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Abstract: Cardiovascular diseases (CVDs) are a significant cause of death worldwide. CVDs can
be prevented by diagnosing heartbeat sounds and other conventional techniques early to reduce
the harmful effects caused by CVDs. However, it is still challenging to segment, extract features,
and predict heartbeat sounds in elderly people. The inception of deep learning (DL) algorithms has
helped detect various types of heartbeat sounds at an early stage. Motivated by this, we proposed an
intelligent architecture categorizing heartbeat into normal and murmurs for elderly people. We have
used a standard heartbeat dataset with heartbeat class labels, i.e., normal and murmur. Furthermore,
it is augmented and preprocessed by normalization and standardization to significantly reduce
computational power and time. The proposed convolutional neural network and bi-directional
gated recurrent unit (CNN + BiGRU) attention-based architecture for the classification of heartbeat
sound achieves an accuracy of 90% compared to the baseline approaches. Hence, the proposed
novel CNN + BiGRU attention-based architecture is superior to other DL models for heartbeat sound
classification.

Keywords: cardiovascular diseases; heart sound; deep learning; classification; GRU; CNN; attention
mechanism

MSC: 62H35

1. Introduction

Cardiovascular diseases (CVDs), as per the World Health Organisation (WHO), are
the number one cause of death worldwide. It causes the death of about 17.9 million lives
worldwide every year [1,2]. Moreover, 85% of CVDs are caused by acute myocardial
infarction. CVDs are conditions concerning the blood and heart vessels, classified as dis-
eases such as rheumatic heart, cerebra-vascular, coronary heart, etc. People suffering from
hyperlipidemia, diabetes, hypertension, etc., are more prone to a higher risk of CVDs [3,4].
With age, gradually, these diseases become a part of our life. CVDs in elderly people
may have more harmful effects than in young people as the recovery ratio is smaller in
elderly people [5]. Hence, the early detection of indications of cardiac abnormality [6] is an
essential step for patient care. In clinical practices, several tools are equipped to diagnose
CVDs. Auscultation is a basic diagnostic method in which doctors listen to the heartbeat
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sound from a patient’s chest to make a diagnosis [7,8]. Auscultation can be achieved using
a medical instrument known as a “stethoscope”, invented by Laennec in 1816. It is widely
utilized in the medical field to hear heart sounds to diagnose CVDs [9]. However, by only
using a stethoscope, CVDs and heart failures are challenging to diagnose, especially by
non-clinical and inexperienced people. Despite accurate auscultation, it requires years of
experience and long-term practice to diagnose CVDs, which is challenging to acquire [10].
Even clinical practitioners find it challenging to detect and diagnose heart failure and
coronary heart disease at an earlier stage, and it is especially critically in elderly people [11].

The heart is a significant organ that pumps blood throughout the whole body, causing
mechanical movements when cardiac valves close per heartbeat, generating vibrations in
the myocardial wall, which later is converted to sounds comprehended as heartbeat sounds
of phonocardiogram (PCG) [12]. A cardiac cycle has four elements, namely “S1”, which
happens at the beginning of the systole phase. The second is “S2”, which characterizes the
systole phase’s end and marks the diastole phase’s beginning. Thirdly, “S3” corresponds
to the end of the fast filling of the ventricle. Lastly, “S4” means the active filling phase
of the ventricle [13,14]. The sound of a normal heartbeat has an evident “lub dub, dub
lub” pattern. Here, the time taken from dub to lub is more than the time evolved between
lub to dub, with a rate of 60–100 beats per minute. In contrast, the sound of a murmur
heartbeat is noisy with roaring, whooshing, or rumbling patterns between lub to dub or
dub to lub, indicating signs of CVDs. In addition to the above-mentioned heartbeat sounds,
two other sound categories, including extra-systole and extra-heart sounds, show some
trouble but do not necessarily confirm indicators of CVDs. Researchers use these sound
waves to detect/identify the problem associated with the heart. In elderly people, even
with the help of a stethoscope, listening to these heart sounds and making an accurate
diagnosis is complicated and inefficient. Hence, with the aid of artificial intelligence (AI),
finding patterns and predicting heart-related disorders has become easier, thereby enabling
better treatment to the patient. Heart sounds can be easily collected using various wearable
devices and could benefit people with CVDs.

Many researchers have proposed various solutions to identify CVDs in elderly people;
for example, the authors of Ref. [15] used three machine learning (ML)-based algorithms
to classify CVDs. They achieved results such as gradient boosting (GB) (87.5% accuracy),
random forest (RF) (81.25% accuracy), and support vector machine (SVM) (75% accuracy).
While ML-based algorithms can be effective, they have a drawback in requiring manual fea-
ture extraction, which can be time-consuming and labor-intensive. With the advent of deep
learning (DL)-based algorithms, many practitioners have shifted away from traditional ML
methods in favor of these more powerful techniques, which can learn features automatically
from raw data [16,17]. Ren et al. [18] attempted to give a deep attention-based model for
heart sound classification; however, it used a limited dataset of 845 clips, including training,
testing, and validation testing. Mukherjee et al. [19] used different pre-trained models such
as ResNet152V2 and MobileNetV2 using transfer learning (TL), but the testing of time and
pitch shift in audio after data augmentation was missing. Kui et al. [20] makes a classifica-
tion model containing convolutional neural network (CNN) and Mel-frequency spectral
coefficients (MFCC) features to detect CVDs. Still, it has a drawback of bad performance
on the test set.

To overcome the aforesaid shortcomings, this article presents a CNN and bi-directional
gated recurrent unit (BiGRU)-based architecture to detect normal efficiently and murmur
heartbeats [21]. DL classifiers have proved to be promising in differentiating normal and
abnormal heart sounds; we have considered heartbeat sounds from PCG and electrocar-
diogram (ECG) recordings [22] for training the proposed DL model. The architecture
is evaluated using different evaluation metrics, such as statistical measures such as ac-
curacy, precision, recall, etc., validation accuracy with and without data augmentation,
and validation accuracy with different optimizers.
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1.1. Research Contributions

The following are the major research contributions of the paper:

• To propose a novel attention-based CNN + BiGRU architecture for abnormal heartbeat
audio classification;

• To employ Mel-frequency cepstral coefficient (MFCC) for feature extraction, data
compression, and downsampling as a pre-processing step to train the AI models
efficiently;

• To evaluate the proposed architecture using different evaluation metrics, like statistical
measures such as accuracy, precision, recall, etc., validation accuracy with and without
data augmentation, and validation accuracy with different optimizers.

1.2. Organization

The rest of the paper is systematized as follows. Section 2 describes various state-of-
the-art approaches to heartbeat sound classification and its comparative study. Section 3
depicts problem formulation for the heart sound classification. Section 4 describes the
proposed architecture. Section 5 provides results and analysis. Finally, Section 6 provides
the conclusion to the work done.

2. Related Work

Several researchers have worked to solve the problem of heartbeat sound classifica-
tion by applying solutions for every stage of heartbeat sound classification. In Ref. [23],
Xiang et al. proposed an architecture based on various models. They used methods such as
ML and TL along with feature extraction methods such as logarithmic power spectrogram,
log-mel spectrogram, waveform diagram, and the envelope. Keikhosrokiani et al. [24]
proposed a swarm intelligence-based model called artificial bee colony–hybrid adaptive
neuro-fuzzy inference system (ABC-ANFIS), but it was computationally expensive. In
Ref. [25], Ballas et al. proposed a self-supervised CNN based model and used two different
sets of data augmentations, which included cut-off filters, rewinding the signal, and invert-
ing. They achieved an accuracy of 78.6%, which is very low. Ren et al. [26] proposed a model
based on CNN + attention and LSTM/GRU + attention and was validated using explainable
artificial intelligence (XAI) [27]. However, the work needed to be improved in exploring
bidirectional models. Moreover, the problems of overfitting and data augmentation still
pertain. Tariq et al. [28] proposed an approach based on the feature-based fusion of CNNs,
which achieved an accuracy of 97% but had clear class imbalance and overfitting problems.

Table 1. Comparative analysis of state-of-the-art approaches on heartbeat sound classification.

Related
Works

Year Key Contributions Technology Used Merits Demerits

Proposed
Architecture

2023 To propose a model to per-
form heart sound classifica-
tion on the CirCor DigiScope
dataset

CNN+BiGRU and
attention

90% accuracy on the testing
dataset and performed data
augmentation as well

–

[23] 2023 Executed heart sound
classification using two-
dimensional features

Different ML, DL,
and TL models

Used a wide range of models
and feature extraction tech-
niques to get better results

MFCC could have been used to
further improve the results

[24] 2023 Heartbeat sound classi-
fication using a swarm
intelligence-based algorithm

ABC-ANFIS Used a novel approach of ar-
tificial bee colony along with
ANFIS

The ABC-ANFIS method is quite
complex

[29] 2022 A lightweight and robust ap-
proach for the detection of
automatic heart murmurs us-
ing PCG recordings

Lightweight CNN Uses two data augmentation
techniques with low training
and inference time

Accuracy of 75.1% is quite low
compared to other models with
similar architectures
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Table 1. Cont.

Related
Works

Year Key Contributions Technology Used Merits Demerits

[25] 2022 To detect a murmur in heart-
beat sounds using a self-
supervised approach

Self-supervised
CNN backbone

Self-supervised model em-
ployed along with differ-
ent data augmentation tech-
niques

The accuracy of 73.7% is quite
low and can be improved signifi-
cantly

[26] 2022 To use XAI in heartbeat
sounds with deep attention-
based neural networks

CNN + attention
and LSTM/GRU +
attention

Used attention-based mecha-
nism and validated results us-
ing XAI

Data augmentation does not im-
prove the model results and does
not tackle overfitting

[28] 2022 To classify lung and heart-
beat sounds using feature-
based fusion models

Fusion of CNNs Applied learning in the
form of fusion models and
achieved an accuracy of
97% in six classes with data
augmentation

Does not address overfitting con-
cerns with a very small dataset
for six classes and the degree of
class imbalance is not explained

[30] 2021 To propose a model identi-
fying abnormalities in a hu-
man heart using heart sound
analysis

Artificial neural
network (ANN)
and linear dis-
criminant analysis
(LDA)

Achieved 90%, 83.33%,
and 93.33% accuracy in the
time, frequency, and time-
frequency domain, respec-
tively

Integration with DL algorithms
might result in more accuracy

[20] 2021 To propose a model for
the classification of heartbeat
sound using mel-frequency
spectral coefficients (MFSC)

CNN and hidden
Markov model
(HMM)

86.25% accuracy for multi-
classification achieved

Poor performance of the test set

[31] 2021 To use MFSC and deep resid-
ual learning for reducing the
cost and time of hearbeat
sound classification

One-dimensional
local binary pat-
tern (1D-LBP)
and local ternary
pattern (1D-LTP),
and 1D-CNN

Accuracy of 91.78% and
91.66% achieved with Phys-
ioNet and PASCAL dataset

Use of SVM on these datasets
works better

[19] 2021 To propose a model that con-
verts heart sound to visual
scale spectrograms

CNN,
ResNet152V2,
MobileNetV2

To extract features and cate-
gorize heart sounds using a
TL approach

The time and pitch shift in audio
was not tested

[18] 2021 To propose a model heart
sound classification in HSS
corpus using a Hamming
window

CNN, GRU-
recurrent neural
network (RNN),
and LSTM-RNN

Average recall of 51.2%
achieved

Data size limitation

[32] 2020 To propose a 1D-CNN archi-
tecture for heart sound clas-
sification

CNN Used stacked transition and
clique blocks for promising
classification performance,
with lower consumption of
parameters, and discrimina-
tive features extracted

Environment noises are not con-
sidered

[33] 2020 To propose a model for heart-
beat sound classification us-
ing PCG signals to identify
irregularities and achieving
good cardiac diagnosis

CNN Discrete cosine transform
(DCT) achieved classification
accuracy

A large number of samples are
not taken for experiments

Initially, heartbeat segmentation [34] is done using probabilistic-based methods [35]
and amplitude threshold-based methods [36,37]. Further, feature extraction is done by time
and frequency [38,39]. Lastly, classification models such as SVM [40,41] and CNN [42] are
used to predict normal and abnormal heartbeat sounds. Gomes et al. [43] used J48 and
multilayer perceptron (MLP) algorithms to classify heart sounds for the PASCAL challenge
into normal, murmur, extra sound, and artifact signals. Sound clips were first preprocessed
to identify abnormal heartbeat sounds using the decimate function and band pass filters
to remove noise. The average Shannon energy was used to determine the minima and
maxima points using the heartbeat sound’s peaks. The segmentation process was then per-
formed on the heartbeat sound, although the ECG reference was not used. Raza et al. [44]
proposed a framework for heartbeat sound classification based on long short-term memory
(LSTM). They used the PASCAL dataset for classification. Moreover, data preprocessing
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was performed using bandpass filters, and down-sampling was done to acquire meaningful
features. However, the study only considered ECG signals, making it unfit for non-clinical
use. In the work done by Zheng et al. [45], various features such as the energy fraction of
heart murmur, the entropy of first and second heartbeat sounds, max energy fraction of
heartbeat sound, and frequency sub-band were extracted to detect abnormalities. Features
are normalized and decomposed to wavelet packets. SVM was used to classify normal and
murmur heartbeat sounds.

Shi-Wen Deng et al. [41] used SVM to classify normal, murmur, and the extra-systole
heartbeat sound. Their solution was developed using auto-correlation features avoiding
segmentation combined with discrete wavelet decomposition to feed into the machine
learning (ML) model. They utilized a tensor decomposition and scaled spectrogram to ex-
tract discriminative features for the classification of heartbeat sound. Later, they used SVM
for classification and effectively obtained a precision of 0.74 (74%). Yaseen et al. [46] used
PCG signals for heartbeat sound classification. However, integration with DL algorithms
could have been beneficial here. Feature extraction techniques were used to extract MFCC
and discrete wavelets transform (DWT) for heartbeat sound classification using various
ML models such as k-nearest neighbor (KNN), deep neural network (DNN), and SVM.
Research has shown CNN to be significant in dealing with large-scale audio data [47].
Kele Xu et al. [48] proposed an ensemble-learning method based on CNN for classification.
However, the accuracy could be increased if LSTM or GRU would be used with CNN.
To overcome the issues discussed in the state-of-the-art approaches for heartbeat sound
classification, we have proposed a DL-based supervised training approach that is quite
efficient and straightforward to understand, employing CNN+BiGRU with an attention
mechanism, which is superior to the self-supervised training approach. Table 1 depicts the
comparative study of state-of-the-art approaches related to heartbeat sound classification.

3. Problem Formulation

In this section, we formulate the problem statement and identify the objective function
for the identified problem. The proposed architecture comprises elderly people such as
{A1, A2, . . . , Ai, . . . , An} ∈ A where A is 1 ≤ i ≤ n; and each has a wearable sensor [49]
from a list of sensors such as {S1, S2, . . . , Sj, . . . , Sq} ∈ S where S is 1 ≤ j ≤ q. The sensor
can read the heartbeat sound (µ) from a patient and pass it to the DL-based model (M) for
prediction (ρ), which helps in determining whether the patient has an abnormality present
with the heart sound or not. The process is depicted below, considering the sensor reading
as a function of the patient and model prediction as a function dependent on the reading
provided by a sensor.

∀ n ∃ q Sq(An)
provide−−−−→ µ (1)

M(µ)
predict−−−−→ ρ (2)

If ρ = 1, then the wearable sensor needs to notify the user or the caretaker that it
suspects something unusual with the heart pumping of the user. Following this, the user
should get his heart condition checked by the doctor. This approach can significantly
improve the chances of survival of an elderly person in case of an abnormal heart condition.
However, for this to be achievable, we need to optimize both of the goals of maximizing the
model’s prediction accuracy and minimizing the model’s loss during training. The model’s
accuracy employed under medical field applications should be high with no mistakes in
prediction; otherwise, the user would be discouraged from relying on such sensor devices
where a wrong prediction can lead to severe life-threatening consequences. Moreover,
the loss of the model should be low, indicating that the model is making less errors
when giving the correct probability for a class. Alternatively, a lower error means higher
confidence in the prediction by the model, which is desirable as the model is confident
in its diagnosis and is not just giving vague predictions. Thus, the objective of the model
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training, dealing with both the probability of success (P) and error (E) as a function of
samples in validation data (τ) obtained by model prediction, can be given as follows.

max
τ

(∑P(η(τ))) + min
τ

(∑E(η(τ))) (3)

where maxτ(∑P(η(τ))) denotes maximizing the probability of success of the model and
minτ(∑E(η(τ))) indicates minimizing the error of the model for validation samples in τ.
These both can be combined and written as an objective function (O) to maximize the ratio
of (P) and (E), and is depicted as follows:

O = max
τ

(∑
P(η(τ))
E(η(τ)) ) (4)

By maximizing O in Equation (4), the model will have high accuracy and be confident
in its predictions. Hence, maximizing O increases the model’s reliability, which is crucial
for a delicate healthcare application.

4. Proposed Architecture

The DL pipeline, i.e., the proposed architecture developed for the heartbeat sound
classification, comprises five stages, i.e., dataset acquisition, data preprocessing, feature
extraction, the proposed classification model, and evaluation. The aim is, that during
the evaluation stage, the proposed architecture maximizes O in Equation (4). The first
stage is data acquisition, where data is collected from sources such as stethoscope pro
and digiscope (digital stethoscope). Then, feature extraction is done on the preprocessed
data using MFCCs in our proposed work of heartbeat sound classification. Data is further
preprocessed by filtering, normalization, and downsampling. Later, we pass these features
into the proposed classification model in the fourth step. Finally, our proposed classification
model based on the attention mechanism is evaluated on whether O in Equation (4) is
maximized based on various performance metrics as mentioned in Section 5.

Figure 1 shows the three-layered proposed architecture, i.e., the application layer,
the data layer, and the intelligence layer. The first layer of the proposed architecture is
the application layer, which shows the potential application areas where heartbeat sound
classification can be utilized to monitor users’ health status. The second layer is the data
layer, which shows how we can extract data from the patients or people under consideration
within an application of the application layer. This layer deals with data augmentation,
pre-processing, and feature extraction for providing balanced data to the intelligence
layer of the proposed DL model in the third layer. The final layer is the intelligence
layer, and is responsible for processing the data acquired by the data layer and providing
accurate and timely feedback to the user; our proposed CNN+BiGRU model lies within
this layer. A detailed description of the three-layered proposed architecture is shown in the
subsequent section.

4.1. Application Layer

The application layer is the first layer in our proposed architecture, as presented in
Figure 1. This layer shows the application areas where our proposed DL model can be
applied to prevent sudden abnormal heart conditions and make the user aware of the
same, so that precautions can be taken. These applications include hospitals, government
offices, ambulances, nursing homes, and gymnasiums—but they are not limited to them.
Hospitals are the primary field of application as there is a frequent need to measure the
heart sounds of patients feeling inconvenienced in terms of health. Patients not in intensive
care can be given devices that continuously monitor their heartbeat sound in hospitals. This
helps prevent unwanted scenarios where a patient might suffer from a severe heart ailment
just because they are not deemed necessary to be in intensive care. Similarly, ambulances
and nursing homes that do not have expensive and intensive equipment to measure heart
sound, such as those in rural or poor regions, can be provided with the proposed cost-
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effective sensors where our DL model can alert upon abnormality detection and proper
care may be provided. In gymnasiums, for instance, such devices can be given to gym users
to prevent sudden heart attacks as the device would alert any peak in heartbeat, denoting
the abnormal condition in the user. Hence, the user can stop exercising and reduce putting
more strain on their heart by taking a rest. In government organizations, too, such devices
can help provide a timely diagnosis to the poor, who generally have to choose government
hospitals for their treatment. This might not be a problem in developed nations, but in
developing ones, many government-run hospitals need proper facilities.

Data Layer

Data Acquisition Devices

Sleeping

Walking

Healthcare  
Monitoring

Excercising

Intelligence Layer

Audio Samples (wav)

Intelligence Servers

Data  
pre-processing

Model :  
CNN +  
BiGRU+ 
Attention

Normal Murmur

Repeat: 
Go to

Application
Layer

Application Layer

Application Fields

Hospitals Government Ambulances Old age
homes

Gymnaesium

Figure 1. The proposed architecture.

4.2. Data Layer

The second layer of the proposed architecture is the data layer, which deals with data
acquisition in real time. We have discussed methods that can be used to acquire the audio
of the heart sounds for each of the applications in the application layer. Our proposed DL
model requires data acquisition devices to provide raw audio data. The acquisition de-
vices [50], such as a digital or analog stethoscope, electro-mechanical film (EMFi) transducer,
smartphones, etc., can be used to acquire the raw audio data. For example, for applications
that are under healthcare monitoring, we can utilize a digital stethoscope to obtain the
data. Nevertheless, for applications where a person is not in healthcare monitoring, one
can use smartphones with apps that read the data when placed in a pocket close to the
heart. Moreover, one may use other wearable devices that specialize in acquiring inputs,
such as thin and lightweight EM devices that can cling to t-shirts and read the audio data;
such as the EMFi transducer. The EMFi is an elastic cellular polypropylene film sensitive
to the dynamic forces usually exerted on its surface as it is thin and only a few dozen
micrometers long. As a result, when the force is exerted on the material by heart vibrations,
the transducer converts the mechanical vibrations into electrical signals. These mechanical
vibrations cause variations in the thickness of the material, which further causes charge
creation, which additionally creates voltage at the electrodes. Moreover, the mechanical
signals are converted to electrical signals via this charge or voltage creation. These electrical
signals are further amplified, so that heart sounds are obtained [51]. After acquiring the
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data, we can pass it for inference to the proposed model built within the sensor itself,
referring to them as intelligent sensors.

4.2.1. Dataset Description

Data is collected from the CirCor DigiScope Phonocardiogram dataset [52], which is
publicly available at physionet.org [53]. It has two categories of heartbeat sounds compris-
ing normal and murmur sounds for 5282 recordings collected from 4 central auscultation
regions of 1568 patients. The dataset has been annotated for each of the four central re-
gions of interest, such as the aortic valve (AV), tricuspid valve (TV), pulmonic valve (PV),
and mitral valve (MV) into murmur or not murmur for each region for each of the patients.
This meta-data of the annotation for each patient has been provided in a comma-separated
value (CSV) file. Since the data is a part of the competition, only the training data is posted
at this project’s time. Hence, the data is available for 942 patients only.

The recordings have an audio clip timing duration of 4.8 to 80.4 s, with a mean record-
ing duration of 22.9 s and a standard deviation of 7.4 s. Considering this data distribution,
we have considered reading the audio clips for 25 s for our proposed architecture. For many
patients, sound clips are unavailable for all four regions, i.e., AV, TV, MV, and PV, and hence,
we have not read data for a patient with no clear description of the murmur’s presence
or absence. This leads to acquiring audio clips with 499 murmur and 2508 normal record-
ings, with 3007 recordings obtained from 942 patients in total (leaving out those with an
unknown presence or absence of murmur). From 3007 recordings, we have considered
489 recordings for the murmur class, as the rest are too long. The reason being training
the proposed architecture with the data distribution of 489 recordings for murmur and
2508 for normal recordings leads to a class imbalance problem. To deal with this class
imbalance problem, we have applied undersampling. With the undersampling, we used
489 recordings for the murmur class and 489 randomly selected recordings for the normal
class. Moreover, these 978 recordings (489 for murmur and normal both) are then divided
into training and testing data by a ratio of 70:30 with the help of the sci-kit-learn library,
leading to the acquisition of raw data with 684 audio training clips and 294 audio testing
clips that have an even distribution of both the classes of data. This distribution of data is
represented in Equation (5), where dataset, train, test, Num(normalold), Num(normalnew),
Num(murmur), Num(dataset), Num(train), and Num(test) represent the dataset, train and
test datasets, number of normal samples before undersampling, number of normal samples
after undersampling, the number of murmur samples, number of samples in the dataset,
train and test datasets, and number of samples in train and test data, respectively.

Num(murmur)← 489,

Num(normalold)← 2508,

Num(normalold)
Undersampling−−−−−−−−→ Num(normalnew),

Num(normalnew)← 489,

Num(dataset)← Num(murmur) + Num(normalnew),

dataset
Split (70:30)−−−−−−→ train, test,

Num(train)← 684,

Num(test)← 294

(5)
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4.2.2. Data Augmentation

Data augmentation helps improve the DL models’ performance even in sparse dataset
cases. There are many perks to data augmentation, which include dealing with overfitting,
handling imbalanced datasets by the generation of synthetic data of the minority class,
enhancing model accuracy as the model learns generalization in data points as more
availability of data is there, and removing the problem of new data acquisition for the
same. Since we only have 684 training samples after the class imbalance problem was
solved via undersampling, we employ data augmentation to fight overfitting. We use
data augmentation to generate synthetic data from the training data via three approaches,
i.e., time stretching, pitch shifting, and audio shifting. First, a random amount of time
stretching, pitch, and audio shifting is executed on each original audio clip to generate two
new audio clips. This results in the total training data becoming three times the original
size of 684 clips. Hence, we apply data augmentation to create an additional 1368 clips,
surmounting a total of 2052 clips. This addition can be represented as follows.

Num(trainold)← 684,

trainold
Data augmentation−−−−−−−−−−→ trainnew,

Num(trainnew)← Num(trainold) + 1368

(6)

where trainold, trainnew, Num(trainold), and Num(trainnew) represent the training dataset
before data augmentation, the training dataset after data augmentation, the number of
samples in previous data, and the number of samples in new train data. The considerable
difference in terms of performance provided by data augmentation is depicted in Section 5.
The three types of data augmentation techniques applied are described below.

1. Time stretch—this transformation is used to change the duration or speed of the signal
without altering the original pitch. We can change the audio by speeding up the audio
signal or slowing it down. If the selected rate is less than 1, the audio is slowed down
and if it is greater than 1, it is sped up. We have used the librosa library for applying
this transformation with the rate selection done uniformly between 0.8 and 1.2. We
have set the probability of application of this transformation to 0.5, which means that
the transformation is only applied with half the probability. Figure 2a,b shows the
effects of time stretch.

2. Pitch shift—this transformation is used to change the pitch or perform pitch shift by
changing the sound pitch up or down without altering the tempo. We can change
the audio signal by changing the pitch by reducing or increasing the semitones. We
randomly select the semitones in the range of −4 to +4. Again, we set the probability
of application of this transformation to 0.5, which means that the transformation is
only applied with half the probability. Figure 2a,c shows the effects of pitch shift.

3. Audio shift—this transformation is applied to shift the audio samples forward or
backward, with or without any rollover. The shifting is done within a fraction of
−0.5 to +0.5 of the audio signal. Furthermore, we set the probability of application
of this transformation to 0.5, which means that the transformation is only applied
with half the probability. Figure 2a,d shows the effects of audio shifting. As shown by
comparison, the audio is the same but it is shifted by some amount.
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(a) (b)

(c) (d)

Figure 2. Data augmentation of heartbeat audio sounds. (a) Original audio. (b) After time stretch.
(c) After pitch shift. (d) After audio shift.

4.2.3. Data Pre-Processing

Data pre-processing involves filtering, normalizing, and downsampling the given
audio signal.

Filtering is performed on a given audio dataset to remove noise generated due to
various environmental conditions during the recording process.

Noisy audio Audio noise removal−−−−−−−−−−−→ Clear audio (7)

Normalization is done to improve the training process by normalizing every category
of heartbeat sound in the range of +1 to −1. Each data point in the audio file is given a new
value via the equation mentioned below.

dpnew = 2× dpold −minold
maxold −minold

− 1 (8)

where dpnew, dpold, maxold and minold represents the new value of the datapoint, the old
value of the datapoint, a maximum value of all the old values of datapoints, and minimum
value of all the old values of data points, respectively.

Down-sampling of the signal is accomplished to a sampling rate of 22,050, along with
a bandpass filter having a frequency range of 30 to 1200 Hz.

Original44,100
downsampling−−−−−−−−→ Compressed22,050 (9)

where Original44,100 and Compressed22,050 represents the original audio at the sampling
rate of 44,100 and the compressed audio after halving the sampling rate.

These steps are helpful in the removal of noise and getting the maximum out of the
given data before feeding it to the next feature extraction stage.
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4.2.4. Feature Extraction

The feature extraction stage is crucial because we want to train the proposed architec-
ture on time series data. If we try to train it directly on the raw time series data it would lead
to a vanishing gradient problem and a very long training time per epoch. The vanishing
gradient problem occurs because there are 551,250-time samples for a 25-s audio clip if
sampling is done at the rate of 22,050 samples per second. With so many samples to train,
even with GRU [54] (which specializes in remembering the context for long dependencies),
the model cannot propagate the error back through time, and a vanishing gradient occurs.
Moreover, the training time is very high if we use the DL approach to learn features from
the raw data. Due to these two drawbacks, we provide the DL model with the MFCC [55],
a compressed version of raw data in the form of coefficients representing the complete
data information. Another alternative is to employ a chromagram [56], which is also a
feature extraction method like MFCC, but which leads to unstable training, as described in
Section 5. Hence, MFCC is the preferred feature extractor. MFCC is one of the essential
features for audio classification, compression, and other audio-related processing tasks.
MFCCs are effective in audio classification as they are collectively made by Mel-frequency
cepstrum (MFC). MFCCs are usually derived from the spectral representation of a particular
frequency clip. Standard signal processing techniques cannot be applied to the audio signal
due to its non-stationary nature, which is eased by the application of MFCCs. The critical
difference between cepstrum and MFC is that the frequency band is equidistant from the
mel scale. Moreover, a wrapper uses frequency wrapping to efficiently represent the given
audio clip. MFCCs are usually derived using the following steps.

• Divide the raw audio into a set of frames (F).

Raw audio
windowing−−−−−−→ F (10)

• Take the Fourier transform or fast Fourier transform (FFT) of the signal to get the
power spectrogram for each frame.

f
Power spectrum−−−−−−−−−→ PS f ; ∀ f ∈ F (11)

where PS f represents the power spectrum of frame f .
• Map power of spectrum onto the Mel scale with the use of triangular overlapping

windows. Mapping onto the Mel scale is represented below.

M(input) = 1127× loge(
input
700

+ 1) (12)

PS f
M(PS f )−−−−→ MS f ; ∀ f ∈ F (13)

where MS f represents the Mel scale values for each frame.
• Calculate logs of powers for each Mel frequency.

MS f
log |MS f |−−−−−→ LMS f ; ∀ f ∈ F (14)

where |MS f | represents the power of the Mel frequencies and LMS f represents the log
of the corresponding Mel scale values.

• Derive discrete cosine transform (DCT) of the list of Mel log powers.

LMS f
DCT(LMS f )
−−−−−−→ MFCC f ; ∀ f ∈ F (15)

where MFCC f represents the MFCCs obtained for a frame of an audio file.
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These MFCCs can be fed directly into the DL model. The model tends to learn
meaningful features without facing the problem of vanishing gradient, which significantly
reduces the time of reliable training models. Figure 3 represents the MFCC for a audio signal
represented in Figure 2a. Visually, it is a heatmap representing tge time and coefficient
(color represents the coefficient value) on their x-axis and y-axis, respectively. However,
it is to be noted that the shown MFCC has only 15 coefficients (for better understanding),
whereas, for our proposed work, we are using 70 coefficients. After the conversion of
the raw audio data file to MFCC, we obtain an MFCC from an audio file read for 25 s
with a sampling rate of 22,050, having the dimension of (1077, 70) because we are using
hop_length = 512 and number of samples per FFT to be 2048 while calculating the MFCC.
This compression of data is represented below.

(551,250, 1) MFCC−−−→ (1077, 70) (16)

Now, after the compression via MFCC, we get (1077 × 70), i.e., 75,390 datapoints,
which is significantly less than 551,250 datapoints.

Figure 3. Mel-frequency cepstral coefficients.

4.3. Intelligence Layer

The third layer in the proposed architecture is the intelligence layer, which deals with
applying the proposed DL model to provide feedback on the data obtained from the data
layer. As shown in Figure 1, the raw audio samples are passed to intelligence servers that
include the inference model. This inference model performs the data preprocessing and
feature extraction (to get the MFCC) and passes it to the DL model consisting of CNN
+ BiGRU with an attention model for inference on the audio sample. The result of this
inference is evaluated and an alert is sent to the user if there is a detection of murmur or
abnormality. If the audio is normal, the inference process starts again with more recent data.
Hence, the intelligence layer is the core layer of the proposed architecture. We need to train
the model first for the model to undergo inference. Figure 4 describes the training phase. We
have first split the raw audio data into training and testing data at a 70:30 ratio. Moreover,
we have applied undersampling to counter the class imbalance problem. The reason is that
the audio samples of the murmur class are less available. The dataset description mentioned
in Section 4.2.1 gives a more detailed process. Later, we apply data augmentation to this
training data to counter the overfitting problems. After data augmentation, we extract the
MFCC from the obtained audio waves and pass it to the model. Now, the model is trained
and validated against the test data to measure its performance against various evaluation
metrics explained in the result and analysis. After the model training, finally, the model is
stored on a disk for getting equipped with smart sensors.
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Training Phase

     Data pre-processing

MFCC

Feature
ExtractionPitch

Stretch
ShiftData

Augmentation
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Sampling

CNN

Attention

Store Model Weights
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FFNN

Testing Data

Training Data

Audio Dataset 

Figure 4. The training phase of the proposed architecture.

The architecture of the proposed DL model consists of a combination of CNN, BiGRU,
and attention layers. In the input layer, we provide MFCCs with 70 coefficients. Before pass-
ing the GRU units to work upon the time series data, we apply 2D convolution layers with
batch normalization and dropout with a probability of 0.3 to prevent overfitting and leaky
ReLU with a parameter value of 0.3 as the non-linearity. The CNN layer is expected to
extract key MFCC coefficients and provide to the BiGRU layers in the form of time series
data [57,58]. From this data, the BiGRU learns important features and passes them to an-
other BiGRU layer via a dropout (to prevent overfitting) to provide final features extracted
from MFCCs to a feed-forward neural network (FFNN) to make the prediction. The FFNN’s
first layer uses tanh activation, whereas the second layer uses sigmoid activation as it is a
binary classification problem. The various layers used and their functionality are explained
in brief as follows.

1. 2D convolution layer—After adding the bias to an intermediate convolved output,
a 2D convolution layer convolves over an input image to produce an output. This
creates an output image obtained by the convolution of a learnable kernel matrix on
the input image. This is similar to a dense layer but is done on 2D images and has the
advantage of parameter sharing. The equation below represents this operation,

Y = F(X
⊗

W) + b (17)

where Y represents the output image, X represents the input image, W represents
the weight matrix (kernel), F represents the activation function,

⊗
represents the

convolution operation, and b represents the bias.
2. Batch normalization layer—the batch normalization layer is used to normalize the

inputs in the input layer such that the output standard deviation is close to 1. In con-
trast, the mean of the output is maintained to be close to 0. This layer scales the input
by a learnable scale factor and offsets it by a learnable offset. This layer is generally
used between the neural and output activation functions. This layer helps reduce the
network’s sensitivity and speeds up the training speed.

3. Dropout layer—the dropout layer is used to counter overfitting. This layer drops or
makes the input units null and void in the network by a certain probability p set as a
hyperparameter. The dropped units do not participate in the network’s forward and
backward propagation during the current iteration. This helps in reducing overfitting
because the model has exponentially many network architectures to train within the
same network. After all, which unit is dropped at each iteration is not fixed. At the
time of inference, however, the unit’s outputs are multiplied by the same probability
p for forward propagation to represent that unit’s contribution to inferencing.

4. GRU—they continually capture long-term dependencies in data using memory blocks.
Each memory block has two gates, the update, and the reset gate, for performing the
operations of updating the current memory cell state and deciding the amount of
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previous information to forget, respectively. The equations followed by a GRU unit
are as follows.

Ct = T(Wch × (R ∗Ht−1) +Wcx ×Xt + bc)
U = S(Wuh ×Ht−1 +Wux ×Xt + bu)
R = S(Wrh ×Ht−1 +Wrx ×Xt + br)

Ht = U ∗Ct + (1−U) ∗Ht−1

(18)

where the update gate is denoted as U and the reset gate is denoted with R, respec-
tively. Further, the hidden state is denoted with Ht for a timestamp t, Ct means cell
state for time t, and input features are denoted with Xt, which are fed to the cell. Wch,
Wcx, Wuh, Wux, Wrh, Wrx are the weights, and bc, bu, br are the biases, which are
obtained from the backpropagation algorithm (equipped in the neural network). ×
represents matrix multiplication and ∗ denotes element-wise dot product. T is the
tanh and S is the sigmoid activation functions to show the probability of the neuron
being active or inactive, respectively. Figure 5 represents the GRU unit.

Figure 5. GRU unit.

5. Bidirectional GRU—GRUs help address the problem of vanishing and exploding
gradient present in the case of RNN and help retain long-term information from
past time steps. Bi-GRU is the extension of GRU that works in both directions,
incorporating past and future time steps. Bi-GRU is composed of two GRU layers
propagating in forward and backward directions. This helps us achieve improved
performance in sequential decision-making problems by utilizing the complete context
of the problem. Figure 6 illustrates the Bi-GRU’s structure.

Input Layer

GRU GRU GRU GRU

Output Layer

GRU GRU GRU GRU

Forward

Reverse

Figure 6. Bi-GRU architectural view.

The BiGRU structure can be individually broken down into two different layers,
i.e., the forward propagation layer and the backward propagation layer. Both layers
differ only in the direction of the context they witness before making a prediction.
The forward layer predicts a timestep considering the context before that timestep,
i.e., the previous context. In contrast, the backward layer predicts a timestep consider-
ing only the context that occurs after that timestep i.e., future context. Hence, at any
timestep, we have both the past and future context; consequently, the model makes
better predictions. As seen in Figure 6, the GRU unit used in each layer is the same as
in Equation (18). Now, let us consider the hidden output at any timestep ’t’ for the
forward layer’s GRU unit and the corresponding backward layer’s GRU unit to be
H f t and Hbt, respectively. The output at the timestep, say Yt, can be given as follows.

Yt = T(Wyh f ×H f t +Wyhb ×Hbt + by) (19)
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where Wyh f , Wyhb, and by represent the weight matrix between the forward layer and
output, the weight matrix between the backward layer, and bias for the output layer,
respectively. T represents the tanh activation function.

6. Attention—the attention mechanism has applications in word recognition, image
captioning, and many other related tasks. With the help of the attention mechanism,
BiGRU can decide which part of the sound clip should be ”attended”. The overall
mechanism of attention helps the deep learning model to be decisive in specific
time steps or parts of data while ignoring irrelevant parts or time steps of data.
The attention mechanism works based on extracting discriminative information,
helping to improve the performance of RNN/GRU-based architecture by focusing on
certain parts of the data. The attention mechanism captures discriminative information
for our problem of sound classification as the complete data does not contribute
equally towards representing a particular class of sound clip. The attention mechanism
provides aid to traditional BiGRU by significant improvement of the performance of
the deep learning model with reduced computational cost. The attention mechanism
is helpful in the generation of a dense vector that represents the output produced after
proper attention is given to the required timesteps. The equations of the attention
mechanism are as follows.

hi = GRU(si), i ∈ [1, L] (20)

where hi is the hidden state column vector for the given input, L denotes the number
of cells in GRU network, and si is the input. Further, an attention mechanism is
adopted to capture the hidden states of the network, as shown in Equation (21)

ui = tanh(Wshi + bs)

αi =
exp(ui)

∑j exp(uj)
v = ∑i αihi

(21)

where the attention layer’s output is represented by v and Ws and bs are trainable
weights and biases.

7. Dense—the dense layer is one of the most basic neural networks used to change the
dimension of a 1D layer by following certain functions for calculation. In the case of
heartbeat classification, the dense layer is used as a layer of neurons having input
weights following some linear function for generating output. The function followed
by a dense layer could be illustrated as,

Y = f(X×w + b) (22)

where Y represents the output layer, X represents the input layer, f represents the
activation function, w represents the weight matrix, and b represents the bias vector.

Next, we look in brief at the various activation functions used.

1. Leaky ReLU—this activation function is an extension of the ReLU activation function
where, if the input is negative, then the output is a negative number scaled down by a
parameter instead of zero, as was the case in ReLU activation. The equation below
describes the leaky ReLU activation function.

output =

{
input input ≥ 0
π × input input < 0

(23)

where π represents the parameter used to scale the output. π is to be set as a hyperpa-
rameter.
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2. Tanh—used to apply a non-linearity that squeezes the output to a unique value in
the range of −1 to +1, corresponding to a unique input value. The equation for the
application of this non-linearity can be given below.

output =
2

1 + e−2×input − 1 (24)

3. Sigmoid—this activation function is used to apply such a non-linearity that squeezes
the output to a unique value in the range of 0 to 1, corresponding to a unique input
value. The equation for the application of this non-linearity can be given below.

output =
1

1 + e−input (25)

Finally, we propose the usage of the Adam optimizer (the reason for the usage of the
Adam optimizer is depicted in the result and analysis section) and discuss the binary
cross entropy loss function next.

4. Binary cross-entropy loss—a combination of the sigmoid activation function and
cross-entropy loss used for binary classification problems. Hence, the below equation
depicts the calculation of the binary cross entropy loss for a sample.

Loss = −t× log(x)− (1−t)× log(1−x) (26)

where t is the label value, i.e., either 0 (for normal) or 1 (for murmur), depending
upon the label of the current input audio signal, and x is the input obtained from the
previous layer after application of the sigmoid activation function.

Algorithm 1 represents the algorithm of the entire training process.

Algorithm 1 : Attention-based Bi-GRU architecture for audio classification

1: hyper parameters←manual selection
2: loss_function← binary cross entropy
3: optimizer← Adam
4: N← numberOfEpochs
5: dataset← loadDataset()
6: model← buildModel(hyperparameters)
7: compileModel(model, loss_function, optimizer)
8: prevAccuracy← 0
9: batch_size← hyperparameters.get(‘batch_size’)

10: While N > 0 do
11: iterations← (numOfSamples(dataset)/batch_size)
12: While iterations 6= 0 do
13: batch← createMiniBatch(dataset)
14: Foreach input ∈ batch do
15: mfcc← getMFCC(input)
16: loss + = train(model, input)
17: endFor
18: backpropagateLoss(model, loss)
19: iterations← iterations − 1
20: endWhile
21: N← N − 1
22: accuracy← validate(model, getTestData(dataset))
23: If accuracy > prevAccuracy do
24: storeModelWeights(model)
25: prevAccuracy← accuracy
26: endIf
27: endWhile
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5. Result and Analysis

This section discusses the implementation details, including experimentation setup, tools,
and performance analysis of the proposed architecture with different evaluation metrics.

5.1. Experimentation Setup and Tools

The implementation of the proposed architecture (CNN + BiGRU) along with all the
other models, i.e., CNN, LSTM, BiGRU, and CNN + BiLSTM, is done on Google Colab-
oratory. The specifications of the computing power include a Graphical Processing Unit
(GPU)—Tesla T4 16 GB, Disk size—80 GB, Processor—Intel(R) Xeon(R) Central Processing
Unit (CPU) @ 2.20 GHz, and Random Access Memory (RAM)—13.3 GB. The proposed
architecture is built upon Python (version 3.7.14). Moreover, TensorFlow (version 2.8.2)
and Keras (version 2.8.0) architecture aid in building the model architectures. Further-
more, the Matplotlib (version 3.2.2) library is used for all the visualizations to aid data
analysis. The pandas library (version 1.3.5) is used for working with CSV files. For all the
other mathematical functions such as floating point operations and data manipulations
such as reshaping, the NumPy (version 1.21.6) library is used. Finally, for all the audio
data manipulations, i.e., audio preprocessing steps such as spectrograms and MFCCs,
the librosa library [59] (version 0.8.1) is used. Each model’s performance is estimated on
various evaluation metrics such as accuracy, recall, F1 score, precision, and the ROC curve.
The sci-kit-learn library (version 1.0.2) calculates these metrics and analyzes each model.

5.2. Simulation Analysis

The proposed architecture and the other models mentioned in Table 2 are trained for
100 epochs and a batch size of 32. Now, the learning rate defines the rate at which the loss
or error of the model is back-propagated to update the weights. Hence, if the learning
rate is high, the model learns faster, but there is a chance of the model overshooting the
minima in the gradient descent. Whereas, with a low learning rate, the model converges
very slowly or does not converge due to a vanishing gradient. Hence a lower learning rate
is generally used to fine-tune the model weights. With these points in mind, the learning
rate used is 0.001 at the beginning of the training (which is not high enough to overshoot
the minima in gradient descent). It is reduced later (when a plateau region in the gradient
descent is reached) in the hope that the models learn finer details from the MFCCs, i.e., the
model’s weights are fine-tuned. Three optimizers (methods of back-propagation of the
error) are evaluated with the proposed architecture: Adam, SGD (Stochastic Gradient
Descent), and RMSprop, with Adam giving optimum results. With the Adam optimizer,
the default parameter values are used, i.e., the value of beta1 (exponential decay of the first
moment estimates), beta2 (exponential decay of second-moment estimates), and epsilon
(a tiny number preventing any division by zero) are 0.9, 0.999, and 10× 10−8 respectively.
With SGD, the momentum is kept at zero.

With RMSprop, the values of momentum, rho (it is the decay factor of the learning
rate and reduces the effect of the learning rate eventually to learn finer details from the
data and get closer to the minima), epsilon are 0, 0.9, and 1× 10−7, respectively. The loss
function calculates the loss or error of the model’s prediction and is the binary cross
entropy loss function. Moreover, early stopping, which stops the training when a sufficient
gap is created in the training and validation accuracy, is implemented to prevent the
overfitting of the model at the time of training. Figure 7 shows the model’s accuracy and
loss curve analysis that justifies the early stopping. Figure 7 shows that the accuracy of the
proposed architecture on the validation set increases linearly with the training accuracy
in the early stages, but, later on, a gap is created due to the overfitting of the model (even
after the measures taken to combat overfitting). Due to this reason, we have applied early
stopping to prevent the model from learning the noise from the training set and retain
its generalization ability on the validation set. The same argument, as is explained for
the accuracy curve, goes with the loss curve. After the model is overfitted, the loss of the
validation set increases as the model wants to perform better on the training set and hence
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starts memorizing the training data and unwanted noise peculiar to training data. Thereby,
reducing its generalization capabilities on the validation set results in an increase in error,
which justifies the use of early stopping to prevent overfitting and unnecessary wastage of
computing resources to train the model further, even though the scope of improvement
is less. The overall validation accuracy of our proposed CNN+BiGRU with an attention
model is superior to the other models, as is evident in Table 2.

Table 2. Performance metrics of different deep learning models for heartbeat sound classification.
Precision, Recall, and F1-Scores are macro averages. Columns of “Accuracy”, “Precision”, “Recall”,
“F1-score”, and “AUC” are calculated on the validation set.

Model Train Accuracy Validation Accuracy Precision Recall F1-Score AUC Loss Accuracy/Loss

CNN 87% 84% 86% 85% 85% 0.85 0.43 1.95

LSTM 87% 82% 83% 82% 82% 0.84 0.522 1.61

BiGRU 96% 87% 87% 87% 87% 0.87 0.54 1.61

BiLSTM 95% 85% 86% 85% 85% 0.85 0.5633 1.50

CNN + BiLSTM 99% 85% 85% 85% 85% 0.85 0.84 1.01

[29] - 75.1% - - - - - -

[25] 78.6% 73.7% - - 65.7% - - -

CNN + BiGRU
(Proposed model)

94% 90% 90% 91% 90% 0.90 0.45 2

(a) (b)
Figure 7. Model evaluation shows that the proposed architecture is able to achieve significant
validation accuracy ≈ 90% with very low error. (a) Training and validation accuracy. (b) Training
and validation loss.

Moreover, we have shown the time each model takes to train on the dataset for epochs,
with and without data augmentation, along with the computation complexity of the models
for giving the inference on MFCC from the test data in Figure 8. As shown, the proposed
architecture has much less computational time complexity for training than other models.
For inference, the proposed architecture also has much less computational complexity than
other models, with tight competitors being CNN and CNN+BiLSTM. CNN is expected to
give better inference time complexity because of the parallel nature of the model and hence
the superiority. Simple BiGRU and BiLSTM-based recurrent networks are taking more time
to give inference because of the sequential nature of the models. Simple LSTM has only
one direction to deal with and hence has lesser model complexity overall. However, it
is still sequential, thus, with higher time complexity than CNN-based models but lower
than the bidirectional models. The introduction of some parallel structure of CNN to
BiLSTM and BiGRU makes CNN+BiLSTM and CNN+BiGRU faster than other raw LSTM
and GRU-based models. Between CNN+BiLSTM and CNN+BiGRU, these models have
almost similar time complexity, and no significant difference exists between them. However,
as described in Table 2, the accuracy of CNN+BiGRU outperforms the CNN+BiLSTM and
CNN models.
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Figure 8. Computation complexity analysis that represents how much time is taken by various models
to train for 40 epochs and the time taken to give an inference on a single sample. (a) Training Time vs.
Epochs (No Augmentation). (b) Training Time vs. Epochs (With Augmentation). (c) Inference Time
vs. Image No. (Id).

5.3. Evaluation Metrics

The evaluation metrics are the metrics against which different models are compared.
Compared to other models, these metrics define the effectiveness of a model on the overall
performance in solving the classification task at hand. Figure 9 illustrates the confusion
matrix for performance evaluation of the binary classification task with our proposed
architecture on the validation set. The confusion matrix is the overall summary from
which all the other comparison metrics, such as accuracy, precision, recall, and F1 score,
as discussed below, are derived.

Figure 9. Confusion matrix.

We defined specific terms related to the confusion matrix as below:

1. True Positive (α)—labels that are predicted as murmur by the model are truly murmur
(bottom right cell of the confusion matrix).

2. False Positive (β)—labels that are predicted as murmur by the model but are normal
(top right cell of the confusion matrix).

3. True Negative (γ)—labels that are predicted as normal by the model are truly normal
(top left cell of the confusion matrix).
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4. False Negative (δ)—labels that are predicted as normal by the model but are murmur
(bottom left cell of the confusion matrix).

Various metrics (derivable from the confusion matrix) are used to select the proposed
architecture over the other models.

1. Accuracy—a measure or the ratio of the total number of correct predictions to the total
number of predictions performed by a model. A higher accuracy means that a model
is more accurate in making predictions. As is evident from Table 2, the validation ac-
curacy of the proposed architecture outperforms others with an acceptable difference
in the training accuracy, indicating that the proposed architecture does not overfit as
quickly as other models and produces better predictions. Formally, the accuracy is
mathematically defined as,

Accuracy =
α + γ

α + β + γ + δ
(27)

2. Precision—the measure of correctly predicted true positive samples out of all predicted
true positive samples. Simply, it measures how many predictions are made by the
model belonging to a class from that class. Hence, the precision should be as high as
possible. From Table 2, it is evident that the proposed architecture outperforms all the
other models in precision with a high margin. Formally, precision is defined as,

Precision(Γ) =
α

α + β
(28)

3. Recall—the measure of how many samples belonging to a class that the model predicts
as belonging to that class, or simply, it is the ratio of the number of samples of a class
that a model identifies out of the total number of samples of that class in the dataset.
A high and desirable recall means that a model can extract a high number of samples
of a class out of all the samples of that class from the dataset. From Table 2, it is
evident that the proposed architecture outperforms all the other models in recall with
a high margin. Formally, recall is defined as,

Recall(ρ) =
α

α + δ
(29)

4. F1 score—the relation between precision and recall derived from calculating the
harmonic mean of precision and recall. The F1 score considers both precision and
recall, and a high F1 score is desirable. For the model’s performance, we generally
consider the F1 score to be the prime metric of distinction. As is evident from Table 2,
the proposed architecture outperforms all the other models in the F1 score with a high
margin. Formally, it is defined as,

F1 score =
2× Γ× ρ

Γ + ρ
(30)

Table 2 illustrates the above-mentioned performance metrics for murmur and regular
heartbeat sounds using our proposed CNN+BiGRU with an attention mechanism against
other deep learning models. Figure 10 illustrates the receiver operating characteristic
(ROC) curve of our proposed architecture along with the area under the curve (AUC) on
the validation set to be 0.9, indicating that the model performs exceptionally well on the
validation set. This AUC parameter tells us how much the model can distinguish between
different classes; hence, the more the area, the better the model. As is evident in Table 2,
the AUC of the proposed architecture outperforms the other models.

Figure 11 compares various optimizers used with the proposed architecture during
training. We can see that the Adam [60] optimizer produces the best results, as is expected
because Adam optimization is an extension of the stochastic gradient descent (SGD) and
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has the benefits of both the Adagrad and RMSprop optimizers. This results in Adam
reaching the optimum results in a short time frame.

Figure 10. ROC score for CNN+BiGRU.

Figure 11. The model’s validation accuracy with different optimizers.

Furthermore, we can also see from Figure 12 the reason behind selecting MFCC as a
feature selector. It is seen that the training with MFCC is very stable and converges quickly.
On the other hand, the training with chromagram as a feature selector gives us very slow
and unstable training.
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Figure 12. Validation accuracy of the proposed approach with different feature extractors.

Finally, data augmentation improves the validation accuracy to a great extent and
helps combat overfitting. Figure 13 shows this positive effect of data augmentation.



Mathematics 2023, 11, 1365 22 of 25

Figure 13. Validation accuracy with and without data augmentation.

This happens due to the model’s overfitting earlier due to fewer data. Whereas,
with data augmentation, the overfitting concern while training the model is somewhat
alleviated. Finally, coming back to the original objective as mentioned in (4) i.e., maximizing
O, we can see from the last column in Table 2 that our proposed architecture maximizes the
set objective. Moreover, we have also compared our results to specific experiments from
others’ work, as shown in Table 2. Our model outperforms Ref. [25] by a large margin on the
same dataset. The result shown in this work is for the CirCor DigiScope Phonocardiogram
Dataset, which is from the Physionet Heart Sound Classification challenge 2022. The authors
have applied self-supervised learning considering lower images in the dataset along with
1D-CNN based on the architecture of Refs. [61,62]. They achieved poorer results than our
proposed approach because, although the images are lesser, they have applied a very shallow
model. Moreover, they have not applied proper data augmentation and preprocessing. As a
result, the model cannot learn the feature of the data and hence we see a lower training and
validation accuracy. Our proposed model CNN+BiGRU is lightweight but still sufficiently
deep enough to learn the appropriate features and give classifications with high accuracy.

Similarly, when comparing with Ref. [29], we can see that their accuracy and F1-score
are also lower compared to our proposed approach. They applied proper data augmentation
and preprocessing to calculate MFCC before passing the raw audio to the classifier. However,
they have only implemented a CNN-based model structure with a perceptron layer to deal
with the wide features. However, they have not applied any RNN-based model. Our
proposed approach uses a CNN-based model to decrease the input complexity and then
the sequential BiGRU layers to get the sequential relationship out of the data. Moreover,
our proposed approach is optimized with the attention mechanism, which is neither used
in Ref. [25] nor Ref. [29]. Hence, our proposed architecture outperforms other approaches.
Therefore, based on all the above metrics and the analysis, we have selected CNN+BiGRU
attention as our proposed architecture.

6. Conclusions

The paper proposes a novel CNN+BiGRU attention-based approach for the classi-
fication of heartbeat sound to provide the first level of screening to patients for cardiac
disorders with the advent of deep learning to classify heart disease. The proposed approach
can effectively determine the urgency of treatment in cases of a particular cardiac symptom.
We have performed data augmentation with time stretch, pitch shift, and audio shift to im-
prove the model’s performance, deal with overfitting, and balance the dataset by generating
synthetic data from the minority class. The proposed deep learning model applies filtering,
downsampling, feature extraction, i.e., MFCC, and other data processing techniques to
effectively utilize the given dataset. The proposed architecture was evaluated using differ-
ent evaluation metrics, such as statistical measures (e.g., accuracy, precision, recall, etc.),
validation accuracy with and without data augmentation, and validation accuracy with dif-
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ferent optimizers. Our approach outperforms other state-of-the-art approaches providing a
validation accuracy of about 90% on the CirCor DigiScope Phonocardiogram dataset.

For future work, we would like to extend our proposed architecture to other variants
of audio recognition problems, including audio clips gathered from various clinical sources,
labs, and different acoustic environments for audio classification. Moreover, we would
explore transformer-based architectures to try and improve prediction accuracy.
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