (red), and NorESM1-

M (light blue). These three models sample different projected

changes in Antarctica under the RCP8.5 scenario (Fig. 4a).

Overall, NorESM1-M shows a stronger end-of-21st-century

ocean warming than the ensemble median (dashed) but a

low atmospheric warming compared to the model ensemble.

Conversely, MIROC-ESM-CHEM features an ocean warm-

ing similar to that of the ensemble median, associated with

strong atmospheric changes, about one IQR higher than the

median. Finally, CCSM4 shows very distinct regional pat-

terns of ocean warming, with strong warming in the Wed-

dell and Totten regions and lower warming in the Ross and

Dronning Maud Laud regions, relative to the ensemble me-

dian. The projected atmospheric changes in CCSM4 are on

the high end of the ensemble, qualitatively similar to that of

MIROC-ESM-CHEM. The qualitative warming projected by

the three models selected for the Antarctic core experiments

is summarized in Table 2.

3.3.2 Top six (targeted experiments)

For the additional three models (targeted), CSIRO-Mk3-6-

0 (yellow) is chosen because of its good ranking (Fig. 2)

and median projected changes (Figs. 3, 4b), and it is pre-

ferred to ACCESS1.0 (which also shows median projections

under RCP8.5) because of the availability of the RCP2.6

scenario. Each of the metrics of future change lies close

to the multi-model ensemble median (see Fig. 4b), mean-

ing that approximately half of the 33 climate models predict
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Figure 2. (a) Ranking of models according to total bias (black) over the Antarctic domain, with a breakdown of the ocean (blue), atmosphere

(orange), and surface (yellow) contributions. (b) Breakdown of model performance in the ocean over the Antarctic domain. (c) Breakdown of

model performance in the atmosphere (orange) and ocean surface (yellow) over the Antarctic domain. Models are ranked according to total

bias. Models selected in the top three (core) ensemble are underlined in red with an asterisk, and models in the top six (targeted) ensemble

are underlined in yellow with a † symbol.

higher changes than those of CSIRO-Mk3-6-0, and half pre-

dict lower changes.

The other two models selected are, in alphabetical order,

HadGEM2-ES (brown) and IPSL-CM5A-MR (dark blue).

HadGEM2-ES brings diversity to the six-model ensemble

because of its extreme end-of-21st-century warming in the

ocean, particularly in the Ross Sea. This extreme regional

warming, more than 2 times larger than the IQR from the

median value, is ruled out of the top three because it is con-

sidered to be a less likely response than those produced by a
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Figure 3. Projected RCP8.5 warming for each CMIP5 model in the Antarctic region. (a) Change in 850 hPa air temperature over the Southern

Ocean between 1980–2000 and 2080–2100. (b) Change in ocean temperature in the Amundsen region between 1980–2000 and 2080–2100.

Models selected in the top three (top six) ensemble are highlighted in red (yellow).

large number of distinct climate models. Nevertheless, in an

intercomparison effort such as ISMIP6, sampling high-end

scenarios is essential to (1) examine the response of ice sheet

models which may have runaway effects and (2) include

high-risk (low probability, high cost) scenarios in terms of

future sea level rise. The atmospheric changes produced by

HadGEM2-ES are higher than the median, but not outliers.

Finally, IPSL-CM5A-MR features an ocean warming lower

than the ensemble median in most ocean regions and atmo-

spheric changes higher than the median. It is the only model

selected with systematically low warming in the ocean and

can be thought of as the converse to NorESM1-M. Robust-

ness of the model selection is demonstrated in Appendix C2.

The qualitative warming projected by the additional three

models selected for the Antarctic “targeted” experiments is

summarized in Table 2.

4 Results for Greenland

In this section, we describe the model selection for the forc-

ing of the Greenland ice sheet. The methods include the

model evaluation (Sect. 4.1 and 4.2) and ensemble selection

(Sect. 4.3), mirroring the selection performed for the Antarc-

tic ice sheet (Sect. 3).

4.1 Historical bias ranking

Coupled climate models do not perform equally over the sub-

surface ocean and the atmosphere (Fig. 5a) around Green-

land, consistent with findings for Antarctica, shown in

Sect. 3. Some models perform well in the atmosphere but

are penalized by their poor ocean performance. For exam-

ple, CMCC-CMS is the median of the ensemble and features

one of the lowest biases in the atmosphere (−0.69) and one

of the highest biases in the ocean (0.73). Conversely, oth-

ers perform well in the ocean but show high biases in the

atmosphere (e.g., MRI-CGCM3). This unequal performance

across the ocean and atmospheric variables supports the need

to assess several components of coupled climate models to-

gether, rather than separately.

Investigating the source of biases in any given model is

beyond the scope of this paper, which focuses on selecting

six models suitable for the ISMIP6 simulations. Neverthe-

less, the ranking of the models can highlight significant bi-

ases. For example, the ocean bias in several models, most

notably CMCC-CS, CMCC-CESM, and IPSL-CM5B-LR, is

dominated by a bias in ocean heat in the Arctic region. This

large bias in temperature would warrant a specific study to

improve model representation of that region. However, the

observations in this region are scarce and we have a lower

degree of confidence in the resulting ocean climatology in

that region than in more frequently and densely observed re-

gions, as discussed in Sect. 5.

The model ranking around Greenland highlights that the

fidelity of coupled models is regionally dependent. The mod-

els of the highest fidelity around Greenland do not necessar-

ily perform well around Antarctica and vice versa. For ex-

ample, CanESM2 is the best-ranked model for Antarctica

(see Sect. 3) but is ranked in the lower half of the ensem-

ble around Greenland due in part to its ocean biases. Like-

wise, MIROC5 performs well on all metrics around Green-

land, and has been extensively used in the relevant literature
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Figure 4. Normalized projected 21C changes for Antarctica (with model ensemble in gray and the median in black). (a) Top three: CCSM4

(pink), MIROC-ESM-CHEM (purple), and NorESM1-M (light blue). (b) Top four to six: CSIRO-Mk3-6-0 (yellow), HadGEM2-ES (brown),

and IPSL-CM5A-M (dark blue).

(e.g., Fettweis et al., 2013; Tedesco and Fettweis, 2012), but

has strong atmospheric biases over Antarctica. Climate mod-

els are not expected to perform equally in all regions; never-

theless, it is important for the scientific community to keep

those regional variations in mind, especially if using exist-

ing studies performed over a different region. This unequal

performance across the Greenland and Antarctic regions also

supports our decision to perform model ranking and selection

independently for the two ice sheets.

Finally, the models that perform better than the median

have ocean and atmosphere biases that lie lower than 0.5

IQR away from the median. Although biases in individual

(regional) variables may be higher than that, this result con-

firms that the best-ranked models have a good performance

in both the subsurface ocean and the atmosphere and gives

us confidence that the top half of the ensemble models are

suitable candidates for the Greenland model selection.

4.2 Future projection diversity

All 33 AOGCMs project atmospheric warming over Green-

land by the end of the 21st century. Projections range from

+1.95 ◦C (lowest warming, FIO-ESM) to +5.95 ◦C (high-

est warming, MIROC-ESM-CHEM) with a median warming

of +4.09 ◦C (Fig. 6a). Models that made our final selection,

highlighted in red (top three) and yellow (top six), sample

a range of future warming. Similar to results presented for

Antarctica (Sect. 3), the changes in annual air temperature

over Greenland are a good proxy for most other atmospheric

changes. Increase in 700 hPa air temperature is associated

with an increase in precipitable water (R2 = 0.96), an in-

crease in ocean surface temperature (R2 = 0.60), and a de-

crease in summer sea ice cover (R2 = 0.29).

Most models also project an increase in ocean temperature

on the shelf surrounding Greenland. Baffin Bay, for exam-

ple, is projected to warm by +0.48 ◦C by the end of the 21st

century, with models projecting between +0.07 ◦C (lowest

warming, BCC-CSM1-1) and +1.70 ◦C (highest warming,

CanESM2). The models selected in Sect. 4.3, highlighted

in Fig. 6b, cover a range of projected warming in Baf-

fin Bay. Two other regions show similar projected changes

(Arctic median: +0.48 ◦C; Subpolar Gyre (SPG) median:

+0.49 ◦C). The highest projected warming occurs in the

Greenland–Iceland–Norwegian region (GIN), with a median

warming of +0.76 ◦C.

Projected changes across the ocean regions are correlated

between the Arctic Ocean and GIN regions (R2 = 0.58) and

mildly correlated between the SPG and GIN regions (R2 =

0.31). Other regions are only weakly correlated with each

other (detailed in Fig. B2), and ocean changes show no sig-

nificant correlation with the projected atmospheric changes

(R2 < 0.06).

4.3 Recommended ensemble

In the case of Greenland, the availability of sub-daily out-

puts is a strong constraint for the model selection. This was

a determining factor because existing studies over Greenland

show that RCMs outperform global climate models in repre-

senting realistic surface mass balance (e.g., Noël et al., 2018;

Fettweis et al., 2013).

4.3.1 Top three (core experiments)

When applying the selection criteria described in Sect. 2 and

removing CNRM-CM5 and EC-EARTH due to unavailable

data, six models remain for the top three selection (MIROC5,

IPSL-CM5A-MR, NorESM1-M, ACCESS1-0, ACCESS1-3,

HadGEM2-ES). In this case, MIROC5 was preselected, as

it features changes similar to those of the ensemble me-

dian (dotted; Fig. 7a), meaning half of the models project

stronger changes than those of MIROC5, and half project

weaker changes. Two additional models are selected, maxi-

mizing ensemble diversity of three models (MIROC5, model

1, model 2).
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Figure 5. (a) Ranking of models according to total bias (black) over the Greenland domain, including the ocean (blue) and atmosphere

(orange) contributions. (b) Breakdown of model performance in the ocean over the Greenland domain. (c) Breakdown of model performance

in the atmosphere over the Greenland domain. Models are ranked according to total bias. Models selected in the top three (core) ensemble

are underlined in red with an asterisk, and models in the top six (targeted) ensemble are underlined in color yellow with a † symbol.
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Figure 6. Projected RCP8.5 warming for each CMIP5 model over Greenland. (a) Change in 700 hPa air temperature over the Southern Ocean

between 1980–2000 and 2080–2100. (b) Change in ocean temperature in the Baffin Bay region between 1980–2000 and 2080–2100. Models

selected in the top three (top six) ensemble are highlighted in red (yellow).

The top three models selected are, in alphabetical or-

der, HadGEM2-ES, MIROC5, and NorESM1-M. These three

models show different patterns of projected changes by

the end of the 21st century (Fig. 7a). As described above,

MIROC5 is chosen as a good representation of the overall

ensemble. HadGEM2-ES features high atmospheric changes,

including increases in air temperature and precipitable water,

of a magnitude stronger than the ensemble median. The pro-

jected changes in ocean heat are more regionally dependent,

with warming higher in the Arctic and GIN (northeast) and

lower in Baffin Bay and SPG (southwest) relative to the en-

semble median. Conversely, NorESM1-M features a warm-

ing in the atmosphere on the low end of the 33-model en-

semble projections. The ocean warming is also regionally de-

pendent, with NorESM1-M featuring low warming in GIN,

the Arctic, and the SPG regions and a strong warming in the

Baffin Bay region. The qualitative warming projected by the

three models selected for the Greenland core experiments is

summarized in Table 3.

4.3.2 Top six (models for the targeted experiments)

For the top six selection, five models (IPSL-CM5A-MR,

CSIRO-Mk3-6-0, CCSM4, ACCESS1-0, ACCESS1-3) are

available to complement the already selected top three.

The selected models are, in alphabetical order, ACCESS1-

3, CSIRO-Mk3-6-0, and IPSL-CM5A-MR. CSIRO-Mk3-6-

0 projects a low atmospheric warming, far below the me-

dian value, alongside an extreme warming in the southwest

ocean regions (1T BB > 2; 1T SPG = 0.94). ACCESS1-3

adds diversity to the ensemble as it shows strong warming in

Baffin Bay and the Arctic Ocean but low warming in the Sub-

polar Gyre (SPG) region. Its atmospheric warming is close to

the median. Finally, IPSL-CM5A-MR project strong warm-

ing in the Greenland–Iceland–Norwegian seas (GIN), while

other ocean regions and atmospheric variables are closer to

the median. The qualitative warming projected by the addi-

tional three models selected as forcing for the Greenland tar-

geted experiments is summarized in Table 3.

5 Discussion

In this study, we evaluated the performance of 33 CMIP5

AOGCMs relative to reanalyses and gridded observational

datasets covering the atmosphere, sea surface, and subsurface

ocean around the Greenland and Antarctic ice sheets. We

also assessed 21st century changes in key oceanic and atmo-

spheric variables. Time constraints for ISMIP6 simulations

drove several decisions relating to the scope of this analysis,

including the use of the CMIP5 (rather than the now par-

tially available CMIP6) ensemble, the use of AOGCMs that

had already been processed and regridded for both the ocean

and atmosphere, and the use of available observational prod-

ucts with limitations and biases, particularly in the ocean sub-

surface. However, this assessment of near-ice-sheet present-

day and future climate remains the most comprehensive per-

formed to date.

Many subjective choices were made in the model selec-

tion process. We have attempted to document these choices,

and note that the relative insensitivity of results to alter-

nate choices (e.g., Fig. A.2, Appendix C) provides some

confidence that our rankings are robust for the CMIP5 en-

semble. However, because the evaluation and selection ex-
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Figure 7. Normalized projected 21C changes for Greenland (with model ensemble in gray and the median in black). (a) Top three:

HadGEM2-ES (pink), MIROC5 (purple), and NorESM1-M (light blue). (b) Top four to six: ACCESS1-3 (brown), CSIRO-Mk3-6-0 (dark

blue), and IPSL-CM5A-MR (yellow). Ocean warming is calculated over four sectors (BB: Baffin Bay; AO: Arctic Ocean; GIN: Greenland–

Iceland–Norwegian seas; SPG: Subpolar Gyre).

ercise will have to be repeated for future model ensembles

(e.g., CMIP6), our discussion focuses on key elements of our

methodology that could be further developed. Implications

are discussed with respect to results from the full 33-member

ensemble to extend the relevance to other exercises where the

small ensemble required for ISMIP6 may not apply.

Model selection was made largely based on their repre-

sentation of the present-day local climate, with the implicit

assumption that biases relative to observations reflect a poor

representation of processes of relevance to future warming.

It is difficult to determine whether performance relative to

this set of present-day regional metrics is (1) a sufficient

means to evaluate AOGCMs and (2) relevant to the rate of

21st century near-ice-sheet warming. Krinner and Flanner

(2018) show that model biases are stationary under future

climate change within the CMIP5 dataset, providing justifi-

cation for using less biased models for climate change stud-

ies. However, over the long timescales that ISMIP6 seeks to

assess, different processes and/or biases (global and/or non-

local ocean warming rates, e.g., stratospheric ozone recov-

ery) may be equally important; i.e., even if a model closely

matches historical conditions, key processes for projections

may still be missing.

Support for the relevance of these metrics might be derived

from a clear relationship between the modern state and pro-

jections of change across models (so-called “emergent con-

straints”). Bracegirdle et al. (2015) and Agosta et al. (2015)

found that 21st century changes in Antarctic air temperature

and precipitation rate (and, perhaps surprisingly, jet strength;

Bracegirdle et al., 2018) were correlated to sea ice area bias

across models. In this analysis, we found no significant cor-

relation between historical biases and climate changes over

Antarctica (or Greenland). A plausible explanation is our use

of an 850 hPa (rather than surface) temperature metric and

our circum-Antarctic study region. However, this result may

also indicate a sensitivity to the specific models included in

the ensemble: we find that the magnitude and significance of

inter-model correlations are sensitive to whether all or a set

of the best-performing models are assessed. Shared code and

parameterizations across models may also underlie some of

the modest correlations evidenced in our analysis.

It is difficult to determine whether the historical metrics

chosen in this analysis are comprehensive (e.g., account for

all relevant processes) and/or independent. Concerning inde-

pendence, we eliminated metrics which represent the same

physical processes and are strongly correlated (e.g., the pre-

cipitation and air temperature variables in Bracegirdle et al.

(2015) are strongly correlated to those in Agosta et al. (2015)

and were not included in this study). Assessing comprehen-

siveness is more difficult. For example, the choice of met-

rics is constrained by the availability of observations. In par-

ticular, oceanographic measurements in the vicinity of ice

sheets are very sparse and feature sharp horizontal gradients

in water masses (e.g., Thompson et al., 2018). As a result,

we chose to calculate volume- and time-mean quantities over

subjectively defined regions in order to maximize the number

of observations included. It is unclear which ocean region is

most “important” in terms of future mass balance. The opti-

mal number of regions, based on their relevance to future ice

sheet change and their independence, remains to be deter-

mined. These choices should be expected to influence eval-

uations of both performance and warming. In contrast, ob-

servations for the atmosphere and surface ocean have better

spatiotemporal coverage. Correspondingly, the metrics cho-

sen were continental scale and seasonally resolved. However,

our continental-scale evaluation may obscure regional vari-

ability. Atmospheric dynamical modes, such as variability

in the Amundsen Sea Low and the Southern Annular Mode

(SAM), strongly impact the regional climate in Antarctica

(Holland et al., 2017; Fyke et al., 2017). Although our grid-
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point error metric reflects biases in atmospheric pressure, it

is not able to attribute the bias to a model’s lack of fidelity to,

say, the asymmetric nature of the SAM. Future work should

more formally assess the number and relative weighting of

regional metrics in the atmosphere and ocean and include

dynamically relevant measures of asymmetry. Similar con-

cerns apply to the metrics of future warming and their rel-

evance to ice sheet mass balance. We note that our analysis

does not address the rate of warming, which differs widely

across models. In the ocean, the rate and timing of warming

may have dramatic effects on 21st century ice sheet evolution

(Hellmer et al., 2012; Timmermann and Goeller, 2017).

We have noted the unequal performance of coupled cli-

mate models over different realms, which we suggest high-

lights the importance of assessing model fidelity over a

range of metrics combining the subsurface ocean, surface

ocean, and atmosphere conditions. It also explains why the

present ranking of models differs from existing intercom-

parison studies specifically focused on the atmosphere (e.g.,

Agosta et al., 2015) or the ocean (e.g., Meijers et al., 2012;

Sallée et al., 2013; Russell et al., 2018). For example, the

metrics used in Agosta et al. (2015) led to EC-EARTH and

CanESM2 being ranked closely (8 and 9 out of 41 mod-

els), implying similar performance. However, by including

the subsurface ocean metrics, our results point to CanESM2

as the model with the best fidelity overall, while EC-EARTH

is in the lower half of the 33-model ensemble due to its poor

performance in the ocean (other examples of differences in

rankings across realms can be found by examining Figs. 2 or

5). As Agosta et al. (2015) focuses purely on the model per-

formance for ice sheet surface mass balance, their results dif-

fer from the current study evaluating both the ocean and at-

mospheric metrics for the sake of providing the atmosphere-

driven surface mass balance and the ocean-driven melt from

the same coupled model as boundary conditions to ice sheet

models. This underscores the importance of considering the

original aim of an intercomparison, including the variables

and the regions considered, before interpreting or applying a

ranking derived from the analysis.

Antarctica and Greenland were treated independently, sup-

ported by the different model performance across the en-

semble. A different set of models was selected for Green-

land and Antarctica, suggesting model performance varies

in polar regions of different hemispheres. However, with re-

spect to future warming, it is reasonable to expect some de-

gree of interhemispheric correlation in warming (e.g., due to

a high AOGCM climate sensitivity). It is unclear how this

inter-ice-sheet independence assumption could influence sea

level projections, as it depends upon the response of surface

mass balance (SMB) and changes in ice flux of the different

ice sheets.

Using aggregated measures of present-day performance

and future climate changes, we selected six AOGCMs as ad-

equate and representative of future near-ice-sheet warming

pathways. This ensemble size was judged to be reasonable

Table 2. Selected AOGCMs for Antarctica and their qualitative pro-

jected warming.

Atmos-

Model Ocean phere Comments

CCSM4 median high strong regional

MIROC-ESM-CHEM median high ocean differences

NorESM1-M middle to high low

CSIRO-Mk3-6-0 median median extreme warming in

HadGEM2-ES high median the Ross Sea

IPSL-CM5A-M low high

for ISMIP6, given computational limitations and the goal to

sample different sources of uncertainty (e.g., model, RCP

scenarios, parameterizations, parameters values). However,

given the many degrees of freedom across the evaluation

metrics, it is difficult to select a fully representative sam-

ple. Some limitations of the sample size are apparent, notably

the nonuniform distribution across parameters (e.g., no low

ocean warming sampled). Furthermore, the models selected

are not structurally independent. For example, HadGEM2-

ES and ACCESS1-3 share a common Hadley Centre at-

mospheric model, while NorESM1 and CCSM4 share the

NCAR Community Atmospheric Model. Such interdepen-

dence may limit the diversity of forcing applied to ISMIP6

models. We do note that even if ISMIP6 had the ability to

evaluate all available CMIP5 AOGCMs, issues with statis-

tical sampling and diversity of CMIP models, code similar-

ities/independence, and quality would persist (Knutti et al.,

2013; Sanderson et al., 2015a, b). Future model evaluation

studies may invert the process used here, i.e., objectively as-

sess the appropriate number of models to achieve sufficient

diversity in forcing.

Finally, we emphasize that evaluation is only a first step to

a better process-based understanding of the differences be-

tween models. It is critical to assess the processes that make

models (or model families) perform better or project climate

warming at different rates. We invite modeling groups or

researchers interested in examining these to trace back the

source of the bias in individual models or across the larger

ensemble.

6 Conclusions

As part of the Ice Sheet Model Intercomparison Project for

CMIP6 (ISMIP6), ice sheet models will be forced with cli-

mate model-derived time series of basal melt (for Antarc-

tica), front retreat (for Greenland), and surface mass balance.

To generate such forcing, a subset of CMIP5 models has been

selected according to (i) their realistic representation of the

historical period (compared to reanalysis data) and (ii) the di-

versity of the projected 21st century changes under RCP8.5

within the selected subset. As a result of the evaluation and

selection process performed in this study, six AOGCMs have
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Table 3. Selected AOGCMs for Greenland and their qualitative projected warming.

Model Ocean Atmosphere Comments

HadGEM2-ES high low strong warming in Baffin Bay

MIROC5 median median

NorESM1-M median high strong warming in the Arctic Ocean

ACCESS1-3 middle to high median strong warming in Baffin Bay

CSIRO-Mk3-6-0 middle to high low extreme warming in Baffin Bay

IPSL-CM5A-M low high strong warming in the GIN seas

been selected for ISMIP6 Antarctic future projection runs,

including three for the core experiments (CCSM4; MIROC-

ESM-CHEM; NorESM1-M) and three for the additional tar-

geted experiments (CSIRO-Mk3-6-0; HadGEM2-ES; IPSL-

CM5A-M) (see Table 2). Independently, six AOGCMs have

been selected for ISMIP6 Greenland future projection runs

(core experiments: HadGEM2-ES, MIROC5, NorESM1-M;

targeted experiments: ACCESS1-3, CSIRO-Mk3-6-0, IPSL-

CM5A-M; see Table 3). Ocean and atmospheric data from

these AOGCMs are used to generate ice sheet surface mass

balance, the Greenland retreat parameterization (e.g., Slater

et al., 2019), and the Antarctic basal melt parameterization

(Nowicki, 2019), which will be presented in detail in up-

coming papers. It is expected that the range of near-ice-sheet

climate changes simulated by these AOGCMs will result in

diverse projections of ice sheet mass balance change when

used to force ISMIP6 simulations. The evaluation and selec-

tion of models was a necessary first step to develop the cur-

rent ISMIP6 experiment protocol and can be improved upon

for the next phase of ISMIP in multiple ways. Firstly, future

studies will evaluate and select models from the CMIP6 en-

semble. Repeating this study with CMIP6 data will provide

insight into whether new developments in climate models re-

duce ocean and atmospheric biases near ice sheets. Secondly,

results from the ice sheet simulations will provide insight

into ice sheet model sensitivity. For example, future model

selection may weight atmospheric changes more heavily than

ocean changes if ice sheet models show a higher sensitivity

to surface mass balance. In addition, future selection should

look to include more dynamical metrics (e.g., Amundsen Sea

Low representation, ocean slope front position) and consider

the rate of projected changes in the ensemble diversity. These

improvements will ensure that, in an intercomparison project

that remains computationally limited, we prioritize the forc-

ing that is most fruitful.
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Appendix A: Robustness of historical ranking

Appendix A provides additional information illustrating the

robustness of the historical ranking methodology.

Firstly, we demonstrate the need to normalize the histor-

ical bias metrics (Fig. A1). As the atmospheric bias metrics

are based on variables as distinct as temperature, pressure,

sea ice extent, and precipitable water, the raw bias metrics

have different mean values and different inter-model variabil-

ity (Fig. A1a). By normalizing each metric by its ensemble

median and interquartile range, the (normalized) metrics are

scaled to cover a similar inter-model variability (Fig. A1b)

and can be combined into a single metric independently of

the original magnitude of the raw variable.

Figure A1. Normalization of variables. (a) Historical atmospheric biases for the Antarctic domain; (b) normalized historical atmospheric bi-

ases for the Antarctic domain. The non-normalized variables have different mean values and different variability. The normalization removes

the offset and rescales the variability, so that variables of different nature, magnitude, and variability can be combined into one atmospheric

bias metric. The * and † symbols identify models selected in the top three and top six ensembles, respectively.

Secondly, we illustrate the robustness of the historical

ranking to the averaging method by providing an alternate

ranking. In Fig. A2, the AOGCMs are ranked by averag-

ing all (normalized) bias metrics with equal weight (dashed),

instead of the bias metric used in this study (where each

realm is given the same weight; black). For both the Antarc-

tic (Fig. A2a) and Greenland (Fig. A2b) domains, the differ-

ence in ranking is minor, as only two models would switch

between the top and bottom 50 % of the 33-model ensemble,

and neither of these models is present in the top three or top

six ensembles.
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Figure A2. Alternate ranking of AOGCMs according to an equal-weight total bias (dashed black) compared to the realm-averaged total bias

(black) over (a) the Antarctic domain and (b) the Greenland domain. The symbols * and † identify models selected in the top three and top

six ensembles, respectively.
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Appendix B: Projected 21C ocean warming

Appendix B presents details of the projected ocean warm-

ing for each CMIP5 model between 1980–2000 and 2080–

2100 under the RCP8.5 scenario. The warming over the six

Antarctic shelf regions is presented in Fig. B1, while the

warming over the four Greenland shelf regions is presented

in Fig. B2. In each region, labels and markers (*,†) iden-

tify models selected in the top three and top six ensembles,

respectively. In each region, the majority of AOGCMs pre-

dict a warming by the end of the 21st century, although the

magnitude and inter-model spread of warming is regionally

dependent.

Figure B1. Projected RCP8.5 warming for each CMIP5 model between 1980–2000 and 2080–2100 in the six Antarctic shelf regions (WS:

Weddell Sea; TT: Totten; RS: Ross; DML: Dronning Maud Land; AS: Amundsen; AM: Amery). The symbols * and † identify models

selected in the top three and top six ensembles, respectively.
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Figure B2. Projected RCP8.5 warming for each CMIP5 model between 1980–2000 and 2080–2100 in the four Greenland shelf regions

(SPG: Subpolar Gyre; GIN: Greenland–Iceland–Norwegian seas; BB: Baffin Bay; AO: Arctic Ocean). The symbols * and † identify models

selected in the top three and top six ensembles, respectively.
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Table C1. Possible model combinations for the Antarctica top three

selection, with absolute and relative frequency of occurrence when

applying the robustness test.

Model combination Count Occurrence

NorESM1-M, MIROC- 9 0.75

ESM-CHEM, CCSM4

CanESM2, NorESM1-M, CCSM4 3 0.25

Appendix C: Robustness of model selection

This appendix describes robustness of the model selection to

modifications of the choice and weight of metrics. We re-

peat the model selection for the top three and top six models

for Antarctica (Sect. 3.3) and Greenland (Sect. 4.3) under re-

moval of one of the metrics at a time and under a change of

the weighting. Overall, the model selection is robust to the

described modifications.

C1 Robustness of Antarctic model selection top three

Table C1 lists the selected model combinations with abso-

lute and relative frequency of occurrence for the Antarc-

tic top three model selection. The final model combination

(NorESM1-M, MIROC-ESM-CHEM, CCSM4) occurs in 9

of 12 cases. One additional model (CanESM2) is selected in

25 % of the cases. Table C2 lists the absolute and relative

occurrence of each individual model in the possible combi-

nations presented in Table C1.

C2 Robustness of Antarctic model selection top six

Table C3 lists the selected model combinations with

absolute and relative frequency of occurrence for the

Antarctic top six selection. The final model combina-

tion (NorESM1-M, MIROC-ESM-CHEM, CCSM4, CSIRO-

Mk3-6-0, HadGEM2-ES, IPSL-CM5A-MR) occurs in 12 of

14 cases. Table C4 lists the absolute and relative occurrence

of each individual model in the combinations given in Ta-

ble C3. When equal weighting of the 14 metrics is applied,

giving more emphasis on the surface ocean, HadGEM2-ES is

still selected in 4 of 14 cases, but replaced by MPI-ESM-MR

in the majority of cases (9 of 14).

C3 Robustness of Greenland model selection top three

Table C5 lists the selected model combinations with abso-

lute and relative frequency of occurrence for the Greenland

top three selection. The final model combination (MIROC5,

NorESM1-M, HadGEM2-ES) was selected in all cases. Ta-

ble C6 lists the absolute and relative occurrence of each indi-

vidual model in the combinations given in Table C5.

The same results were obtained when metrics for the sur-

face ocean (1sst [a], 1sie [s], 1sie [w]) were added to the

Table C2. Absolute and relative occurrence of each individual

model included in the Antarctica top three combinations presented

in Table C1.

Models Count Occurrence

NorESM1-M 12 1.00

CCSM4 12 1.00

MIROC-ESM-CHEM 9 0.75

CanESM2 3 0.25

Table C3. Possible model combinations for the Antarctica top six

selection, with absolute and relative frequency of occurrence when

applying the robustness test.

Model combination Count Occurrence

NorESM1-M, MIROC-ESM-CHEM, 12 0.86

CCSM4, CSIRO-Mk3-6-0,

HadGEM2-ES, IPSL-CM5A-MR

NorESM1-M, MIROC-ESM-CHEM, 1 0.07

CCSM4, CSIRO-Mk3-6-0,

BCC-CSM1-1, IPSL-CM5A-MR

NorESM1-M, MIROC-ESM-CHEM, 1 0.07

CCSM4, CSIRO-Mk3-6-0,

HadGEM2-ES, BCC-CSM1-1

other metrics (1700 hPa [a], δprw [a], 1T SPG, 1T BB,

1T AO, 1T GIN).

C4 Robustness of Greenland model selection top six

Table C7 lists the selected model combinations with absolute

and relative frequency of occurrence for the Greenland top

six selection. The final model combination (MIROC5, IPSL-

CM5A-MR, CSIRO-Mk3-6-0, NorESM1-M, HadGEM2-

ES, ACCESS1-3) occurs in seven of nine cases, with CCSM4

replacing ACCESS1-3 in the remaining two cases. Table C8

lists the absolute and relative occurrence of each individual

model in the combinations given in Table C7. Similar results

were obtained whether metrics for the surface ocean (1sst

[a], 1sie [s], 1sie [w]) were included or not.
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Table C4. Absolute and relative occurrence of each individual

model included in the Antarctica top three combinations presented

in Table C3.

Models Count Occurrence

NorESM1-M 14 1.00

MIROC-ESM-CHEM 14 1.00

CCSM4 14 1.00

CSIRO-Mk3-6-0 14 1.00

IPSL-CM5A-MR 13 0.93

HadGEM2-ES 13 0.93

BCC-CSM1-1 2 0.14

Table C5. Possible model combinations for the Greenland top three

selection, with absolute and relative frequency of occurrence when

applying the robustness test.

Model combination Count Occurrence

MIROC5, NorESM1-M, HadGEM2-ES 9 1.00

Table C6. Absolute and relative occurrence of each individual

model included in the Greenland top three combinations presented

in Table C5.

Models Count Occurrence

MIROC5 9 1.00

NorESM1-M 9 1.00

HadGEM2-ES 9 1.00

Table C7. Possible model combinations for the Greenland top six

selection, with absolute and relative frequency of occurrence when

applying the robustness test.

Model combination Count Occurrence

MIROC5, IPSL-CM5A-MR, 7 0.78

CSIRO-Mk3-6-0, NorESM1-M,

HadGEM2-ES, ACCESS1-3

MIROC5, IPSL-CM5A-MR, 2 0.22

CSIRO-Mk3-6-0, NorESM1-M,

CCSM4, HadGEM2-ES

Table C8. Absolute and relative occurrence of each individual

model included in the Antarctica top three combinations presented

in Table C7.

Models Count Occurrence

MIROC5 9 1.00

HadGEM2-ES 9 1.00

NorESM1-M 9 1.00

IPSL-CM5A-MR 9 1.00

CSIRO-Mk3-6-0 9 1.00

ACCESS1-3 7 0.78

CCSM4 2 0.22
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