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Abs t r ac t .  We present a structured language for the specification of knowl- 
edge models according to the CommonKADS methodology. This language 
is called CML (Conceptual Modelling Language) and provides both a struc- 

tured textual notation and a diagrammatic notation for expertise models. 

The use of our CML is illustrated by a variety of examples taken from the 
VT elevator design system. 

1 I n t r o d u c t i o n  

In this paper we describe a highly structured, semi-formal notat ion for the specifica- 

tion of CommonKADS expertise models [16]. This notation is called CML, short for 

Conceptual  Modelling Language. The CML described here covers domain knowledge 

(including the specification of ontologies), inference knowledge, task knowledge as 

well as problem solving methods. Below, we discuss the various constructs of the 

CML for each of  these categories in subsequent sections. The practical use of the 

CML is illustrated by various examples taken from the VT elevator design domain 

[8, 17], as reanalyzed with the help of the CommonKADS methodology [11]. 

In an appendix we give the full set of BNI? grammar  rules defining the syntax 

of  the textual CML constructs. In addition to textual CML definitions, we provide a 

graphical notat ion allowing the knowledge engineer to concisely present the main fea- 

tures of an expertise model in a ~et of diagrams. We note that  the graphical notat ion 

is not intended to replace the textual description, as it often abstracts from details 

tha t  are present in this textual description. On the other hand, a diagrammatic  

notat ion is very useful in representing, explaining and communicat ing knowledge 

structures in a way accessible to both knowledge engineers and users. Thus, textual 

and diagrammatic  notations have complementary functions. Our graphical notat ion 

follows as much as possible the notations used in software engineering, especially 

with respect to the domain knowledge where we closely follow the object-oriented 

OMT (Object Modelling Technique) notation proposed by Rumbaugh et al. [9]. In 

the final discussion section we comment on the relationships and differences of the 

CommonKADS CML with the OMT and Ontolingua [5] specification languages. 



2 D o m a i n  K n o w l e d g e  

The domain knowledge in an expertise model consists of three parts: 

1. Ontology definitions: sets of type definitions of domain constructs, such as con- 

cepts and relations. 

2. Ontology mappings: a description of how types of one ontological theory can be 

mapped onto types in another ontology. 

3. Domain models, denoting knowledge base partitions containing domain expres- 

sions that use a set of ontology definitions. 

We use the term ontology to denote a "specification of a conceptuaiisation" [6]. 

In earlier publications [15, 16] we distinguished two types of ontologies: (i) the model 
ontology, and (it) the domain ontology, defining respectively the PSM-specific and 

the domain-specific conceptualisations. Since then, it has become clear that  it may 

be useful to make additional distinctions, e.g. within the model ontology. See for a 

discussion on types of ontologies and their role in knowledge engineering [14, 11]. 

For the purpose of defining the CML we assume that  there is a need to describe 

various types of ontologies, without committing ourselves to what these ontologies 

precisely are. 

2.1 O n t o l o g y  def in i t ions  

An ontology is defined through the specification of a number of types or "constructs". 

The CML provides a number of representational primitives each of which is briefly 

discussed in this section: concept, attribute, expression, structure and relation. The 

example definitions are taken from the VT model ontology [11]. The existence of 

this ontology can be defined in CML as follows (see also the appendix): 

ontology VT model ontology; 
description: 

This ontology contains domain-independent type definitions for describing 
structural properties of the VT knowledge base [17].; 

definitions: 

< see th e sample concept, attribute, expression, structure 
and relation definitions> 

end ontology 

Concept The notion of concept is used to represent a class of real or mental objects 

in the domain being studied. The term "concept" corresponds roughly to the term 

"entity" in ER-modelling and "class" in object-oriented approaches. 

Every concept has a name, a unique string which can serve as an identifier of 

the concept, possible super concepts (multiple inheritance is allowed), and a number 

of properties, a property is a (possibly multi-valued) function into a value set. A 

number of value-sets are assumed ko be pre-defined, such as strings, integers, natural 

numbers, real numbers and booleans. A newly defined value-set can be a range of 

integers or reals or an enumeration of strings. For the definition of value sets, see 



the appendix.  Relat ions of a concept with other concepts, a t t r ibu tes  or expressions 

should be modeled separa te ly  with CML relat ion definitions (see further) .  

Below two example  concepts definitions found in the VT domain  are given. 

concept component; 
description: 

components are part types of an artefax:t. Instances in the VT domain are: 

"elevator", "car buffer", "car guiderail ', etc.; 
end  concept 

concept component-model; 

description: 
represents a particular model of a component, e.g. "car buffer O H I ' ,  "car 

buffer OM14", etc. Component models often have fixed attribute values, such 

as weight, physical dimensions, etc.; 
end  concept 

Fig. 1 shows the graphical  nota t ion  for concepts and sub- type  relat ions between 

concepts. Concepts are indicated with rectangles. Three nota t ions  are provided for 

the sub-type relation between concepts. In principle, the O M T  nota t ion  with the 

tr iangle should be preferred. The other two are included because many  knowledge 

engineers use them as a convenient shorthand.  Fig. 5 (see further)  shows the graph-  

ical representat ion of concepts in another ontology (the VT domain-ontology).  

Attribute An a t t r ibu te  is a reification of a function. One can see it as a shor thand  for 

a concept with no internal  s t ructure  and with a single "value" property.  A t t r ibu tes  

are graphically represented as rectangles, jus t  as concepts, but  with the name of the 

value set wri t ten as a subscript  (see Fig. 4 for an example) .  

a t t r i b u t e  attribute-slot; 

desc r ip t ion :  

An attribute-slot is used to represent component attributes, such as weight, 

width, length, etc.; 
value-set :  number V string; 

end  a t t r i b u t e  

Expression The notion of expressions as a domain  model l ing construct  is in t roduced 

because these occur often in ",domain rules" or "domain axioms".  An i m p o r t a n t  

aspect of the domain  model l ing enterprise is to describe the s t ructure  of these domain  

rules. This type of domain  description is currently lacking in many  KBS development  

projects.  The expression construct  provides a sui table way of model l ing  the s t ructure  

of domain knowledge in which simple expressions such as age(patient) > 65 and 

temperature(patient)  = high appear .  

The general form of expressions is < operand > <  operator :>< value > where: 

- operand is a either an a t t r ibu te  or some proper ty  of a concept,  

- operator is one of = , ~ ,  <,  <,  >,  >,  E,C,C_, D,D,  

- value is a sub-set of the value-set of the function (i.e. a t t r ibu te ,  concept  prop-  

erty).  
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Fig .  1. Graphical notation for concepts (optionally with or without property definitions) 

and three alternative notations for sub-type relations between concepts. The left-most is 

the OMT notation and should be preferred 

Expressions can be restricted to a par t icular  proper ty  of  a concept, and to a par- 

t icular  subset of  operators.  An example of an expression in the VT domain  is an 

equal i ty  expression about  an a t t r i b u t e - s l o t :  

exp re s s ion  attribute-slot.expression; 
d e s c r i p t i o n :  

Represents a simple expression about an attribute slot: e.g. "height = 28.75"; 
o p e r a n d :  attribute-slot 

o p e r a t o r s :  = ; 

e n d  exp re s s ion  
�82 

In the CML description of an expression the specification of operators  m a y  be 

omi t ted .  In tha t  case it is assumed tha t  all legal opera tors  on the values denoted by 

the proper t ies  can be used. For example,  if an expression is defined on a proper ty  

wi th  a numeric  value set, the set of possible operators  is = ,  5 ,  <,  <,  >,  >,  The  set 

opera tors  (E, C, C, 9 ,  _3) are typical ly  used with value sets tha t  consist of a set of 

symbols .  Expressions are represented graphical ly through an oval with the name of 

the expression and an arrow indicat ing the operand.  Fig. 2 shows tim nota t ion  for 

the  two types of  expression operarad definitions. 

S~ruc~ure The notion of s tructure is used in tim CML to describe objects  with an 

internal  s t ructure  tha t  the knowledge engineer does not  want  to describe (at  this 
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Fig.  2. Expressions are represented graphically through an oval and an arrow indicating 

the operand. These operands can be of three types: an attribute, some particular property 

of a concept, or any property of a concept. 

moment )  in detail .  An example in the VT domain  for which one could decide to 

model  it  as a s tructure is a constraint expression. Const ra in t  expressions represent  

ma thema t i ca l  and logical dependencies between system variables.  The knowledge 

engineer might  want to introduce this as an explicit  type  in the ontology, wi thout  

being forced to write down a full syntact ical  description of the form of const ra in t  

expressions. The CML description of structures is similar to tha t  of concepts,  but  

with an addi t ional  form slot in which the knowledge engineer can give a tex tua l  

descript ion of this class of objects: 

s t r u c t u r e  constraint-expression; 
form:  

any (mathematical, logical) dependency between attribute-slot values.; 
end  s t r u c t u r e  

s t r u c t u r e  calculation; 
sub type -o f :  constraint-expresslon; 
f o r m :  

a const ra in t  expression of  the form: 

<:attrlbute-slot> = <rnatOematlcal-formula>; 
end  s t r u c t u r e  

The  two examples define the notion of (ii) a constraint  expression, wi thou t  de- 

ta i l ing the precise s tructure of the underlying formula, and (ii) a calculat ion as a 

sub- type of constraint  expression implying a par t icular  type of  formula,  again  with-  

out  going into syntact ical  details. The graphical  representat ion of a s t ruc ture  is a 

rectangle (see Fig. 4). 

Relation The  notion of relation is a centrhl construct  in model l ing  a domain .  In 

the CML we allow various forms of relat ions to cater for the specific requirements  

imposed by knowledge-based systems. The relat ion construct  is used to link any type  



of objects to each other, including concepts, attributes, expressions, structures and 

relations. 

The grammar rules in the appendix specify the CML for defining relations. The 

CML supports two types of relation arguments: (i) a single object (e.g concept, 

attribute, expression, structure, another relation), and (ii) a set of such objects. An 

example of the second type of argument would be modelling causal relations as a 

binary relation with a "causes" argument that refers to a set of expressions about 

some state variable. Relations can themselves also have properties. The classical 

example of such a property is the wedding date of two married people. Below three 

example relation definitions of the VT domain are shown. 

binary-relation has-constraint; 
description: 

binary relation linking a component to a constraint expression specifying some 

dependency between attribute-slot values of this components or its sub-parts.; 
inverse: constraint-on; 
a r g u m e n t - l :  component; 
a rgument -2 :  constralnt-expression; 

end binary-relation 

binary-relation has-attribute; 
description: 

binary relation linking components and component models to attribute slots.; 
argument- l :  component V component-model; 
argument-2: attribute-slot; 
axioms: 

V c:component re:component-model s:attrlbute-slot 

has-attribute(c, a) A has-model(c, m) 
--* has-attrlbute(m, a); 

end binary-relation 

relation fixed-model-value; 
description: 

binary relation defining fixed values for attribute slots of a component-model; 
argument- l :  component-model; 

argument-2: attribute-slot-expression; 
axioms: 

V m:component-model a:attr]bute-slot 

fixed-model-value(m, a ---- v) -*  has-attrlbute(m, a); 
end relation 

The first relation, has-constraint,  links a component to a constraint expression 

specifying some dependency between attribute-slot values of this components or its 

sub-parts. The second relation defines the link between components and their models 

on the one hand and attribute slots on the other hand. The (optional) axioms field 

states that attribute slots defined-for components also apply to their models. The 

third relation shows the use of an expression construct in a relation definition. This 

relation (fixed-model-value) links a component model to an equality expression 



abou t  an a t t r ibu te  slot. This  relation can be used to  model  fixed values for a t t r i bu te s  

of a component model, e.g. fixed-model-value(carbuffer 0HI, height; : ,  28.75). 

Graphically relations are represented as diamonds, just as in ER modelling. For 

binary relations there is an alternative, directional, representation (see Fig. 3). Prop- 

erties of relations are represented as arrows from relations to value sets. Set ar- 

guments of relations are indicated with the join symbol N. Multiple types for an 

argument are represented through a split line. 

General notation 
for n-ary relation 

Alternative notation 
for directional binary relation 

-4 

p r ~  due-se t  

Notation for multiple 
types of an argument 

Argum272t~176 

Fig .  3. Graphical notation for relations. For binary relations there is an alternative rep- 

resentation. Properties of relations are represented as arrows from relations to value sets. 

Arguments of relations can be either single constructs (concepts, attributes, expressions, 

relations) or sets of these constructs. Sets are indicated with the join symbol N. Multiple 

types for an argument are shown through a split line 

Fig. 4 shows the graphical  representat ion of the CML VT definitions given in 

this  section, plus an addi t ional  has-model r e la t ion . .  

2 .2  O n t o l o g y  m a p p i n g s  

In the s i tuat ion where a KBS is buil t  from scratch i t  is possible to define one on- 

tology (a model  ontology in CommonKADS terms),  and view the ac tual  knowledge 

base as a pure instanliar of tha t  ontology. In the light of efforts to share a n d / o r  

reuse knowledge bases and ontologies, this approach turns out  to be insufficient. For 

example,  in the VT example  there was an existing domain  knowledge base wi th  i ts 

own ontology. Some typical  fragments of this knowledge base are shown in Fig.  5. 

We call this knowledge base the VT domain  ontology. To use this  knowledge base 

given the VT model  ontology, of which parts  were defined in this paper ,  one has 

to specify a mapping  procedure tha t  shows how constructs  defined in the doma in  

ontology should be mapped  onto the model  ontology. 
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Fig. 5. Domain-specific concepts in VT domain ontology. The notation "property = value" 

is used to show default values 

The purpose of tho CML construct ontology-mapping is to allow for the (in- 

formal) definition of such mappings. An example of the mapping between the VT 

domain ontology in Fig. 5 and the part of the model ontology shown in Fig. 4 is 

given below. The mappings are defined here in natural language. In the context of 

the work on ML 2, [13] a rewrite formalism was developed to specify such mappings 

in a formal way. Work on the nature of ontology mappings is underway (see, for 

example, [4]). We expect the CML specification of ontology mappings to be refined 

in the near future. 

onto logy-mapp ing  
f rom: VT domain ontology; 
t o :  VT model ontology; 



mappings: 
Concept with no superconcept in the domain ontology 
~-, component  in the model ontology 

Concept with superconcept in the domain ontology 

*-+ component-model in the model ontology 

Sub-type relation between concepts 
~-* tuple of has-model relation 

Property of concept 
~-+ an instance of attrlbute-slot plus a tuple o f  has-attrlbute 

Defaul t  value o f  concept 

tup le of  f ixed-model-value relation, i f  the concept is a 

component-model; 
end ontology-mapping 

More details on the mapping shown above is given elsewhere [11, Appendix A]. 

2.3 D o m a i n  mode l s  

A domain model is a coherent collection of expressions about a domain that repre- 

sents a particular viewpoint defined in an ontology. The domain model may therefore 

embody certain assumptions that are specific for the ontology that it uses. 

In the CML a domain model is defined as a composite object. It is defined through 

a number of parts which contain one or more sets of objects (instances, tuples). The 

graphical notation for domain models (see Fig. 6) is inspired by the way data stores 

are represented in data-flow diagrams, because these are intuitively quite similar. 

Domain models can be viewed as a sort of "knowledge stores". Domain models have 

an internal structure, represented through aggregate-part links. 

3 I n f e r e n c e  K n o w l e d g e  

In this section we define the CML for the specification of inferences and provide a 

new graphical notation for showing the data dependencies between inferences (the 

inference structure). 

3.1 In fe rence  specif icat ion 

Names of inferences represent the role these inferences play in solving the problem. 

Inference names are thus goal-oriented. In addition, we specify the operation type: 
the abstract operation that is performed on some ontology, similar to the inference 

ontology in KADS-I. For the moment we use the formalised set of inferences defined 

by Aben [1993] as the basis for describing operation types. 

For each role, a mapping is specified to the domain knowledge. For static roles, 

we may also indicate which domain model should be accessed to find this body of 
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Fig. 6. A domain model is represented as a "knowledge store" with an internal part-of 

structure. The "diamond" symbol is overloaded and indicates in this context an aggre- 

gate-part relationship 

knowledge. Dynamic roles are supposed to be part  of the overall working memory 

of the problem solver and are thus not directly linked to a domain  model. 

We show two example inferences from the VT application. The select-parameter 
inference selects a parameter to which a value can be assigned. The static roles refer 

to constraint formulae in two domain models which for reasons of space were not 

defined in the previous section (see [11]). 

inference select-parameter; 
opera t lon- type :  select; 

input- roles :  

parameter-set --* set of attribute-slots; 

parameter-asslgnments --* set of tuples <attribute-slot, value, dependencies>; 

output - ro les :  

parameter ---* single attrlbute-slot; 

statlc-roles: 

formulae E domain models initial-values and calculations; 
spec: 

Select a parameter from the skeletal model that has not been assigned a value 

and for which the preconditions that the domain knowledge (i.e. the formulae) 
poses for complting the value are fulfilled. A precondition is the fact that a 

value of some other parameter should be known. 

Formulas in the domain model initial values are evaluated as soon as possible. 

A heuristic ordering of components is used to rank the set of parameters. (see 

[17, Start of Sec. 5]); 
end  inference 

The second example inference is specify value. This inference uses the constraints 

in two domain models to compute a value for a selected parameter.  

inference specify-value; 
opera t lon- type :  compute; 

inpu t - ro les  
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parameter --~ attrlbute-slot; 
parameter-assignments -+ set of tuples <attribute-slot, value, dependencies>; 

output-roles:  

parameter-asslgnment --* single tuple <attrlbute-slot, value, dependencies>; 

static-roles: 

formulae E domain models initial-values and calculations; 

spec: 

Specify the value of a parameter by interpreting the formulae and identify the 

parameters that were used in this specification (the dependencies); 

end inference  

3 .2  I n f e r e n c e  s t r u c t u r e  

Inference structures  are among the most  frequently-used ingredients  of KADS. In 

almost  any presentat ion of an appl icat ion of KADS,  the  descr ipt ion of  the inference 

s t ructure  plays a dominan t  role. In this section we define some addi t iona l  graphical  

nota t ions  to remove a number  of ambigui t ies  in inference structures.  

7~ansfer lasks Transfer tasks are t rea ted  in the expert ise  model  as black-box func- 

tions. Inferences and transfer tasks together form the lowest level of functional  de- 

composi t ion in the expert ise model.  One could say tha t  transfer tasks are basic 

functions tha t  do not  make any inferences in the doma in  knowledge. Thus, it  seems 

appropr ia te  to include transfer tasks in an inference structure.  A rounded-box no- 

ta t ion  is used to dist inguish transfer tasks from inferences. 

Role element vs. set Another  issue tha t  has arisen with respect  to inference struc- 

tures concerns the nature  of roles. A role const i tutes  a funct ional  name for a set of 

domain  objects  tha t  can play this role. Some inferences opera te  on or produce one 

particular object ,  others work on a set of these objects .  This can lead to ambiguit ies  

in inference structures,  for example if one inference produces one object  and an- 

other inference works on a set of these objects,  poss ibly  generated by some repeated 

invocation of the first inference. The  graphical  CML nota t ion  allows for making 

this dis t inct ion explicit:  a N symbol  indicates tha t  the input  or ou tpu t  should be 

interpreted as a set of objects  playing this role. 

Role names Another  problem arises from the names  given to roles. Some role names 

const i tute  a general name for objects  involved in carrying out  a task.  For example,  

observable, finding, and hypothqsis are such general  role names.  In addi t ion ,  more 

specialised role names are also used. Often, such names  are a special isat ion of the 

general  categories, e.g. ies~ observable, discriminaling observable. If one looks upon 

a role as a container of objects  applying tha t  role, a specialised name represents a 

label for a subset  of objects  in a container.  

Specialized names such as test observable are useful and  make the inference struc- 

ture easier to interpret .  On the other hand, some inferences may  opera te  on the gen- 

eral category (e.g. observable).  One would like to be able to specify bo th  general and 

specialized role names and still be able to show clearly the  dependencies between 

inferences. We suppor t  this in the g raph ica rno t a t i on  by making  the subset  s t ructure  

of containers explici t  through a "subset /superset"  link between roles. An example 

of this  nota t ion  is shown in Fig. 7. 
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Fig. 7. Introducing general and specialized role names in an inference structure. An object 
taking the general role observable can be generated by two inferences, each using a special- 

ized name for this role (test observable and discriminating observable). The link between the 
three roles indicates that test observable and discriminating observable axe in fact subsets 

of the objects playing the role of observable 

Static roles Inference structures only used to show the dynamic roles that are being 

manipulated by an inference. Sometimes, it is also useful to show what type of 

domain knowledge the inference uses to derive the output from the input (cf. [7]). 

This domain knowledge is specified through the static roles. 

One could argue that this is an unwanted extension of the inference structure, 

as inferences are in fact domain-independent generalizations of the application of 

domain knowledge. However, it can be useful at some points during knowledge engi- 

neering to make the nature of the domain knowledge explicit, although this destroys 

the domain-independence of an inference structure. We use a double arrow to indi- 

cate the domain knowledge used by an inference, if felt necessary. 

Inference and role annotations Optionally, the inferences can be annotated with the 

operation type of the inference, e.g. the inference "specify-value" can be annotated 

with the operation type "compute" (see Fig. 9). 

Also, dynamic role names may be annotated with the name that is used for this 

role in the task knowledge. These task role names (see the next section) can be more 

informative for a user. An example of this type of annotation can be found in Fig..9 

where the role parameter-assignments has as a subscript eztended-model which is the 

name for this role from the task (goal-directed) point of view. 

Fig. 8 summarises the graphical notation for inference structures. Fig. 9 shows 

the inference structure for the two VT inferences specified previously. 

4 T a s k  K n o w l e d g e  

4.1 Task specif icat ion 

The knowledge category task knowledge describes how a goal can be achieved through 

a task. A task specification consists of two parts: the task definition and the 1ask 
body. 

The task definition describes what needs to be achieved. It is a declarative Spec- 

ification of the goal of the task. The task definition consists of: 
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Fig. 8. Summary of the conventional used in the graphical representation of inference 
structures 

Goal  A textual description of the goal that can be achieved through application of 

the task. 

I n p u t / O u t p u t  A definition of the roles that the task manipulates. This definition 

consists of a name and a tektual description. The role is not directly bound to 

a domain type, as we do not want to have a direct coupling between task and 

domain knowledge. Instead, the task body (see below) specifies how a role is 

bound to other task roles and ultimately to dynamic roles of inferences. 0nly  

for inferences roles the mapping to domain knowledge is defined. 

Task specif icat ion A description of the logical dependencies between the roles of 

the task (e.g. what is true after execution of a task, invariants). This description 

is optional. 

The task definition of the VT design task describes the overall goal of the task 

and its I / 0 :  
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Fig. 9. Inference structure of the propose task. The names in the boxes denote inference 

roles. The annotated names represent the corresponding task role 

task parametric-design; 
task-definit ion 

goal: find a design that satisfies a set of constraints; 

input :  
skeletal design: the set of system parameters; 
user-specs: set of parameter/value pairs; 

ou tpu t :  
design: set of assigned parameters; 

end task 

The task body describes how this goal can be achieved. It  is a procedural program, 

prescribing the activities to accomplish the task. We distinguish three different types 

of tasks, based on the hature of their task body: 

C o m p o s i t e  t a sks  are further decomposed in sub-tasks, e.g. diagnosis is decom- 

posed into generate and test. 

P r i m i t i v e  t a sks  are directly related to inferences. E.g. a primitive abstraction task 

could be the computation of all solutions of  an abstraci inference, given a par- 

ticular data-set and a body of domain knowledge 

T r a n s f e r  t a sks  interact with the world, i.e., the user. The task body of a transfer 

task is not  specified in the expertise model. It is contained in the communication 

model. 

The CML description of the task body has the following subparts: 
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T a s k  t y p e  One of composite or primitive. Task body  descript ions of transfer  tasks 

are not pa r t  of the expertise model. 

D e c o m p o s i t i o n  The sub-tasks tha t  the task decomposes into. These can be other  

tasks or inferences. 

P r o b l e m - s o l v i n g  m e t h o d  The PSM tha t  was appl ied to achieve this decomposi-  

t ion. 

A d d i t i o n a l  r o l e s  Addi t ional  da t a  stores tha t  are in t roduced by the decomposi t ion.  

T a s k  c o n t r o l  S t r u c t u r e  The description of control over the sub- tasks  to achieve 

the task. 

A s s u m p t i o n s  Addi t ional  assumptions implied by a decomposi t ion,  e.g. concern- 

ing certain knowledge structures,  concerning the solution, etc. Assumpt ions  are 

usual ly  introduced by the underlying problem-solving method .  

The  sample  task body of the VT design task is shown below: 

t a sk  parametric-design; 

t a s k - b o d y  

type :  composite; 

sub- tasks :  init, propose, verify, revise; 

add i t i ona l - ro l e s :  

extended-design: current set of assigned parameters 

represented as a set of tuples < parameter, value, dependencies> 

where the dependencies constitute a set of parameters that were 

used in specifying the value of this parameter; 

design-extension: proposed new element of the extended model; 

violation: violated constraint; 

c o n t r o l - s t r u c t u r e :  

configure(skeletal-desig n + user-specs ~ design) = 
inlt(user-specs --* extended-design) 
REPEAT 

propose(skeletal-design "4- extended-design --* design-extenslon) 

extended-design := design-extension U extended-design 

verify(design-extension + extended-design -~ violation) 
IF some violation 

T H E N  revise(extended-design + v~olatlon ---* extended-design) 

UNTIL a value has been assigned to all parameters in the skeletal-design 

design :=- { <p, v> I <P. v, deps> E extended-design }; 

end  t a sk  

The control s tructure in the example above is wri t ten in procedura l  pseudo code. 

In principle however, the knowledge engineer is free to use any fo rmal i sm tha t  s /he  

finds best  sui table for expressing control among sub-tasks.  In rea l - t ime applicat ions,  

for example ,  one could opt  for a s tate transit ion formalism. 

4.2 T a s k  s t r u c t u r e  

In the process of engineering an expertise "model, it  is often useful to visualise the 

current set of tasks as a provisional "inference s t ructure" .  This  is a provisional  

s t ructure  in the sense tha t  the "inferences" in such a d iagram can in fact turn  out  to 
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be (complex) tasks. An example of the use of  such provisional inference structures can 

be found elsewhere [10]. We allow the knowledge engineer to use the same graphical 

conventions to represent these "task structures "s as for inference structures (see 
Fig. 8), with the exception that  the "inferences" are not  depicted as ovals but as 

boxes with rounded corners (similar to the convention used for transfer tasks). An 

example of a provisional inference structure for the VT example is shown in Fig. 10. 

�9 ] _( _1 I 
J -< ) -I .x,...,o. I 

T 

T 1 
~ - violation revise ) 

Fig. 10. Top-level data flow in the VT design task 

In addition, it is often useful to show graphically the decomposition structure 

of  tasks. An example of such a hierarchical decomposition can be found in Fig. 11. 

The problem solving methods that  generated the decomposition can optionally be 

written on the lines connecting a task with its subtasks. 

5 Problem Solving Methods 

For many applications it suffices to specify the domain, inference and task knowledge 

to build a system. In that  case the resulting KBS will have a fixed control structure, 

i.e. its behaviour is fixed. However, in some circumstances a more flexible form of 

control can be needed. In CommonKADS such flexibility can be achieved through the 

introduction of  problem solving knowledge in the expertise model. Problem solving 

knowledge comes in two) flavours: strategic knowledge and knowledge about problem 

solving methods [3]. The methods describe how a task definition can be given a task 

body that  describes how to achieve the task goal. The strategic knowledge describes 

how methods are selected and applied in order to dynamical ly construct the task 

model. Below we give a CML definition of  the top-level method for Propose-and- 

Revise. 

P S M  propose-and-revise 
inpu t :  

s The term "task structure ~ stands here just for a ' 'inference structure" representation of 

a set of tasks and should not be confused with the meaning of the word in KADS-[ 
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c o n ~ i o n  

propose verify revise 
A 

decomposition domaln-specifc domain-specific 
in design plan calculations revision strategies 

find apply propagate 
fixes fix fix 

dependency-directed 
backtracking 

Fig. 11. Task decomposition generated by P&R. The itafic annotations characterise the 

methods that on which the various decompositions are based 

skeletal-design: set of parameters; 

requirements: set of operationalised user requirements; 
ou tpu t :  

extended-design: set of parameter assignments; 
competence :  

V req E requirements: 

meets(extended-design, req) A 

consistent(extended-design, constraints); 
sub- tasks :  

propose, verify, revise; 

addi t iona l - ro les  

par: element of the skeletal-design; 

design-extension: newly proposed parameter assignment ; 

violation: violated constraint ; 
con t ro l - s t ruc tu re - t empla t e :  

init(requirements --* extended-design) 

F O R E A C H  par (~ skeletal-design DO 
propose(par 4- extended-deslgn ---* design-extension) 

extended-design := deslgn-extenslon 4- extended-design 

verify(deslgn-extenslon 4- extended-design --~ v~olation) 
IF  some vlolation 

T H E N  revlse(extended-design 4- vlolation --* extended-deslgn) ; 
accep tance  criteria: 
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1. The requirements are operationalised in terms of initial values for some 
parameters 
2. Design knowledge can be represented as a set of constraints; 

end PSM 

This problem solving method can be selected when a task definition has to be 

satisfied that has a goal that matches the competence of the method and when the 

acceptance criteria are met. When applied, the method will decompose the task 

into three subtasks (propose, verify and revise), introduce several intermediate roles 

that  serve as place holders for intermediate results, and provides a template for a 

control regime over the sub tasks. This information is essentially sufficient to create 

a task body. The specification of the problem solving method given above, is largely 

informal. The CML does not provide explicit mechanisms to apply a method to a 

task definition, the method specification should be viewed as a structured way to 

write down knowledge about problem solving. A more formal account of problem 

solving methods is given in [2]. 

6 D i s c u s s i o n  

In this paper we have described a language for specifying knowledge models: CML. 

The main advance of the CML is the facility to explicate the ontology of the domain 

knowledge. The ontology can be viewed as a mesa model describing the structure 

of the domain knowledge. The mapping mechanism in CML allows the construction 

of a layered ontology in which higher layers represent abstract knowledge types. 

This facility is important since ontologies have structure: certain parts are based 

on generally accepted theory, other parts are based on common practice, useful 

interpretations or on task oriented notions. As a mat ter  of principle we advocate to 

distinguish different partial ontologies that are based on different types of ontological 

commitments. Shareability and reusability of knowledge depend critically on the 

distinctions between the views that underly the different ontologies. 

In many respects, the possibility to specify an explicit and structured ontology 

is similar to that of Ontolingua [5]. However, Ontolingua does not provide explicit 

mappings. On the other hand, Ontolingua is a fully formal language, while the CML 

is semi-formal. The semi-formal nature of CML is an advantage in early stages of 

the knowledge acquisition process: concepts and relations can be described in natu- 

ral language. In later stages of KBS development a formal representation is needed. 

CML allows a formal rgpresentation, but does not prescribe a particular representa- 

tion formalism. In [11] we have shown how CML can be used to specify and transform 

a formalised knowledge base. Also, tools exists to support structure-preserving op- 

erationalisation of CML descriptions in a dedicated executable environment [12]. 

CML has similarities with OMT [9] and other object-oriented specification frame- 

works, but offers -apart from the ontology- additional constructs such as expressions. 
Most object-oriented approaches do not separate the meta  data model and the ac- 

tual objects. In CML such a separation is possible through the use of the mapping 

mechanism. The inference and task layers of the CML have similarities with the con- 

trol and functional views in conventional software engineering [18]. The graphical 

notations of CML are similar, but not identical, to the classical counterparts such as 
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d a t a  flow diagrams.  In CML the links between the different views are made  explicit ,  

while most  classical approaches leave th i s  link unspecified. In conclusion we claim 

tha t  CML offers a number  of new constructs  and  mechanisms tha t  could also be of  

use in the field of  classical software engineering. 
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A B N F  specification of C M L  

The  constructs of the CML are defined using BNF g r a m m a r  rules. The  conventions 

used i n t h e s e  g r ammar  rules are summar ised  in Table A. 

expertise-model ::ffi EXPERTISE-MODEL Application-name; 

domain-knowledge 

inference-knowledge 

task-knowledge 

psm-knowledge 

END EXPERTISE-MODEL [Application-name;] . 

domain-knowledge ::ffi DOMAIN-KNOWLEDGE 

< ontology-def I 

ontology-mapping-def [ 

domain-model >* 

END DOMAIN-KNOWLEDGE . 

onto logy-def  : :=  ONTOLOGY 0ntological-theory-name; 

terminology 



I C o n s t r u c t  

::=.+[] 

( ) I -  
x ::= Y. 

ix] 
X* 

X +  

X l V  

( x )  
SYMBOL 

I n t e r p r e t a t i o n  
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Symbols that  axe part of the BNF formalism 

The syntax of X is defined by Y 

Zero or one occurrence of X 

Zero or more occurrences o fX 

One or more occurrences of X 

One of X or Y (exclusive-or) 

Grouping construct for specifying scope of operators e.g. ( X I Y ) or ( X )*. 

IUppercase: predefined terminal symbol of the language 

Symbol CapitMised: user-defined terminal symbol of the language 

symbol Lowercase: non-terminal symbols 

Table I. Synopsis of the notation used in BNF grammar rules 

terminology ::= 

domain-construct-def ::= 

object-def ::= 

atomic-object-def ::= 

constructed-object-def ::= 

concept-def ::= 

properties ::= 

property-def ::= 

cardinality-def ::ffi 

differentlation-def ::= 

default-value-def ::= 

axioms ::~ 

[IMPORT: Ontological-theory-name 

<, 0ntological-Theory-Name>*;] 

DEFINITIONS: domain-construct-def* 

END ONTOLOGY [Ontological-theory-name;] . 

[ < DESCRIPTION: text; > ] 

[ < SYNONYMS: text; > ] 

[ < SOURCES: text; > ] 

[ < TRANSLATION: text; > ] . 

object-def I relation-def I value-set-def . 

atoMic-object-def I constructed-object-def . 

concept-def I attribute-def structnre-def . 

expression-def . 

CONCEPT Concept-name; 

terminology 

[SUB-TYPE-OF: Concept-name <, Concept-name >*;] 

[properties] 

[axioms] 

END CONCEPT [Concept-name;] . 

PROPERTIES: property-def <; property-def>* . 

Property-name: value-set; 

[cardinality-def] 

[differentiation-def] 

[default-value-def] . 

CARDINALITY: [MIN natural] [MAX <natural I INFINITE>]; . 

DIFFERENTIATION-0F Property-name(Concept-name) . 

DEFAULTrVALUE: Value; . 

AXIOMS: text; . 

attribute-def ::= ATTRIBUTE Attribute-name; 



expression-def ::= 

e x p r e s s i o n - o p e r a n d  ::= 

structure-def ::= 

relation-def ::= 

general-relation-def ::= 

binary-relation-def ::= 

argument-def ::= 
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terminology 

[SUB-TYPE-OF: Attribute-name <, Attribute-name >*;] 

[properties] 

VALUE-SET: value-set; 

[axioms] 

END ATTRIBUTE [Attribute-name;] . 

EXPRESSION Expression-name; 

terminology 

[SUB-TYPE-OF: Expression-name <, Expression-name >*;] 

[properties] 

OPERAND: expression-operand 

<, expression-operand>*; 

[OPERATORS: Operator-symbol <, 0perator-symbol >*;] 

[axioms] 

END EXPRESSION [Expression-name;] . 

Attribute-name I 

SOME-PROPERTY-0F Concept-name 

Property-name OF Concept-name . 

STRUCTURE Structure-name; 

terminology 

[SUB-TYPE-OF: Structure-name <, Structure-name >*;] 

FORM: text; 

[properties] 

[axioms] 

END STRUCTURE [Structure-name;] . 

general-relation-def [ binary-relation-def . 

RELATION Relation-name; 

terminology 

[SUB-TYPE-OF: Relation-name < Relation-Name >*;] 

[properties] 

ARGUMENTS: argument-def+ 

[axioms] 

END RELATION [Relation-name;] . 

BINARY-RELATION Relation-name; 

terminology 

[SUB-TYPE-OF: Relation-name;] 

[properties] 

[INVERSE: Relation-name;] 

ARGUMENT-I: argument-def 

ARGUMENT-2: argumsnt-def 

[axioms] 

END BINARY-RELATION [Relation-name;] . 

"argument-type <OR argument-type>* ; 

[ARGUMENT-ROLE: Role-name;] 

[cardinality-def] . 
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argument-type : : -  

d o m a i n - c o n s t r u c t - t y p e  : : =  

b u i l t - i n - t y p e  : : =  

u s e r - d e f i n e d - t y p e  : : =  

primitive-type 

primitive-range 

domain-constrnct-type J 

SET(domain-construct-type) I 

LIST(domain-construct-type) . 

built-in-type ] user-defined-type . 

OBJECT J CONCEPT I ATTRIBUTE 

EXPRESSION ] RELATION . 

Concept-name ] Attribute-name ] Structure-name ] 

Expression-name ] Relation-name . 

::= NUMBER J INTEGER [ NATURAL [ 

STRING J BOOLEAN [ UNIVERSAL . 

::= NUMBER-EANGE(Number, Number) I 

INTEGER-RANGE(Integer, Integer) . 

::= primitive-type ] primitive-range ] 

Value-set-name I { String-value <, String-value>* } . 

::= VALUE-SET Value-set-name; 

[TYPE: <NOMINAL I ORDINAL>;] 

[properties] 

< VALUE-LIST: String-value <, String-value>*; > 

< VALUE-SPEC: < primltive-type [ text > > ; 

END VALUE-SET [Value-set-name;] . 

0NTOLOGY-MAPPING 

FROM: 0ntological-theory-name; 

TO: Ontological-theory-name; 

MAPPINGS: text; 

END 0NTOLOGY-MAPPING . 

::= DOMAIN-MODEL Domain-model-name; 

USES: 0ntological-Theory-Name; 

PARTS: part-def+ 

[properties] 

[EXPRESSIONS: text;] 

[ANNOTATIONS: text;] 

END DOMAIN-MODEL [Domain-model-name;] . 

::= ~ Part-name: part-element-def+ . 

::= part-type ; [cardinality-def] . 

::= SET(domain-construct-type) I 

LIST(domaln-construct-type) . 

::= INFERENCE-KNOWLEDGE inference-def* 

END INFERENCE-KNOWLEDGE . 

value-set 

value-set-def 

ontology-mapping-def ::= 

domain-model 

part-def 

part-element-def 

part-type 

inference-knowledge 

inference-def ::= INFERENCE Inference-name; 

operation-type 

input-roles 

output-role 



operation-type ::= 

input-roles ::= 

output-role ::= 

static-roles ::= 

dynamic-role-mapping ::= 

static-role-mapping ::= 

domaln-references ::= 

domain-ref ::= 

inf-specification ::= 

task-knowledge ::= 

task-descrlption ::= 

t a s k - d e f i n i t i o n  ::= 

t a s k - g o a l  : : =  

io-def ::= 

role-description ::= 

task-speclflcation ::= 

task-body ::= 

task-type ::= 

decomposition ::= 

psm-ref ::= 

functlon-name ::= 

additional-roles ::= 

control-structure ::= 

assumptions ::= 

24 

static-roles 

inf-specification 

ERD INFERENCE [Inference-name;] . 

0PERATION-TYPE: text; . 

INPUT-ROLES: dynamic-role-mapping+ . 

0UTPUT-ROLE: dynamic-role-mapping+ . 

STATIC-ROLES: static-role-mapping* . 

Inference-role-name -> domain-references; . 

domain-references IN Domain-model-name; . 

<domain-ref <, domaln-ref >*> ] text . 

domain-construct-type ] 

SET(domain-construct-type) ] 

LIST(domain-construct-type) . 

SPEC: text; . 

TASK-KNOWLEDGE task-description* 

END TASK-KNOWLEDGE . 

TASK Task-name; 

task-definition 

task-body 

END TASK [Task-name;] . 

TASK-DEFINITION 

task-goal 

io-def 

[task-specification] . 

GOAL: text; . 

INPUT: r o l e - d e s c r i p t i o n +  

OUTPUT: r o l e - d e s c r i p t i o n +  . 

T a s k - r o l e - n a m e :  t e x t ;  . 

SPEC: t e x t ;  . 

TASK-BODY 

task-type 

decomposition 

[psm-ref] 

[additional-roles] 

[data-flow] 

control-structure 

[ a s s u m p t i o n s ]  . 

TYPE: < COMPOSITE ] PRIMITIVE > ; . 

SUB-TASKS: function-name <, function-name >*; . 

PSM: Psm-name; . 

Task-name [ Inference-name . 

ADDITIONAL-ROLES: role-description* . 

CONTROL-STRUCTURE: text; . 

ASSUMPTIONS: text; . 

psm-knowledge ::= .PROBLEM-SOLVING-METHODS psm-description* 

END PROBLEM-SOLVING-METHODS . 
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psm-description 

competence-spec 

acceptance-criteria 

....m PSM Psm-name; 

io-def  

competence-spec 

decomposition 

[ add i t i ona l - ro l e s ]  

[data-flow] 

control-structure 

acceptance-criteria 

END PSM [Psm-name] . 

COMPETENCE: text; . 

ACCEPTANCE-CRITERIA: text; . 


