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Abstract

Background: Pediatric cardiomyopathies are a rare, yet heterogeneous group of
pathologies of the myocardium that are routinely examined clinically using
Cardiovascular Magnetic Resonance Imaging (cMRI). This gold standard powerful non-
invasive tool yields high resolution temporal images that characterize myocardial tissue.
The complexities associated with the annotation of images and extraction of markers,
necessitate the development of efficient workflows to acquire, manage and transform
this data into actionable knowledge for patient care to reduce mortality and morbidity.

Methods: We develop and test a novel informatics framework called cMRI-BED for
biomarker extraction and discovery from such complex pediatric cMRI data that
includes the use of a suite of tools for image processing, marker extraction and
predictive modeling. We applied our workflow to obtain and analyze a dataset of
83 de-identified cases and controls containing cMRI-derived biomarkers for classifying
positive versus negative findings of cardiomyopathy in children. Bayesian rule
learning (BRL) methods were applied to derive understandable models in the form of
propositional rules with posterior probabilities pertaining to their validity. Popular
machine learning methods in the WEKA data mining toolkit were applied using
default parameters to assess cross-validation performance of this dataset using
accuracy and percentage area under ROC curve (AUC) measures.

Results: The best 10-fold cross validation predictive performance obtained on this
cMRI-derived biomarker dataset was 80.72% accuracy and 79.6% AUC by a BRL
decision tree model, which is promising from this type of rare data. Moreover, we
were able to verify that mycocardial delayed enhancement (MDE) status, which is
known to be an important qualitative factor in the classification of cardiomyopathies,
is picked up by our rule models as an important variable for prediction.

Conclusions: Preliminary results show the feasibility of our framework for processing
such data while also yielding actionable predictive classification rules that can
augment knowledge conveyed in cardiac radiology outcome reports. Interactions
between MDE status and other cMRI parameters that are depicted in our rules
warrant further investigation and validation. Predictive rules learned from cMRI data
to classify positive and negative findings of cardiomyopathy can enhance scientific
understanding of the underlying interactions among imaging-derived parameters.
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Background
Cardiovascular Magnetic Resonance Imaging (cMRI) is currently regarded as the gold

standard for the non-invasive acquisition and processing of high-resolution temporal

images for myocardial function and tissue characterization [1]. cMRI is a diagnostic

imaging modality with no ionizing radiation and is available in specialized care clini-

cal centers where it is routinely used to discover sources of abnormalities in cardiac

structure, function and dynamics. Its applicability to the detection and diagnosis of

cardiomyopathies, particularly in pediatric populations, is of immense significance for

timely detection, accurate disease sub-classification and effective clinical management

options with follow-up care by the primary physician in consultation with cardiac

radiologists and specialists. The large amounts of cMRI data acquired per patient

leads to several complexities associated with the annotation of images and extraction

of markers to differentiate the various subtle and rare forms of cardiomyopathies.

These complexities necessitate the development of efficient informatics workflows

among cardiologists, radiologists and primary care physicians to acquire, manage and

transform this data into actionable knowledge for patient care to reduce mortality

and morbidity. Furthermore, there is a clear need to capture, analyse and understand

retrospectively obtained imaging data and the derived parameters to enhance early

detection and timely monitoring of such pediatric heart diseases to lessen morbidities

in adulthood. Cardiomyopathies are believed to be a frequent cause of sudden cardiac

arrest in the young.

Past work in this area has typically been in the image processing domain, wherein

the effort has gone into imaging bio-marker extraction, segmentation of global and

local regions of interest [2], extraction of quantitative metrics such as volume estima-

tion, morphological, functional or flow-based features [3,4] and finally automated tools

for multi-modal image registration. To the best of our knowledge, the clinical work-

flows associated with the cMRI data acquisition and processing have not been studied

from a machine learning perspective to identify areas of inefficiencies wherein intelli-

gent computational tools could be developed to aid pediatric radiologists and cardiolo-

gists in the accurate assessment of cardiomyopathies using a multitude of imaging

biomarkers. In this paper, we develop and test a novel informatics framework called

cMRI-BED (Cardiovascular Magnetic Resonance Imaging Biomarker Extraction and

Discovery) that includes predictive modeling of retrospectively collected, de-identified

cMRI and medical record data to extract classification rules that augment knowledge

obtained from standard practice. We present our preliminary findings from the appli-

cation of this workflow to a dataset containing positive and negative findings for a sub-

set of pediatric patients evaluated for cardiomyopathies.

Cardiovascular disease is the #1 leading cause of death worldwide [5]. Cardiomyopa-

thy (CM) generally refers to a rather rare, yet diverse group of diseases of the heart

muscle that are classified according to anatomy and physiology into the following

types: Hypertrophic cardiomyopathy (HCM), Dilated cardiomyopathy (DCM), Arrhyth-

mogenic right ventricular cardiomyopathy/dysplasia (ARVC/D), Restrictive cardiomyo-

pathy (RCM) and unclassified cardiomyopathies (NCM). In 1996, a highly cited

scientific statement from the American Heart Association (AHA) proposed contempor-

ary definitions and classification of primary and secondary cardiomyopathies that took

into account molecular genetics in cardiology [6]. A recent article thoroughly illustrates
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the various types of common and rare cardiomyopathies, and their classification based

on specific morphological and functional phenotypes [7].

cMRI is a popular non-invasive technology for cardiomyopathy evaluation. The basic

protocols for cardiomyopathy assessment using cMRI are discussed and illustrated in

[7]. A further discussion of assessment of rare cardiomyopathies using cMRI is pre-

sented in [8]. Standardized cMRI protocols are reviewed in [9]. cMRI has recently

emerged as a powerful tool for detecting cardiovascular biomarkers [10]. It is helpful

in making a differential diagnosis between different types of primary and secondary

cardiomyopathies [11-13] (see below). In pediatric populations, cardiomyopathies are

of particular significance due to the need for timely intervention to prevent morbid

outcomes.

Cardiomyopathies are of different types, primary and secondary. Genetic cardiomyo-

pathies are of the primary/instrinsic category and include: (i) Hypertrophic cardiomyo-

pathy (HCM or HOCM), (ii) Arrhythmogenic right ventricular cardiomyopathy

(ARVC), (iii) Isolated ventricular non-compaction Mitochondrial myopathy, (iv) Mixed

Dilated cardiomyopathy (DCM), (v) Restrictive cardiomyopathy (RCM), (vi) Acquired

Peripartum cardiomyopathy, (vii) Takotsubo cardiomyopathy and (viii) Loeffler endo-

carditis. Secondary/extrinsic cardiomyopathies can be categorized based on causal rela-

tionships into:

1. Metabolic/storage: Examples are: amyloidosis and hemochromatosis;

2. Inflammatory: Examples are: viral myocarditis and Chagas disease;

3. Endocrine: Examples are: diabetic cardiomyopathy, hyperthyroidism and

acromegaly;

4. Toxicity: Examples are chemotherapy, and alcoholic cardiomyopathy;

5. Neuromuscular: Example: muscular dystrophy;

6. Nutritional diseases: Example: Obesity-associated cardiomyopathy; and

7. Other: “Ischemic cardiomyopathy” is a weakness in the muscle of the heart due to

inadequate oxygen delivery to the myocardium with coronary artery disease being the

most common cause. This aspect is not supported by current cardiomyopathies classi-

fication schemes.

Table 1 depicts statistics on pediatric populations for genetic cardiomyopathies,

which include HCM [14], DCM, ARVC/D, RCM (and iron mediated CM), NCM [15],

along with Tetralogy of Fallot (ToF) [16] that is a morphological congenital heart

disease (CHD) associated with myopathy of the right ventricle. Some examples of

cMRI-based quantitative and qualitative markers are also depicted. These biomarkers

are representative of structure (morphology), function and dynamics (flow) of the heart

muscle. Myocarditis is an inflammatory disease of the myocardium with a wide range

of clinical presentations, from subtle to devastating [17]. We know from literature that

myocarditis falls under the classification of secondary cardiomyopathies of the inflam-

matory subtype. The definition of myocarditis varies, but the central feature is an

infection of the heart, with an inflammatory infiltrate, and damage to the heart muscle,

without the blockage of coronary arteries that define a heart attack (myocardial infarc-

tion) or other common noninfectious causes. Myocarditis may or may not include

death (necrosis) of myocardial tissue. It may include dilated cardiomyopathy. In this

dataset collected and analyzed in this paper, we include patients who were diagnosed

with myocarditis in addition to the primary genetic cardiomyopathies. Myocardial
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delayed enhancement (MDE) is a feature that is very often present in such patients and

we were looking to see if our predictive models pick up this feature for cardiomyopa-

thy classification from cMRI data.

Machine learning methods are now routinely applied to predictive modeling of dis-

ease states from high-dimensional biomedical data, with rule learning methods becom-

ing useful for classification and extraction of discriminatory biomarkers [18,19]. Both

linear and non-linear modeling methods are available for classification tasks, wherein a

classifier is learned using training data containing possible predictors (e.g. biomarkers)

of a target class (e.g. the presence or absence of a disease). A particular method that

has been applied successfully to ‘omic’ biomarker discovery is the Bayesian rule learn-

ing (BRL) [20] system, which uses a Bayesian score to construct Bayesian networks

(BNs) and to learn probabilistic rule models from them. The models produced are

easily interpretable by the biomedical scientist and have been shown to have fewer

markers and equivalent or greater classification performance in comparison to models

derived from other rule learning methods [20,21]. In this paper, we develop and apply

a novel workflow that permits the application of BRL to cMRI-derived biomarkers for

classification of positive versus negative findings of cardiomyopathy in pediatric

patients. The major enhancements in this journal version of our previously published

conference paper [22] are: (a) we have almost doubled the amount of retrospectively

obtained cMRI-derived data which led to reportable and promising cross-validation

Table 1. Incidence, prevelance and other statistics for five cardiomyopathies and a more
prevalent pediatric congential heart disease called Tetralogy of Fallot or ToF, with
associated right ventricular abnormalities

CM Subtypes HCM DCM ARVC/
D

NCM RCM & Iron
mediated CM

ToF16

Incidence (I) OR
Prevalence (P)

P = 1:500 in absence of
aortic valve disease or
systemic hypertension

I = 5-8
cases

/100,000
P = 36
cases

/100,000

I = 1/
10,000

I =
0.05%
to

0.24%

I = 11.4% to 15.1%
in Thalassemia
major patients
Transfusion
Dependent

I = 9/
1000
live
births

#Patients
evaluated for CM

46 129 44 31 35 684

Total number of
positive diagnosis

w/ CMRI CM

11 18 4 15 12 119

cMRI-based QUANTITATIVE markers

LV myocardial wall
thickness

ABNL ABNL NL ABNL ABNL NL

LV mass index ABNL ABNL NL ABNL ABNL NL

LV Volume index ABNL ABNL NL ABNL ABNL ABNL

RV Volume index NL ABNL ABNL NL ABNL ABNL

cMRI-based QUALITATIVE markers

Myocardial
Delayed

Enhancement

+/- +/- +/- +/- +/- +

Wall motion
abnormalities

+/- +/- +/- +/- +/- +/-

Some examples of standard quantitative and qualitative markers from cMRI that are associated with observed normal
(NL) or abnormal (ABNL) values in each disease based on patients seen at the Children’s Hospital of Pittsburgh (CHP)
between 2000 and 2013. LV refers to Left Ventricular and RV to Right Ventricular regions. The qualitative variables
shown in the table are assigned values of + or - indicating that some patients for the particular subtype indicated
presence or absence of that abnormality.
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predictive performance; and (b) included a known qualitative variable (Myocardial

Delayed Enhancement status) to verify predictive rules obtained from BRL.

The main hypothesis is that our novel cMRI-BED framework developed below, which

includes predictive modeling of retrospectively obtained de-identified cMRI-derived

biomarkers and medical record data into the current standard clinical workflows for

evaluating pediatric patients for cardiomyopathy using cardiac MRI will lead to:

(a) better scientific understanding of the interactions among image-derived biomarkers

that impact positive or negative findings, as depicted in easy to understand IF-THEN

propositional rules; and (b) provide additional statistical information to the cardiologist

in terms of the prediction of positive or negative findings based on the predictive

model/rules learned from training data for a new test case. The use of our Bayesian

Rule Learning (BRL) methods provide a posterior probability for each rule, and since

the rules are mutually exclusive, only one rule will be used for providing the predic-

tion. These predictive IF <condition> -THEN <class> rules directly show the non-lin-

ear interactions among the various image-derived biomarkers along with statistical

information which are believed to depict proof of concept for our working hypothesis.

Methods
Figure 1 depicts the cMRI-BED informatics workflow which represents a simplified

process description by which cMRI-derived biomarkers can be extracted and interac-

tions among the biomarkers can be assessed using state-of-the-art predictive rule mod-

els to assist in the accurate classification of cardiomyopathies in children. The

pediatric patient with a suspicion of cardiac disease based on presenting signs and

symptoms is usually referred by the primary care physician (PCP) to consult with

pediatric cardiology for basic initial clinical cardiac evaluation. Accurate evaluation of

Figure 1 Overview of the Cardiovascular Magnetic Resonance Imaging Biomarker Extraction and
Discovery (cMRI-BED) framework. Standard clinical practice is depicted as dotted box.
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complicated cases necessitate advanced cardiac MRI sequences as recommended by the

experienced pediatric radiologist based on initial clinical findings, family history of

patient and published literature and guidelines laid down by the Society for Pediatric

Radiology. These sequences dictate the preparation of the patient, and subsequent

image acquisition by the technician who works together with the radiologist and tech-

nology to capture the appropriate sets of images, ensuring their quality. Phantom runs

are made with a body of water placed in lieu of the patient with the same parameter

settings to ensure that the values obtained by the technology are within acceptable

ranges.

Once the images are acquired, which takes approximately two hours depending on

the cMRI protocol, they are post-processed by the cardiac radiologist, an appropriately

trained physician who can evaluate the large sets of images and mark regions and con-

tours for biomarker quantification looking for context-dependent abnormalities. The

radiologist also provides qualitative assessments for several standard markers. Com-

mercially available image processing software technology is used to assist the radiolo-

gist in performing these assessments, and is made available through the same or other

commercially available vendors at the scanning site. The commercially available soft-

ware technology permits the generation of standard reports that contain quantitative

and qualitative assessments of the cMRI-based diagnosis, and these reports are sent to

the referring pediatric cardiologist for appropriate treatment. Within the cMRI-BED, we

propose to include our novel predictive modeling tools [20] to analyze retrospective data

acquired for case/control discrimination from the hospital’s database for performing

hypothesis driven retrospective and prospective clinical research studies (see Table 1 for

availability of subjects for different CM types). We will generate classification rules that

can inform the cardiac radiologist, referring pediatric cardiologist and the PCP about the

kinds of interactions between different markers that can better discriminate CM sub-

types for appropriate management based on a training dataset, and we will also be able

to give a diagnosis/prediction for a given patient which currently does not exist in a clin-

ical workflow model.

Using the proposed framework, we can extract both standard (see Table 2) as well as

novel cMRI biomarkers [23-28] for diagnostic and prognostic purposes. An example of

a novel regional imaging biomarker that was recently discovered based on our analysis

of publicly available cMRIs within the Cardiac Atlas Project [29] databases, is briefly

discussed next. Cardiac MRIs of 25 symptomatic patients with coronary artery disease

or left ventricle impairment and 25 asymptomatic patients were used to extract

Table 2. Standard cMRI biomarkers produced by ReportCARD™ system (GE Healthcare)

Left Ventricle (LV)
Parameters

Right Ventricle (RV)
Parameters

Overall Cardiac
Parameters

A.S. Wall (cm)
P.S. Wall (cm)
End Diastolic Dimension (cm)
End Systolic Dimension (cm)
LV End Diastolic Vol (ml)
LV End Systolic Vol (ml)
LV Ejection Fraction (%)
LV End Diastolic Index (ml/m2)
LV End Systolic Index (ml/m2)
Fractional Shortening (%)

RV Major Axis (cm)
RV Minor Axis (cm)
RV End Diastolic Vol (ml)
RV End Systolic Vol (ml)
RV Major Axis Index (cm/m2)
RV Minor Axis Index (cm/m2)
RV Ejection Fraction (%)
RV End Diastolic Index (ml/m2)
RV End Systolic Index (ml/m2)

Stroke Volume (ml)
Stroke Volume Index (ml/m2)
Heart Rate (bpm)
Cardiac Output (l/min)
Cardiac Index (l/min/m2)
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cardiovascular function metrics. This also led to the discovery of a new regional ima-

ging biomarker of cardiac function that we call RMS-P2PD [23] which calculates the

root mean square (RMS) error from average phase to phase regional left ventricular

endocardial displacement, and is computed on a patient specific basis. In [23], we

depict how addition of this RMS-P2PD biomarker to standard biomarkers increased

the leave-one-out cross validation predictive accuracy of BRL models for ischemic car-

diomyopathy classification from 83.8% to 91.9%. The workflow depicted in Figure 1 is

aimed to augment the efficiency and accuracy with which clinical radiologists detect

and treat cardiovascular abnormalities in children.

Below we give an illustrative example for proof-of-concept of this framework, which

uses available rare data from the Children’s Hospital of Pittsburgh (CHP) of University

of Pittsburgh Medical Center (UPMC) which has a premier heart care program. The

framework can be used to assess whether or not certain types of cMRI biomarkers

measured using different technologies are suitable for classification of pediatric cardio-

myopathy, and if so, to what extent. An example would be to assess the value of strain

quantification measures from myocardial tagging sequence using cMRI to detect the

presence or absence of regional morphological changes as an early marker of cardio-

myopathy [15,16] in patients referred for cardiac imaging tests. Strain quantification is

a robust upcoming method for regional myocardial function evaluation, which explains

the underlying pathology of cardiomyopathy that can lead to timely management via

early intervention [16].

Dataset acquisition and characteristics: A de-identified retrospective cMRI dataset

was obtained as below under an ongoing IRB approved exempt study, by collecting

radiological images and electronic medical reports from the PACS and MARS servers

at the UPMC. Inclusion criteria consisted of patients seen at Children’s Hospital of

Pittsburgh between 1998 and 2014 who received a cardiac MRI to evaluate for cardio-

myopathy or myocarditis. Patients with incomplete or poor quality scans were

excluded. Measurements and biomarkers, including age, sex, height, weight, BSA, ven-

tricular volumes, masses and dimensions, wall thicknesses, myocardial delayed

enhancement, heart rate, and calculated measurements thereof were extracted from

the MRI reports (see Table 2 for list of standard cMRI biomarkers). The radiologist’s

impression was studied to determine what abnormality, if any, was present. In addition,

the most recent cardiology progress note, if present, was studied to determine the car-

diology diagnosis. If a patient had multiple cardiac MRIs, only the initial one was used.

This minimized the time between original presenting symptoms or concern for cardiac

anomaly and MRI. As a preliminary study, the dataset was filtered to eliminate patients

with conflicting MRI and cardiology diagnoses or uncertain diagnoses. The resulting

dataset included 83 patients age 0-22 (only four patients were between the ages of 19

and 22, with 2 males and 2 females, and equal distribution of one positive and one

negative case for each gender) evaluated with cMRI at CHP for cardiomyopathy or

myocarditis. For patients with multiple diagnoses (such as combined HCM and left

ventricular non compaction, LVNC), a judgment was made as to which one seemed to

be the primary diagnosis. Table 3 depicts the composition of the dataset including the

number of patients that received a negative diagnostic finding for cardiomyopathy, and

the number of patients that received a positive finding for a particular type of cardio-

myopathy. The dataset contained standard cMRI biomarkers (see Table 2) along with
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gender, age, diagnosis and myocardial delayed enhancement (MDE) status as a binary

variable. It is to be noted that a few of the markers in Table 2 such as Fractional

Shortening (FS), left and right ventricular ejection fractions, cardiac output and the

indices are derived parameters.

We constructed new variables based on the “normal” ranges for the left ventricular

(LV) and right ventricular (RV) end-systolic and end-diastolic volumes and Stroke

Volume parameters [30]. The parameters were normalized to the age and gender spe-

cific mean according to published control data [30] to determine whether a patient’s

volumes are within a normal range given his/her BSA. Patients with volumes that were

two standard deviations from the mean had parameters labelled as “low” or “high”,

with the remaining labelled as “normal”. Using this method, we created 5 new discrete

variables LVEDV Range, LVESV Range, RVEDV Range, RVESV Range and Stroke

Volume Range.

Image Acquisition and Processing: The cMRI images were acquired with a GE Sig-

naHDxt 1.5 Tesla MRI (GE Healthcare, WI, USA). Scans were performed by highly

experienced cardiac MRI technologists at CHP of UPMC. Due to their young ages, a

few patients who were unable to maintain breath hold for specific cMRI sequences

required general anesthesia during their MRI scans, as per their clinical protocols.

Cardiac sequences for function, flow and tissue characterization analyses require 15-20 sec

breath hold for image acquisition. A balanced steady state free precession sequence

(FIESTA, GE) was used in the short axis to acquire images for biventricular volumetric

analysis during 20 phases of the cardiac cycle. Relevant parameters included breath

holds = 1-2 (none for patients under general anesthesia), number of excitations = 1 for

patients with breath holds and 2 for patients under general anesthesia, repetition time =

3.6-4.0 ms, echo time = 1.5-1.7 ms, flip angle = 55°, slice thickness = 5-7 mm, and

acquisition matrix = 256 ± 256. Commercially available post-processing software Report-

CARDTM (GE Healthcare, WI, USA) was used to determine volumetric data, flow and

velocities.

Data Analysis Methods: The cMRI-derived biomarkers dataset containing 32 posi-

tive cases of cardiomyopathy/myocarditis and 51 negative controls and 30 predictor

variables containing no missing data was analyzed using our novel Bayesian Rule

Learning (BRL) methods [20,31]. BRL [20] works by searching for interactions between

predictors that are favorable for discriminating the target class values, which for this

dataset are represented by positive (Pos) or negative (Neg) MR diagnosis (MRDx). BRL

performs a heuristic, iterative search of the entire space of possible models represent-

ing interactions among potential predictors, and uses a Bayesian score [20] to represent

the uncertainty in the validity of each model based on the available training data. The

Table 3. Composition of patients in our retrospectively collected cMRI dataset

MR Diagnosis Total #patients (male, female)

HCM 9 (4, 5)

DCM 3 (1, 2)

ARVD 2 (2, 0)

LVNC 7 (4, 3)

Myocarditis 11 (9, 2)

Negative 51 (31, 20)
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greedy search starts with the highest scoring single predictor variable as the only par-

ent of the target class, and in each iteration adds the next highest scoring variable as

another parent to the target class and recalculates the Bayesian score [20]. The maxi-

mum number of parents or predictor variables of the target class is used to constrain

the model space (default value is 8). The BRL method in [20] was extended to handle

search of local structures in [31]. The Bayesian decision tree (BRL-DT) greedy search

of local structures within BRL allows for inclusion of different variables and varying

numbers of variables on the left hand side of related subsets of classification rules, as

long as this local variation produces an improvement in the Bayesian score for the

model (entire set of rules) [31]. This brief explanation is best understood by illustration

of the BRL-DT model in the results section below and its tree visualization depicted in

Figure 2.

BRL produces models that contain mutually exclusive and exhaustive classification

rules, so that only one rule applies for prediction on a test case. When using the BRL

system for developing and testing predictive models, we generally apply local structure

Figure 2 A portion of the Bayesian Decision Tree model from BRL is depicted to visualize the
classification rules. The predictor variables are shown in circles, and their values along each branch from
the root of the tree to the leaf node depicted as a rectangle, represents a classification rule within the
model. The rectangular leaf node represents the target variable, MRDx value for positive (Pos) or negative
(Neg) finding of cardiomyopathy. Four rules are shown with some associated statistics such as the
posterior probability (Prob) of the rule, and the numbers of true positives (TP) and false positives (FP)
covered by the rule. Two of the subtrees are not shown. From this tree, we can easily spot areas where
evidence is weak, strong, or could be combined. The variables shown include Myocardial Delayed
Enhancement (MDE), Right Ventricular End Systolic Volume Range (RVESVR), and the Right Ventricular
Ejection Fraction (RVEF%).
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search in addition to the original global structure search and present report results and

the model from the algorithm that performed the best over cross-validation.

Apart from BRL methods, we also applied three standard machine learning methods

available in the WEKA data mining environment [32]: Support Vector Machines

(SVMs) [33], C4.5 decision tree learning [34] and Random Forests (an ensemble

method) [35] to obtain 10-fold cross-validation performance using accuracy and area

under ROC curve (AUC) measures for this dataset.

Results
We present below a BRL decision tree [31] model to illustrate the kinds of interactions

between cMRI-derived markers that can be used for automatic classification. We used

a supervised discretization algorithm called Efficient Bayesian Discretization (EBD) [36]

available within BRL to discretize the continuous-valued input variables. EBD requires

a parameter called lambda, which is a prior that controls the total number of cut-

points from the desired discretization. We empirically varied this lambda parameter

between 0.5 and 4.0, in steps of 0.5 increments, and chose the lowest lambda value

that resulted in best cross-validation performance. For this dataset, we set the EBD

lambda parameter value to 3.5. The 10-fold cross validation accuracy we obtained on

this dataset was 80.72% with an AUC of 79.6%, which gave us confidence that reason-

ably accurate predictive models can be obtained from cMRI-derived biomarker data.

For illustrating this, we depict below the model from BRL that was obtained by learn-

ing on the entire training data (32 positives, 51 negatives). This model (see rules

below) was applied to the training data to make predictions, and fit the data with the

following statistics - Accuracy = 90.4%, Sensitivity = 78.13% and Specificity = 98.1% for

the Positive class, and an AUC value = 90.3%. The model used 6 variables: Myocardial

Delayed Enhancement (MDE), RV Ejection Fraction (RVEF%), LV End-Diastolic

Volume Range (LVEDVR), LV End-Systolic Volume Range (LVESVR), RV End-Systolic

Volume Range (RVESVR), and Stroke Volume Index (SVI ml/m2 ) as shown below

(Rules #1-8 classify Neg examples and rules # 9-13 classify Pos examples):

1. IF (MDE = No) & (RVESVR = Low) & (RVEF% = (33.7 to 57]) THEN (MRDx =

Neg)

Posterior Probability (Prob) = 0.857, P = 0.081, TP = 5, FP = 0

2. IF (MDE = No) & (RVESVR = Normal) & (LVEDVR = Normal) & (LVESVR =

Normal) & (SVI ml/m2 ≤ 67) THEN (MRDx = Neg)

Prob = 0.852, P = 0.001, TP = 22, FP = 3

3. IF (MDE = No) & (RVESVR = Normal) & (LVEDVR = Low) THEN (MRDx =

Neg)

Prob = 0.85, P = 0.005, TP = 16, FP = 2

4. IF (MDE = No) & (RVESVR = Normal) & (LVEDVR = Normal) & (LVESVR =

High) THEN (MRDx = Neg)

Prob = 0.8, P = 0.227, TP = 3, FP = 0

5. IF (MDE = No) & (RVESVR = Low) & (RVEF% > 57) & (LVEDVR = Normal)

THEN (MRDx = Neg)

Prob = 0.75, P = 0.375, TP = 2, FP = 0

6. IF (MDE = No) & (RVESVR = Low) & (RVEF% > 57) & (LVEDVR = Low) THEN

(MRDx = Neg)
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Prob = 0.5, P = 0.843, TP = 2, FP = 2

7. IF (MDE = No) & (RVESVR = Low) & (RVEF% ≤ 33.7) THEN (MRDx = Neg)

Prob = 0.5, P = 1.0, TP = 0, FP = 0

8. IF (MDE = No) & (RVESVR = Low) & (RVEF > 57) & (LVEDVR = High) THEN

(MRDx = Neg)

Prob = 0.5, P = 1.0, TP = 0, FP = 0

9. IF (MDE = Yes) THEN (MRDx = Pos)

Prob = 0.9, P = 0.0, TP = 17, FP = 1

10. IF (MDE = No) & (RVESVR = Normal) & (LVEDVR = Normal) & (LVESVR =

Low) THEN (MRDx = Pos) Prob = 0.8, P = 0.054, TP = 3, FP = 0

11. IF (MDE = No) & (RVESVR = Normal) & (LVEDVR = High) THEN (MRDx =

Pos)

Prob = 0.75, P = 0.146, TP = 2, FP = 0

12. IF (MDE = No) & (RVESVR = High) THEN (MRDx = Pos)

Prob = 0.75, P = 0.146, TP = 2, FP = 0

13. IF (MDE = No) & (RVESVR = Normal) & (LVEDVR = Normal) & (LVESVR =

Normal) & (SVI ml/m2 > 67) THEN (MRDx = Pos)

Prob = 0.667, P = 0.386, TP = 1, FP = 0

The posterior probability for each classification rule is calculated by BRL. In addition,

the rules also contain a p-value (P) that is calculated for each rule using Fisher’s exact

test. The number of true positives (TP) and false positives (FP) covered by each rule is

also reported. This model is depicted for purposes of illustration. From the above, we

notice at least a few general rules (# 2, 3 and 9) that are reasonable in terms of both

accuracy and coverage. The rules obtained from BRL are mutually exclusive and

exhaustive. It is interesting to note that two of the rules (#7 and 8) have no examples,

and depict areas wherein there is no evidence in the data. This implies that a diagnosis

of positive or negative for cardiomyopathy is equally likely given this training dataset.

However, the literature may have prior information that can be used to provide evi-

dence for one class over the other. For example, one of the features, namely right ven-

tricular ejection fraction /RVEF% ≤ 33.7 used in rule 7 is indicative of right heart

disease. By incorporating this as prior information into our Bayesian modeling frame-

work, we would be able to change the MRDx of the rule to positive class, rather than

the default majority class chosen as the diagnosis because of the lack of evidence

favouring a particular class.

These and others may also indicate the need to examine the discretization cutoff

ranges for discriminatory biomarkers, and also whether certain rules can be combined

together to improve overall model representation. The above classification rule model

is shown for illustrative purposes (see Figure 2 for a subset of the entire decision tree)

to depict how a parsimonious description of a complicated cardiac biomarker dataset

can be obtained using our BRL methods. The 6 variables selected by BRL are the vari-

ables that appear in the left hand side of the IF-THEN rules. They are extracted auto-

matically by the BRL system from the rule model. Because the rule model depicted is

obtained from local search of tree structures, the number of variables in each rule may

vary. With the original BRL global search method [20], each rule would have all the

variables, and the combination of values for the variables would vary for each rule so

as to cover all the possible combinations along the left-hand side of each mutually
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exclusive rule for the set of rules. In the local structure tree model, we obtain a more

parsimonious representation by this account.

Access to a larger training dataset will lead to more accurate classification rules and

in turn, better predictions on unseen test cases which can be used for validating our

models. While BRL was able to find rules that are established and well-known in the

literature [30], it must be noted that different discretization methods lead to different

cutoffs for the input variables. This issue must be addressed in order to enable stable

models to be learned from such cMRI datasets.

In order to ensure that the data that we have collected for our study is of sufficient

quality and to verify the classification performance of our method, we compared the

10-fold cross-validation accuracy and AUC measures of performance of the BRL deci-

sion tree to that of SVMs, C4.5 and Random Forests using the WEKA data mining

toolkit and its default parameter settings for each method. The BRL decision tree

method outperformed the other three classifiers as shown in Table 4. It is also clear

from the results that this rare dataset that we have collected is of good quality for clas-

sification of positive versus negative findings of pediatric cardiomyopathy as indicated

by the cross-validation performances from several popular machine learning methods

using just default parameter settings and no tuning.

Discussion
Preliminary results show the feasibility of our framework for processing such data

while also yielding actionable predictive classification rules that can augment knowl-

edge conveyed in cardiac radiology outcome reports. Interactions between MDE status

and other cMRI parameters that are depicted in our rules warrant further investigation

and validation. Predictive rules learned from cMRI data to classify positive and nega-

tive findings of cardiomyopathy can enhance scientific understanding of the underlying

interactions among imaging-derived parameters.

We are proposing a framework rather than a particular method, which means that

predictive modeling could be performed by other classification algorithms. We use

BRL for ease of interpretability of the predictive rules, and as shown in Table 4 and in

our previous studies it is comparable to or better than other popular classification

algorithms and extant rule learners [20,31]. We believe that our framework is flexible

enough to support (a) different predictive algorithms, and (b) novel biomarker discov-

ery. Both aspects require a human in the loop as indicated in Figure 1. We believe that

the main limitation of the methodology arises from the quality and quantities of data

available for doing the predictive modeling.

cMRI cardiomyopathy data is an example of a type of BIG data that presents several

informatics challenges. As seen in the results section, the collaborative efforts between

cardiac radiologists, data miners, biomedical engineers, technicians and biomedical

Table 4. Comparison of classifiers using 10-fold cross validation accuracy and AUC

Method Accuracy (%) AUC (%)

BRL-DT (EBD lambda = 3.5) 80.72 79.6

SVM (WEKA Linear kernel) 75.90 73.4

C4.5 (WEKA default settings) 78.31 73.9

Random Forests (WEKA default) 73.49 77.2
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informaticians will be crucial to establish and maintain databases or electronic reposi-

tories that can be used to create knowledge for transforming patient care. Based on

our experience in applying the cMRI-BED framework, we identify the following three

immediate informatics challenges that require elegant state-of-the-art solutions:

1. The need for a gold-standard, secure repository for storing the cardiac MR image

sequence specific manually traced contours and image annotations performed by Dr.

Madan on the entire sets of 2D, 3D and 4D images apart from the raw images

acquired and stored in DICOM formats for each (de-identified) patient in clinical set-

ting. Currently, these post-processed images are pushed to PACS for clinical reporting

following the post-processing at the dedicated cardiac workstation at CHP. Image

retrieval of post-processed images for clinical research is a cumbersome and deliberate

time exhausting task which affects the clinical research flow.

2. The need for adequately trained personnel to perform such annotations on exist-

ing CMR images. On an average, it takes at least one year to adequately train a tech-

nologist who has met prerequisites for performing clinical cardiac MRI procedure.

3. The need for a series of systematic studies that can provide adequate age, gender

and clinical history matched controls that are crucial for predictive modeling of cMRI

data.

Challenge #1 can be met by secure, cloud-based architectures that permit large data

storage and acquisition. Filling the second need (challenge #2) can enhance the pro-

ductivity of cardiac radiologists and improve clinical management. A single pediatric

radiologist reads and annotates about 350 cases in a year, because each case can take

anywhere from four to eight hours to capture cMRI data and process it to generate

and verify reports. Meeting challenge #3 will provide power to predictive modeling stu-

dies due to availability of matched case-controls in sufficient quantities to be able to

better understand and differentiate cardiac diseases. This will be necessary in order to

permit translation of this methodology into clinical practice. The cross-validation

accuracies and AUC performance measures reported in this paper, while promising,

are still not good enough for immediate clinical use in decision making. Future work

includes acquiring more data to enable accurate predictions that can used for clinical

decision-making, and subsequent automation of the cMRI-BED framework to eliminate

subjective bias to the extent possible.

Conclusions
Pediatric cardiomyopathies are significant diseases that are routinely examined using

cMRI. Pediatric cardiomyopathies are a heterogeneous group of serious disorders of

the myocardium and are responsible for significant morbidity and mortality among

children if not timely diagnosed. In this paper, we develop and test a novel workflow

called cMRI-BED for biomarker extraction and discovery from cMRI data. The novelty

arises from the iterative involvement and use of unique, predictive tools such as BRL

to model retrospectively available cMRI data and provide physicians with knowledge

that relates biomarker interactions to outcome classification. Moreover, the workflow

is flexible, scalable and largely independent of technology. Advances in cMRI technol-

ogy can lead to the development of new biomarkers, which can be easily incorporated

into our modeling framework. Retrospective data can be obtained from multiple insti-

tutions and summarization of these using BRL will help in drawing more general
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conclusions. Extensions to this workflow can also be made to allow for integration of

image biomarkers from multiple platforms using variants of extant algorithms for

transfer learning of classification rules [37].We believe that this cMRI-BED workflow

will help in the assessment of cMRI biomarkers in a timely fashion for improved diag-

nosis and prognosis of pediatric cardiomyopathies. The results from this feasibility

study suggest that our concept is broadly applicable to the study of any cardiovascular

disease using imaging-derived biomarkers, and will facilitate incorporation of computa-

tional thinking within complex clinical workflows.
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