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CMOS Op-Amp Sizing Using a Geometric
Programming Formulation

Pradip Mandal and V. Visvanathan, Member, IEEE

Abstract—The problem of CMOS op-amp circuit sizing is
addressed here. Given a circuit and its performance specifications,
the goal is to automatically determine the device sizes in order
to meet the given performance specifications while minimizing a
cost function, such as a weighted sum of the active area and power
dissipation. The approach is based on the observation that the first
order behavior of a MOS transistor in the saturation region is such
that the cost and the constraint functions for this optimization
problem can be modeled as posynomial in the design variables. The
problem is then solved efficiently as a convex optimization problem.
Second order effects are then handled by formulating the problem
as one of solving a sequence of convex programs. Numerical
experiments show that the solutions to the sequence of convex pro-
grams converge to the same design point for widely varying initial
guesses. This strongly suggests that the approach is capable of
determining the globally optimal solution to the problem. Accuracy
of performance prediction in the sizing program (implemented
in MATLAB) is maintained by using a newly proposed MOS
transistor model and verified against detailed SPICE simulation.

Index Terms—Cell-generation, device-models, optimization,
transistor-sizing, VLSI.

I. INTRODUCTION

T HE CURRENT trend in microelectronics is to integrate
a complete system that previously occupied one or more

boards on one or a few chips. Although most of the function-
ality in an integrated system is implemented in digital circuitry,
analog circuits are needed to interface between the core digital
system and the real world. Therefore, to realize an integrated
system on a single chip, the digital and analog circuits are com-
bined together. This integration of analog and digital circuits re-
sults in so called mixed-signal integrated circuits which have a
large market of applications in the telecom, consumer products,
computing, and automotive sectors.

Increase of design complexity and, at the same time, demand
of design cycle time reduction due to highly competitive market
can be managed only by the use of computer aided design.
Though in an integrated system, the analog circuitry occupies
a small physical area compared to the digital counterpart and
becomes the bottleneck in design time reduction.
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The main reason for this is that the number of performance
functions in an analog circuit is much larger than that in a dig-
ital circuit. Further, analog performances are very sensitive to
the design variables and variation in the performance across the
design space is quite high. In other words, the analog design
problem is a complex tradeoff problem that is knowledge inten-
sive. However, the research community has been aggressively
working for computer-aided analog design. A good survey of
recent analog synthesis techniques is available in [1].

Existing approaches of automatic circuit sizing are broadly
classified into three main categories, namelyknowledge-based
optimization, simulation-based optimization,and analytical
equations-based optimization. In this context, we note that,
unlike in the digital domain, the standard cell based approach
[2] is quite restrictive in the analog domain.

Since analog design requires detailed circuit knowledge, a
major approach of implementing an analog synthesis tool has
been the knowledge-based approach. Some of the existing tools
which follow this approach are BLADES [3], OASYS [4], and
IDAC [5] and [6]. However, the application of this approach has
been limited due to requirement of having to codify extensive
circuit knowledge and design heuristics.

On the other hand, DELIGHT.SPICE [7], ASTRX/OBLX
[8], FRIDGE [9], MAELSTROM [10], and ANACONDA [11]
use the simulation-based optimization approach. This approach
does not require much circuit knowledge. Hence, the main
advantage of this approach is that a wide range of circuits can
be synthesized. However, the basic limitation comes from the
requirement of costly circuit simulation in each iteration of the
optimization algorithm.

To reduce the CPU time of optimization-based techniques, the
third approach is analytical equations-based optimization, where
the circuit performances are evaluated using analytical equa-
tions. OPASYN [12] uses simple analytical equations of op-amp
performance.OPTIMAN[13]usesasymbolicsimulator, ISAAC
[14], to get the analytical models of the ac performances of a
circuit. However, in [13], analytical models for dc and transient
performances have to be provided by an expert designer. In
circuit sizing, the use of a single weighted cost function [12] is
inadequate since sizing is a constrained optimization problem
with complex tradeoffs among the constraints. With simulated
annealing [13], the drawback is that it is computationally inten-
sive (even with the use of analytical equations of performances)
and cannot be realistically used in an interactive setting.

It therefore appears that an analytical equation based con-
strained optimization method is the most promising approach
for automatic circuit sizing. However, the existing technique
that uses this approach [15] suffers from the drawback that it
needs expert designer knowledge to sequentially introduce the
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constraints. If this is not done, the method may fail to provide
even a feasible design point. Further, any optimal point that is
provided is only a local optimum design point. Thus, the objec-
tive of this work is to propose an analytical equation-based con-
strained optimization method that is fast, robust, and provides
the globally optimal design point.

The main purpose of developing an automatic sizing tool is
that the design space of a circuit will be quickly explored to
find a design point at which the circuit satisfies the required
specification and, at the same time, some cost (e.g., area, power)
is minimized. This places a number of stringent requirements on
the tool, which are enumerated below.

• In order to support an iterative design methodology, the
tool should be fast.

• The final solution point should be independent of the ini-
tial guess.

• The optimization technique should be extremely robust.
In particular, the designer should not be burdened with the
task of tuning the optimizer.

In this paper, a circuit sizing method for CMOS op-amps is
proposed, which meets these three requirements as verified via
a prototype implementation applied to a number of two-stage
op-amps. The effectiveness of the method is due to the use
of convex optimization techniques via a geometric program-
ming formulation. It is similar to the recent work described in
[16]–[19], which appear to have been done independently and
in parallel to this work [20]. However, compared to [16], our
technique addresses second-order effects and is far less restric-
tive in terms of the range of MOS models it supports. This is
because, unlike [16]—where the problem is solved as a single
geometric program—we show that it is necessary to formulate
and solve the problem as a sequence of (convex) geometric pro-
grams. In other words, the formulation of [16] is just the first
step of our approach. This difference is crucial in the context of
submicrometer technology, since the models necessary to sup-
port our methodology need to support the geometric program-
ming paradigm only in their first order effects, while the models
of second order behavior can be arbitrary. The sequential convex
programming formulation is made possible by judiciously com-
bining various techniques, most notably relaxed dc formulation
[15] and casual dc analysis [22] with the powerful geometric
programming paradigm [23]–[25].

The organization of the rest of this paper is as follows. In
Section II, the basic approach of op-amp sizing is described. In
Section III, with the first-order Shichman–Hodges (S–H) model,
the op-amp sizing problem is formulated as a convex program-
ming problem. Section IV describes how the higher order effects
can be captured through an iterative approach. In Section V, the
sizing technique is applied on a large number of op-amp circuits.
Experimental results are provided in Section VI. By the use of
a new accurate MOS model, the accuracy of performance pre-
diction has been increased in Section VII. Section VIII provides
a discussion, while Section IX summarizes the work that is de-
scribed in this paper.

II. THE BASIC APPROACH

The proposed op-amp sizing technique is based on three basic
ideas. The first one is that of extrapolating the saturation region

Fig. 1. MOS transistor characteristic.

characteristic of a transistor into its linear region of operation.
The use of the extrapolated transistor characteristic results in a
design formulation that is simple and robust.

The second idea on which our sizing technique is based is that
the first-order and higher order behavior of the MOS transistor
have been separated. With the first-order model, it is shown that
the constraint functions and the objective function for the design
optimization problem that has been addressed areposynomials
in the design variables, namely transistor sizes and biases. In
other words, with the first-order model, the op-amp synthesis
problem is formulated as a geometric programming problem.
With a logarithmic transformation, a geometric programming
problem becomes a convex optimization problem.

Finally, the higher order effects are handled by iteratively
updating the first-order model parameters using the higher
order transistor models, and by solving a sequence of convex
programs. The technique of iteratively updating the first-order
model parameters is elaborated in Section IV. The parameter
update is based on iteratively refining the dc operating point.
Section III-A describes a systematic approach for finding the
dc operating point.

A. Extrapolated Transistor Characteristic

Usually transistors in an analog circuit are biased in the
saturation region where the drain conductance is low, which
helps to get high ac performance. Therefore, for analog design
analysis, one can use only the saturation region characteristic.
Systematic use of the saturation region characteristic is pictori-
ally illustrated in Fig. 1. The continuous curves are the actual

– characteristic curves of a transistor with different .
The dotted line divides the whole region of operation into two
parts, linear (left) and saturation (right) regions. The dotted line
cuts a characteristic curve at a point where is equal to the
drain saturation voltage . By extrapolating the saturation
region characteristic curves into the linear region, as shown by
the dashed lines in Fig. 1, a set of artificial characteristic curves
are obtained. These characteristic curves are simple and smooth
over the entire region of operation. For analog design analysis,
rather than using the actual characteristic curves, these artificial
characteristic curves can be used. However, to ensure that at
the final design point the transistors are actually in saturation,
it is necessary to satisfy the constraint for all
transistors. In the following section, we propose a systematic
approach of circuit analysis for finding a set of design space
constraints which helps to satisfy the constraint on.
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If the S–H model is used for the extrapolated device char-
acteristic curves, over the entire region of operation transcon-
ductance , drain conductance , and effective gate-to-source
voltage ( – ) are, respectively,

proportionality constant

and

(1)

Note that, assuming constant , the device model pa-
rameters , , and – are product of power (PoP)
functions of , , and . A PoP function is the product
of a positive coefficient and various variables that are raised to
some power (any real number). This is the key information on
which our sizing formulation is based.

The extrapolated device characteristic curves and the design
space constraints are used in our proposed sizing technique.

B. Geometric Programming Problem

A geometric programming problem is of the following form:

minimize
subject to

and
(2)

The objective function and each one of the constraint
function are posynomials of the design variables’s. In
equation form, a posynomial function is

(3)

where ’s are positive coefficients and ’s are arbitrary real
numbers. Note that in the above equation there are a number of
PoP terms. The coefficient is referred to as the constant of
the corresponding PoP term. For any, the corresponding ’s
are referred to as the powers of theth PoP term. With a loga-
rithmic transformation on the design variables, the posynomial
function is

(4)

where . It can be easily shown that is a convex
function [23] of the transformed variables ’s. Therefore,
with the logarithmic transformation on the design variables,
the geometric programming problem becomes a convex
programming problem. In the following, it is shown that the
op-amp sizing problem is a geometric programming problem.
As a result, the op-amp design problem becomes a convex
programming problem. The well known property of a convex
programming problem is that any of its local minima is also a
global minimum.

Fig. 2. Simple op-amp, a running example.

III. SIZING FORMULATION WITH A RUNNING EXAMPLE

Various steps of op-amp sizing are described here by using a
simple running example, shown in Fig. 2. Consider the design
optimization problem as

minimize a weighted sum of gate area and power while

low frequency gain,

unity gain frequency,

slew rate,

common mode range, CMR CMR

In this design problem, and of the transistors and the
bias current are the design variables. In the op-amp,
and are matched pairs. The various intermediate steps
of the design formulation follow.

A. DC Analysis

In this step, the circuit is analyzed to determine analytical
equations that give its dc operating point. These equations are
solved to get the dc operating point, which is then used for pre-
dicting its performance.

It is observed that in a CMOS analog circuit, various node
voltages can be defined by the gate-to-source voltages of various
transistors. Further, the gate-to-source voltages of the transistors
can be determined by its size and its dc current. Finally, the dc
current through all the transistors can be essentially determined
by only a few transistors, which we refer to as current source
transistors.

An exception to the approach described above is the output
node, whose voltage usually cannot be determined from the

’s of various transistors. However, in actual applications,
op-amps are used in a closed loop configuration, where the
output node voltage is stable at a predetermined value (usually
zero) [22].

In the example op-amp, the bias stage current isand the
drain current of the current source transistor is

(5)
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TABLE I
V AND V OF VARIOUS TRANSISTORS

The current determines the current through the other
transistors. Since the transistor pairs and are
matched, their drain currents are

(6)

From (1), the gate-to-source voltage of all transistors can be
written as

(7)

Now, using a casual dc analysis which is described in [22],
various node voltages are expressed in terms of’s and var-
ious biases.

The analysis starts from the positive supply and moves to-
ward the negative supply rail. Consider the transistor. The
drain-to-source and gate-to-source voltages of the transistor
are1

Therefore,

(8)

Note that the node voltages and are the same, since
and are assumed to be at the same dc bias. Now considering
the transistors and , respectively,

(9)

and

(10)

These node voltages are now used to express the’s and
’s of the various transistors as given in the Table I.

The above analysis shows that (5)–(10) and Table I represent
a complete set of nonlinear equations whose solution provides
accurate node voltages. An effective way of solving this set of
nonlinear equations is through a fixed-point scheme. The overall
method of finding node voltages is shown in Fig. 3.

In the first step, channel length modulation factor,
, and threshold voltage, , of various tran-

sistors are updated based on the and values in the
previous iteration. Note that in the first iteration, ’s
are assumed to be one and all the ’s are taken to be .
Next, the drain current of all current source transistors in the
circuit (e.g., in the example circuit) are found. These

1V andV represent, respectively, the magnitudes of drain-to-source
and gate-to-source voltages of the p-transistorM .

Fig. 3. Iterative approach of finding dc operating point.

currents are then used to find the current through the remaining
transistors in the circuit.

In the next step, ’s are determined from ’s, ’s,
’s, and ’s of the transistors. In the subsequent

step, from the ’s, various node voltages are determined by
using (5)–(10). In the final step, ’s and ’s are evaluated
using their equations, which are given in Table I.

The values of the ’s and ’s, which are obtained at
the end of each iteration, are then used in the next iteration to
get a more accurate estimate of the dc operating point. The ter-
minating condition is that all node voltages in two consecutive
iterations are very close. It is found that this formulation re-
sults in a highly contractive fixed-point scheme that converges
very fast. This is because, across the design space, the value
of ’s are close to one and the back bias depen-
dency function of the threshold voltage is strictly monotonic
with small slope.

B. Design Space Constraints

Here we find the design space constraints by which all the
transistors are kept in saturation, i.e., away from subthreshold
and linear regions. To keep all the transistors away from the
subthreshold region with a margin of , the constraints to
be satisfied are

(11)

On the other hand, to keep a transistor away from the linear
region, we require

for n-type
or for p-type

(12)

where
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Note that in the S–H MOS model, is equal to . How-
ever, this new notation is introduced for ease of extending the
design formulation for any other MOS model, such as the one
described in [20].

In the example circuit, the gate and drain voltages of the tran-
sistors and are the same. Therefore, these two transistors
are always in saturation. However, to keep (and ) in satu-
ration, we require . In quiescent condition,

. Further, from (8), . Therefore, the
design inequality is

or

(13)

To keep transistor away from linear region, we require
. Using the expressions of and in (9) and (10),

we get

(14)

Note that, assuming constant ’s and ’s, (11), (13),
and (14) are posynomial functions of ’s, which are con-
strained to be less than or equal to one. As will be made clear
in the following sections, this is an important step toward our
formulation.

Finally, to keep the transistor sizes within the specified limit,
the following inequalities should be satisfied:

(15)

C. Performance Constraints and Objective Function

The low frequency gain of the op-amp is .
Therefore, to meet the gain specification

(16)

The unity gain frequency of the op-amp is . So to get
the specified

(17)

Slew rate of the op-amp is . So the constraint to get
the specified slew rate is

(18)

The negative common mode range of the op-amp is CMR
. Note that CMR has negative

value. Therefore, to get the specified CMR

CMR

or

CMR
(19)

On the other hand, the positive common mode range is
CMR , which should be greater than
CMR . In other words

CMR
(20)

The objective function is a weighted sum of total effective
gate area (in micrometers micrometers) and total quiescent
current of the op-amp (in microamperes), which is given by

(21)

In this equation, and are two specified weights.
To summarize the formulation which is given in this sec-

tion, an op-amp design problem is a constrained optimization
problem of the following form:

minimize
subject to

(22)

The objective function is given in (21) while various constraint
functions are provided in (11) and (13)–(20). It is observed that,
assuming constant , and ( , the constraint
functions ’s areposynomialsof , , , and of var-
ious transistors. Further, the objective functionis a posyn-
omial of , , and of the transistors. With the same as-
sumption, it is also found that of the transistors are PoP func-
tions of the design variables ( , , and the bias current ).
Therefore, with the extrapolated S–H model where the device
parameters , , and are also PoP’s in the design vari-
ables, the objective and the constraint functions are posynomials
of the design variables. With logarithmic transformation, the op-
timization problem becomes a convex programming problem.

IV. FORMULATION OF OP-AMP DESIGN AS A SEQUENCE OF

CONVEX PROGRAMMING PROBLEMS

In the last section, assuming constant, , and
, the op-amp synthesis problem is formulated as a convex

programming problem. Here, to account for the effect of vari-
ations in , , and , the overall method is
shown in Fig. 4. The various steps of the method are as follows.

Step 0) Accept the designer specifications and the circuit
to be sized. The user may provide an initial design
point, which is optional. By default, the initial de-
sign point is taken as the minimum feature size for
all the transistors. Using two iterations of the dc
analysis technique described in Section III-A, an
approximate dc operating point at the initial design
point is found.
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Fig. 4. Op-amp sizing method through sequential convex programming.

Step 1) In this step, the constants and powers of the PoP rep-
resentation of the various ’s are determined. The
values of ’s, which are used to determine the
constant, come from the previous iteration. For the
example circuit, refer to (5) and (6) for the relevant
PoP functions. Similarly, the constants and powers
of the PoP representation of the various’s, ’s,
and ’s are also determined. Using the values of

’s, which come from the previous iteration, the
threshold voltage of the transistors are also evalu-
ated here.

Step 2) From the constants and powers of ’s, ’s,
’s, ’s, and the values of ’s, the objec-

tive function and the constraint functions in the
transformed design space are derived. Both the

objective function and the constraint functions are
convex functions.

Step 3) The convex programming problem is then solved
to find the global optimal solution of the current
iteration.

Step 4) In this step, the dc operating point is updated for the
new solution design point. The method of finding
the dc operating point is the same as the iterative
method described in Section III-A. The key differ-
ence, however, is that only one pass of the flow
graph shown in Fig. 3 is executed. In the single

pass, to get the updated values of ’s, ’s,
and ’s, the values of ’s and ’s are taken
from the operating point at the solution point in the
previous iteration.

Step 5) In this step, the convergence of the sequence of so-
lution design points and node voltages are checked.
If the design points and the node voltages of the last
two iterations are very close, then the op-amp netlist
with sized transistors is provided. Otherwise, we go
back toStep 1.

Note that within an iteration, the values of ’s and ’s,
which are used inStep 1to determine the convex programming
problem, are not mathematically consistent with the solution
point. However, as the iterations proceed and when the sequence
of solution points converges and the node voltages converge, the
inconsistency becomes negligible. Such an approach is in spirit
similar to the relaxed dc formulation, which is described in [15].

V. TWO-STAGE CMOS OP-AMP SIZING

The op-amp sizing technique, which is described in the
last two sections, is applied here for designing a number of
two-stage op-amps. For ease of referencing, in Section V-A,
the op-amp topologies are characterized by five binary vari-
ables. While details of the design formulation of the two-stage
op-amps are available in [20], a summary of dc analysis of
the op-amps, design space constraints, and the performance
constraints are provided, respectively, in Sections V-B–V-D.
The design formulation is similar to that of the running example
op-amp, which is given in Section III.

A. Characterization of Two-Stage Op-Amps

In the class of two-stage op-amps, there is a basic structural
similarity, namely the hierarchical structure of different config-
urations is the same. It is only the subcircuits, which are the
leaf cells of the hierarchy, that are different across the various
topologies [29].

A two-stage op-amp consists of an input stage, a second stage,
and a compensating circuit. The input stage has three parts:
current source, differential pair, and current mirror. The second
stage has two parts: transconductance amplifier and active load.
Each one of the four subcircuits, namely differential pair, current
mirror, transconductance amplifier, and active load, can be either
simple or cascoded. For a cascoded current mirror, a level shifter
is required between the input stage and the second stage. The
compensating circuit consists of a capacitor and a resistor. Fur-
ther, the transistors in the differential pair can either be n-type or
p-type. The choice of polarity of the transistors in the differential
pair also determines the polarity of the transistors in the other
subcircuits. All the possible op-amp topologies are characterized
by five binary variables, which are defined in Table II. With
n-type differential pair transistors, the supercircuit [29] of the
considered set of op-amps is given in Fig. 5. In the same figure,
the relation among the binary variables and the subcircuits is
also indicated by naming the enclosed subcircuits by the corre-
sponding binary variables. So, from the supercircuit, depending
on the values of the binary variables, other topologies can be
constructed by selectively including the enclosed subcircuits.
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Fig. 5. Supercircuit of the two-stage op-amps.

TABLE II
DEFINITION OF THE TOPOLOGYCHARACTERIZING BINARY VARIABLES

B. DC Analysis

DC analysis includes finding drain currents through various
transistors, determining ’s of the transistors, expressing
various node voltages in terms of ’s, and, finally, writing

’s and ’s in terms of the node voltages. The current
through the input stage and the second stage are, respectively,

and

(23)

The current through the other transistors are

for

for
(24)

The sizes of transistors in the level shifter are so chosen that
the node voltages and are equal. With , the
balance equation (39), which helps to achieve small systematic
offset, remains simple even with fully cascode first stage. There
are a number of possible ways by which this can be achieved.

However, a simple way to get is that the sizes of tran-
sistors and are equal, the length of the two transistors

and are the same, and their widths satisfy the following
constraint:

(25)

Now with , the current through the transistors
and are

(26)

The gate-to-source voltages of all the transistors are determined
by

where

(27)

Through a casual dc analysis, which is discussed in Sec-
tion III, various node voltages are expressed in terms of ’s
and bias voltages

(28)

Node 16 is the output node of the op-amp. As described in Sec-
tion III, this node does not have a well defined equation. How-
ever, in actual application, op-amps are used in close loop con-
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figuration, and in this configuration the output node voltage is,
usually, stabilized to zero. It may be noted that

.
The back bias of the transistors in the op-amp in terms of

various node voltages are as follows:

for

(29)

Finally, drain-to-source voltages of the transistors are expressed
in terms of the node voltages as follows

(30)

Note that the expressions of some ’s include the binary
variables ’s. This is because these ’s are topology de-
pendent. Therefore, the binary variables are used to define the

’s across the various op-amp topologies.

C. Design Space Constraints

The design space constraints include the technology limits
of the transistor sizes and the constraints on design variables,
which help to bias the transistors in saturation. The constraints
corresponding to the technology limits are straight forward, and
hence they are not explicitly given here. Recall from Section III
that the inequalities that keep the transistors away from the
linear region are given by

for n-type

or for p-type
(31)

where

Using the appropriate values of the node voltages from (28) in
the above inequality, we get the required constraints.

Consider the input stage of the supercircuit. To keep the tran-
sistor (and ) in saturation, the required inequality for
simple differential pair is

i.e.

(32)

and for cascode differential pair, the required inequality is

i.e.

(33)

In cascode differential pair, the transistors (and ) are
kept in saturation by the inequality

i.e.

(34)

The transistor is kept in saturation by the inequality

i.e.

(35)

In the second stage, the transistor is kept in saturation
by the inequality

i.e.

(36)

and the transistor is kept in saturation by the inequality

(37)

Equation (37) is derived based on the assumption that the
. The design of the level shifter to get this biasing condition

is already discussed in Section V-B. Note, finally, that the re-
maining transistors in the supercircuit are automatically biased
in the saturation region.

All the transistors in the op-amps are kept away from the sub-
threshold region by the inequalities,

(38)

Along with the various inequality design space constraints,
there are two equality constraints also. One of them is given in
(25), which is related to designing the level shifter to get

. The other equality constraint is the balance equation, which
is given by

(39)
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The balance equation is necessary to keep the systematic offset
small [27].

The concluding remarks about the design space constraints
are that they are posynomial in ’s if the ’s and ’s
are assumed to be constant. With a further simplifying assump-
tion, i.e., constant , the ’s are PoP functions
of the design variables for the S–H model. Therefore, the de-
sign space constraints are posynomials of the design variables.
Finally, the equality constraints are PoP functions of design vari-
ables. Therefore, each one of the equality constraints can be
translated into two PoP terms less than or equal to one.

D. Performance Constraints and Objective Function

This section provides analytical expressions of various per-
formance functions of the op-amps. Performance constraints are
then derived by constraining the performance expressions by
their respective specified value. The analytical expression of the
objective function is also given here.

1) DC and Transient Performances:For simple input dif-
ferential pair ( ), the positive common mode range is
CMR . Therefore, to meet
its specification, the constraint is

CMR
(40)

On the other hand, for cascoded input differential pair (i.e.,
), CMR and the corresponding

performance constraint is

CMR (41)

The negative common mode range is given by CMR
, and to meet its specification

CMR
(42)

With simple output transconductance amplifier ( ), the
positive output swing is and
the required constraint to meet specification is

(43)

On the other hand, when the transconductance amplifier is cas-
coded (i.e., ), the positive output swing is

and to meet its specification we require

(44)

With a simple second-stage active load, to meet the negative
output swing specification, we require

(45)

On the other hand, when the active load is cascoded ( ),
the negative output swing constraint is

(46)

Note that the magnitude of the bias voltage, rather than its
actual value, is taken as the design variable.

To meet the slew rate specification, the following two inequal-
ities should be satisfied

(47)

2) AC Performances:The low frequency gain of an op-amp
is

where output conductances of the two stages are

(48)

To satisfy the gain specification, we require

i.e.

(49)

where

Transfer function of a two-stage compensated op-amp can be
well approximated with its low frequency gain, one zero and
three poles. With appropriate choice of the compensating re-
sistor ( ), the zero of the transfer function of the
op-amp can be placed at very high frequency [27]. The three
poles of the transfer function are well approximated by

and

(50)

In order to have a transfer function that is well approximated
by a single pole system in the frequency range of interest, the
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second pole should be beyond the gain bandwidth product
( ), i.e., the following should be satisfied

(51)

For a true single pole behavior, unity gain frequency (UGF) is
equal to . However, with the approximate single pole
behavior that we get by (51), well approximates the
UGF. Hence, the specified UGF can be achieved by

UGF
(52)

The phase margin is

PM UGF UGF

To meet phase margin specification

UGF UGF PM

or
UGF UGF

UGF
PM

or

PM
UGF UGF UGF

or

PM

(53)

The low-frequency CMRR of an op-amp is

CMRR
CMG

where

CMG

and

i.e.

CMRR

(54)

To meet its specification, we require

CMRR
CMRR

i.e.

(55)

where

CMRR

CMRR

CMRR

CMRR

Note that the above equation for CMRR—which, as our
results in Section VII show, matches SPICE simulation
well—does not include the effect of mismatch. Therefore, for
a more realistic estimate of CMRR, the effect of statistical
mismatch variations should be routinely incorporated in SPICE
simulation and in analytical techniques such as ours.

3) Objective Function:In the optimization formulation, a
weighted sum of the total gate area of the transistors and the
power dissipation is taken as the objective function to be mini-
mized.

The total power dissipation is

PD

and the total effective gate area is

EFF AREA

Note that all the performance constraint functions are posyno-
mials in the device parameters ’s, ’s, ’s, and ’s.
These device parameters are PoP function of design variables.
Therefore, theperformanceconstraint functionsareposynomials
in the design variables. Further, the power dissipation and the
total effective gate area are posynomials of the design variables.
Aswith thedesignspaceconstraints, theperformanceconstraints
are expressed in terms of device parameters, which are in turn
functions of the actual design variables.

VI. SIMULATION RESULTS

The CMOS op-amp sizing technique that has been described
so far has been implemented in MATLAB [30] for the class
of two-stage CMOS op-amps. In the implementation, each
convex programming problem is solved by using the sequential
quadratic programming method, which is available in the op-
timization toolbox [30]. This was done in the interest of quick
prototyping in order to provide a proof of concept. As our exper-
imental results show, this implementation is very fast in spite of
the fact that we did not use any of the far more efficient special
purpose techniques that exist for convex optimization [25].
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TABLE III
SPECIFICATIONS, S–H MODEL BASED PREDICTEDPERFORMANCES ANDSPICE

SIMULATED PERFORMANCES AT THEFINAL DESIGN POINT OF THE OP-AMP

IN THE FIRST EXAMPLE

TABLE IV
OPTIMIZATION STATISTICS FOR THEFIRST EXAMPLE BY STARTING FROM

SMALL SIZES OFALL THE TRANSISTORS

A number of two-stage op-amps were sized for a 1.6-m tech-
nology. The experimental results are given in this section. These
results include CPU time required to find the final design point,
the convergence behavior of the method, and a comparison of
predicted performances with SPICE simulations based on the
level two MOS model.

Example 1: The topology for the first example was the
simplest op-amp (all subcircuits were simple). The set of per-
formance specification of this example is given in the second
column of Table III.

The circuit was sized by starting from four different initial
design points. The four initial design points are: 1) small size
(minimum feature size m, m) of all the
transistors; 2) small size of the input-stage transistors and large
size ( m, m) of second-stage transistors;
3) large size of the input stage transistors and small size of the
second-stage transistors; and 4) large size of all the transistors.
The optimization statistics in case 1), i.e., starting with small
size of all of the transistors, is shown in Table IV. In the table,
the first column indicates the iteration number of the sequential
convex optimization algorithm. The second column gives the
CPU time (IBM RS/6000, running AIX) required for solving
the convex programming problem using sequential quadratic
programming. The last three columns of the table provide the
maximum difference in transistor lengths and widths, and node
voltages at the two-solution design points in two consecutive it-
erations. The iteration process was stopped when the maximum
difference in the lengths and the widths was less than 0.02m

TABLE V
OPTIMAL DESIGN POINT OF THE FIRST EXAMPLE

TABLE VI
COMPARISON OF THEFOUR FINAL DESIGN POINTS OBTAINED BY STARTING

FROM FOUR INITIAL GUESSES IN THEFIRST EXAMPLE

and the maximum difference in the node voltages was less than
1 mV. With the other three initial guesses, the convergence be-
havior was essentially the same. The sequence of convex pro-
grams converged in less than 50 s of CPU time with at most five
iterations.

The four solution design points, which were obtained by
starting from the four initial design points 1)–4), are denoted
by , , , and , respectively. The solution
point is given in Table V, while Table VI reports the
differences among the four solution design points. Note that
all four solution design points are essentially the same. It
should also be noted in this context that in this and the other
examples in this paper, we have reported the details of the
iterative process with precision in the millivolt range for node
voltages and in the nanometer range for device sizes. This has
been done in order to demonstrate that our technique converges
to a consistent dc operating point and that the final solution is
the same even with very different initial guesses. However, this
does not mean that the transistors have to be sized this precisely
to get the reported performance.

An expert designer would pick a nonminimum channel length
for the input stage transistors to get high gain. On the other hand,
for the second-stage transistors, in order to achieve high slew
rate, he/she would choose minimum channel length with large
channel width. The optimal design point given in Table V is
qualitatively similar to such a choice.

The various performances at the optimal design point as
predicted by the program using the S–H model and the corre-
sponding SPICE simulations (using the level two MOS model)
are given in the last two columns of Table III.

Note that while the S–H model based predictions satisfy the
specifications, many of the performances as actually measured
in SPICE (using level two model) do not. The inaccuracies are
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TABLE VII
OPTIMAL DESIGN POINT IN THE SECOND EXAMPLE

TABLE VIII
SPECIFICATIONS, S–H MODEL BASED PREDICTED PERFORMANCES, AND

SPICE SIMULATED PERFORMANCES AT THEOPTIMAL DESIGN POINT OF

THE SECOND EXAMPLE

due to the inadequacy of the S–H MOS model in the short
channel regime. However, for long channels the model is quite
accurate. To demonstrate this, in the following example we re-
strict the channel length of the transistors to be more than 2.6

m and do the design optimization.
Example 2: This example is the same as the first example

except that the lengths of the transistors were restricted to be
more than or equal to 2.6m (though the technology limit is
1.6 m). The solution design point is given in Table VII. The
predicted performance of the op-amp at the final design point
is given in Table VIII. Note that at the final design point, the
predicted performances using S–H MOS model is close to those
of SPICE simulation. However, the total gate area and the power
dissipation at the solution design point obtained in this example
are, respectively, 57% and 38% more than those at the solution
design point obtained in the first example. It is therefore clear
that the S–H model is inadequate for synthesis tools targeted at
modern short-channel processes. So, we need a MOS model that
is accurate in the short-channel regime. To increase the design
accuracy in the prototype, the S–H model is replaced by a newly
proposed MOS model. The corresponding simulation results are
provided in the following section.

VII. I MPROVING DESIGN ACCURACY USING ACCURATE

MOS MODEL

In the previous section it has been demonstrated that the pro-
posed sizing method is robust and it has the capability of picking
the optimal design point. However, in the implementation of
the technique, the S–H MOS model was used, which is not an
accurate model for small-channel length transistor. Therefore,
at the design points, which were obtained by the design op-
timization, the op-amps could not meet some required perfor-
mances. To improve the design accuracy, in the second version
of the prototype, the S–H model was replaced by a newly pro-
posed MOS model – (alpha–Analog). While the details of
the model are available in [20], in the following section the key
equations are provided. Section VII-B provides some modified
equations compared to those in Section V, which are required
for replacing the S–H model by the– model. Simulation ex-
amples are provided in Section VII-C.

A. The Model Description

The – MOS model is an extension of the simple-power
law MOS transistor model proposed by Sakurai and Newton
[31]. It may be noted that, since in the-power model the drain
conductance over the saturation region is taken as zero, it can
not be directly used for analog circuit analysis.

A summary description of the– model is given below.
As the model is intended for use in analog circuit design, the
model description is only for the saturation region of operation.
A transistor is in the saturation region when

and (56)

The threshold voltage and the drain saturation voltage are, re-
spectively,

and
(57)

In the saturation region, drain current, transconductance, and
drain-to-source conductance are, respectively,

(58)

In (57), is the zero back bias threshold voltage, while
and represent dependencies of threshold voltage on

the back bias and the channel length, respectively. The
dependency functions are

and
(59)
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In the same equation (57), the parameters and are given
as

(60)

For a long-channel transistor drain current,is proportional
to , i.e., in (58) is two. However, in [31] it is shown that the
value of is dependent on the channel length and in the small
channel length regime, the value is quite close to one. We found
that the parameter in the equation for also depends on
the channel length. For the two parameters the following models
are taken:

(61)

The transconductance [in (58)] is obtained by taking the
derivative of with respect to .

Now we consider the drain conductance. In the S–H
model, . Using this information, we have taken the
model of which is given in (58). In this model, and
are constant while the term represents the dependencies of

on and . The model of is as follows:

where

and are second-order polynomials of

(62)

The term in (58) represents the dependency ofon .
Over the saturation region of operation, the function can be well
approximated by an exponential function. The model we have
taken for is

where and are second-order
polynomials of and

(63)
The model parameter extraction procedure is given in [20].

B. Application of the New Model

The new MOS model, which is described in the last section,
is used for op-amp design automation. In the new model, (58)
provides the first-order models of , and as function
of biases and transistor sizes. These first-order models are PoP
functions. This property of the new model helps to use it in
design optimization through sequential convex programming.
In the sequential design optimization, (58), which provides first-
order models, is used within the main convex programming (CP)
optimization. For the iterative to update from one CP to the next
CP in the optimization, the higher order effects are captured by
using (57) and (59)–(63). With the new model, all the design
equations provided in Section V remain the same. However, the
expressions of the drain currents and effective gate-to-source

TABLE IX
SPECIFICATIONS, NEW MODEL BASED, AND S–H MODEL BASED PREDICTED

PERFORMANCES ANDSPICE SIMULATED PERFORMANCES AT THEFINAL

DESIGN POINT OF THE OP-AMP IN EXAMPLE 3

voltages of the transistors are different. The current through the
input and the second stages are, respectively,

and

(64)

and the effective gate to source voltages of the transistors are

(65)

C. Simulation Results

Example 3: In this example, the topology is the same as that
in Example 1 (Section VI-A), i.e., simple op-amp. The specifi-
cation set of this example is shown in Table IX. Like the other
example, here the op-amp was designed by starting from the fol-
lowing four initial design points:

1) small size of all the transistors;
2) small size of the input-stage transistors and large size of

second-stage transistors;
3) large size of the input-stage transistors and small size of

the second-stage transistors;
4) large size of all the transistors. Further, the op-amp was

designed by starting from 25 random initial guesses that
are uniformly distributed in the space of design variables.

The optimization statistics for case 1) is given in Table X. In
the table, the maximum constraint violation reported for each
iteration is reported by the SQP in MATLAB at the start of the
solution process corresponding to that iteration. Note that all the
specs have been normalized to have a value of one. Thus, a con-
straint violation of two is a 200% violation, while a constraint
violation of 0.002 is a 0.2% violation. The final solution design
point is given in the Table XI.



MANDAL AND VISVANATHAN: CMOS OP-AMP SIZING USING A GEOMETRIC PROGRAMMING FORMULATION 35

TABLE X
OPTIMIZATION STATISTICS FOREXAMPLE 3 BY STARTING FROM SMALL SIZE

OF ALL THE TRANSISTORS IN THEOP-AMP

TABLE XI
THE OPTIMAL DESIGN POINT IN EXAMPLE 3

For each of the other 28 cases, the required CPU time is
less than 60 s and the required number of iterations are 8 to
11. Note that in this example, the required CPU time is more
than that in Example 1. All the solution points, which are ob-
tained by starting from the four deterministic and 25 random
initial guesses, were compared. It is found that in these solu-
tion points, the maximum deviation in ’s and ’s are, re-
spectively, 0.0077 m and 0.0032 m. The performance of the
circuit at the final design point was predicted using the new
model, SPICE simulation, and the S–H model, which are given
in Table IX. Note that the predictions based on the new model
and SPICE simulation are quite close to the specifications, while
the S–H model based prediction overestimates some of the per-
formance metrics.

Example 4: In this example, the topology is the most
complex op-amp among the considered class of op-amps.
Both the first and second stages of the op-amp are cascoded.
The design specifications are shown in the second column
of Table XII. Like the other examples, here the op-amp was
designed by starting from the four widely varying deterministic
initial design points and 25 uniformly distributed random
initial design points. The optimization statistics for the starting

TABLE XII
SPECIFICATIONS, NEW MODEL BASED, AND S–H MODEL BASED PREDICTED

PERFORMANCES ANDSPICE SIMULATED PERFORMANCES AT THEFINAL

DESIGN POINT OF THE OP-AMPIN EXAMPLE 4

TABLE XIII
OPTIMIZATION STATISTICS IN EXAMPLE 4 BY STARTING FROM SMALL SIZES

OF ALL THE TRANSISTORS IN THEOP-AMP

point with all transistors at minimum sizes are provided in
Table XIII. Note that because of the circuit complexity, the
required iteration number is high. However, it converges
steadily to the final solution point and the required CPU time
is less than three minutes. The final solution design point is
given in the Table XIV. The design optimizations, by starting
with the other initial design points, also converge to the final
design point within five minutes CPU time and with less than
30 iterations. All the solution points, which are obtained by
starting from the four deterministic and 25 random initial
guesses, are very close to each other. It is found that in these
solution points, the maximum deviation in ’s and ’s are,
respectively, 0.0135 m and 0.0032 m. The performance of
the circuit at the final design point was predicted using the
new model, SPICE simulation, and the S–H model, which are
given in the Table XII. In the same table, the second column
provides the specifications. Like the previous example, here the
predictions based on the new model and SPICE simulation are
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TABLE XIV
THE OPTIMAL DESIGN POINT IN EXAMPLE 4

quite close to the specifications, while the S–H model based
prediction overestimates some of the performance metrics.

VIII. D ISCUSSION

The results presented so far have left a few questions unan-
swered, while also opening up new avenues of research. We ad-
dress these points in this section.

The key concept in our approach is that the CMOS op-amp
sizing problem can be formulated as a sequence of (convex)
geometric programs. This is achieved by modeling , ,
and as a PoP function of the transistor sizes and the bias
current at a “relaxed” estimate of the dc operating point [see
(1) and (58)]. Because of this iterative formulation, as the it-
erants proceed and approach convergence, the coefficient and
powers of the first-order PoP model are made accurate via the
use of second order model functions, such as those described
in (59)–(63) for the – model that we have introduced. While
such an approach maintains convexity in each optimization step,
the need for a special model (e.g.,– ) that will have to accu-
rately mimic a standard model (e.g., BSIM3) could be viewed as
a drawback. Therefore, we now outline an approach to sequen-
tial convex programming (SCP) that does not use any special
models.

The key observation is that with a transformation, a PoP
function becomes a linear function whose coefficients can be
easily determined using linear least-squares curve fitting tech-
niques [33]. Thus, in the inner loop of the flow graph of Fig. 4,

we would only use a standard model in the “device model” box
and the only technology in the “find constants and powers …”
box would be linear-response surface modeling. Specifically,
one would first model the of the current source transistors
and then model the , , and of the other transistors
using the standard device model for function evaluation. While
doing this modeling, the quantities and would be kept
at the values determined in the previous iteration of the SCP.
Note in this context that for a PoP model, if is a PoP func-
tion of , , and , then so is of , , and , i.e.,

and are completely interchangeable. Further, as the it-
erants of the SCP proceed to convergence—as indicated by the
proximity of the solutions and the reduction of the maximum
constraint violation (see Table X)—the region over which the
PoP response surface is built can be shrunk, resulting in a better
fit with the standard model. Note that this approach is reminis-
cent of the iterative simulate-approximate-optimize strategy of
CENTER [35].

There is one cautionary note, however. As the independent
variables are varied in order to build the response surface, it is
important that the device model stays in the domain (e.g., satura-
tion) in which a PoP model is a good approximation. Thus, tradi-
tional fractional-factorial design [33], [34], which places sample
points at the corners of the experiment-design box, should be
avoided. Instead, Latin-hypercube sampling [36] should be used
since it spreads the samples more uniformly in the box [35].
Further, those samples that do not fall in the required regime of
device operation, i.e., saturation, should be discarded.

It should be noted that the approach outlined above, though
promising, has not yet been implemented. It remains to be
seen whether this approach of using only standard models will
converge to the same final solution from widely varying initial
guesses, as has been demonstrated in this paper for the–
model.

The next issue that we will address is that of restricting the
devices to operate in the saturation region. We do this because
in standard CMOS op-amp design, the mosfets that are used as
loads or amplification devices are biased in the saturation re-
gion for, among other reasons, the lowthat is achievable in
this region [28]. There are of course specific exceptions to this
rule, e.g., when a parallel connection of an NMOS and PMOS
device is used to build a resistor, or the common mode feedback
transistor in a fully differential two-stage op-amp. At this time,
we handle these situations as special cases that we can fit into
our paradigm. However, the question remains as to whether the
SCP approach can be applied to MOS circuits without any con-
cern about the region of operation of the individual devices, or
even for bipolar circuits. The answer depends on how well the
iterative model-optimize approach that we have outlined in the
context of using a standard model can be extended to these sit-
uations. Essentially, what we require is that the derived device
parameters, e.g., and , be modeled as PoP functions of the
independent design variables and that these PoP models become
accurate approximations of the original device models as the it-
erants converge.

A requirement of our approach is that the performance
constraints have to be manipulated into the form of an upper
bounded posynomial. While we have shown that this is indeed
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possible for a large class of CMOS op-amps and a large number
of specifications, this is nevertheless a restriction. Indeed, our
investigations with complex folded-cascode op-amps show
that it is very simple to cast performance specifications as
signomials(unlike posynomials, these are sums anddifferences
of PoP terms). We would then have a “signomial programming
problem” (where the direction of the constraint inequality is
not an issue). This can be solved as a sequence of geometric
programs [23] and would fit directly into our existing sequential
convex programming approach.

The various issues discussed so far in this section have also
served to highlight the superiority of our approach over that
of GPCAD [16]. Since the approach in [16] is that of approx-
imating and solving the CMOS op-amp sizing problem as a
single geometric program, i.e., one pass of the loop shown in
Fig. 4, their approach could be viewed as a first-order-approx-
imate globally optimal solution. Further, none of the possible
extensions discussed so far in this section are applicable to [16],
since these ideas are predicated on our sequential convex pro-
gramming formulation. Thus, it would be fair to say that our
approach is more general than that of [16].

Note also that the SCP provides a sequence of iterants that
are globally optimal solutions of convex subproblems. Further,
our computational results show that this sequence converges to
the same final solution for widely varying initial guesses. While
these are very appealing features, it should be borne in mind
that this does not guarantee that the final solution is the global
optimum of the original sizing problem.

Not withstanding the extensions described above, there may
remain certain performance metrics like settling time, which
cannot be modeled as a suitable analytic function. Nor is it likely
that symbolic analysis [14], which is excellent for generating ex-
pressions for ac performance metrics, would provide a solution.
While it is possible to meet a given settling time specification by
suitably constraining slew rate, unity gain frequency, and phase
margin (which are modeled as posynomials), this nevertheless
requires user intervention. Indeed, as has been observed in [8],
even the one-time user effort required to derive analytic expres-
sions of performance metrics (for a new op-amp) is a barrier to
the widespread use of techniques such as ours. This is a bar-
rier worth breaching in order to bring the major advantages of
convex optimization into a truly automated circuit-sizing tool.

The best bet for achieving this is response surface modeling.
The idea is essentially the same as the one previously outlined
for accommodating standard device models. The difference
is that instead of building PoP functions based on model
evaluations, we would need to build posynomial or signomial
models of the circuit performance metrics (e.g., settling time)
in terms of the independent design variables using standard
circuit simulation for the “experimental measurements.” Unfor-
tunately, the rich history of response surface modeling [34] has
been focused on modeling polynomials rather than the more
complex posynomials or signomials. In particular, determining
the optimal number of PoP terms for the posynomial model and
picking the correct powers for these terms without requiring
prior analytical knowledge of the physical quantity being
modeled are difficult problems for which only limited results
are available [37]. Extending these results and applying them

to the analog circuit sizing problem within the framework of
sequential convex programming would be a worthwhile area of
research.

Finally, since we have formulated the performance metrics for
the class of two-stage op-amps in the notation of [29], we trust
that it is obvious that their results can be enhanced by replacing
their integer-nonlinear programming by the more powerful in-
teger-convex programming.

IX. SUMMARY

An efficient technique for sizing CMOS op-amps has been
proposed. In this method, the op-amp sizing problem is formu-
lated as a sequential convex programming problem. Such a for-
mulation has two major advantages as enumerated below.

1) Since the convex programming problem is very well un-
derstood, it is very straight forward to solve it in a robust
and computationally efficient manner.

2) The sequence of solutions generated is a sequence of
global optimal of convex programming subproblems.
Intuition therefore suggests that the point to which this
sequence converges is the globally optimal solution
of the original problem. This belief is supported by
experimental results, where it is shown that the method
converges to the same final design point for widely
varying initial guesses.

The method has been prototyped in MATLAB and applied to
a number of two stage CMOS op-amps. The experimental re-
sults highlight the robustness and computational efficiency of
the technique. Further, the optimal design point is qualitatively
similar to one that would be picked by an expert designer.

Although in the initial version of the implementation the S–H
MOS model was used, in the short channel length regime the ac-
curacy of performance prediction was not very good. To address
this problem, in the second version of the prototype a new MOS
model, called the – model, has been used to replace the S–H
model. A number of op-amps were sized using the new model.
The experimental results show the accuracy of performance pre-
diction at the final design point. Further, the results demonstrate
that with the accurate model the sizing technique maintains its
robustness.
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