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Abstract— Steganographic schemes are commonly designed
in a way to preserve image statistics or steganalytic features.
Since most of the state-of-the-art steganalytic methods employ
a machine learning (ML)-based classifier, it is reasonable to
consider countering steganalysis by trying to fool the ML classi-
fiers. However, simply applying perturbations on stego images as
adversarial examples may lead to the failure of data extraction
and introduce unexpected artifacts detectable by other classifiers.
In this paper, we present a steganographic scheme with a
novel operation called adversarial embedding (ADV-EMB), which
achieves the goal of hiding a stego message while at the same time
fooling a convolutional neural network (CNN)-based steganalyzer.
The proposed method works under the conventional framework
of distortion minimization. In particular, ADV-EMB adjusts the
costs of image elements modifications according to the gradients
back propagated from the target CNN steganalyzer. Therefore,
modification direction has a higher probability to be the same
as the inverse sign of the gradient. In this way, the so-called
adversarial stego images are generated. Experiments demonstrate
that the proposed steganographic scheme achieves better security
performance against the target adversary-unaware steganalyzer
by increasing its missed detection rate. In addition, it deteriorates
the performance of other adversary-aware steganalyzers, opening
the way to a new class of modern steganographic schemes capable
of overcoming powerful CNN-based steganalysis.

Index Terms— Steganography, steganalysis, adversarial
machine learning.

I. INTRODUCTION

IMAGE steganography is the art and science of concealing

covert information within images. It is usually achieved by

modifying image elements, such as pixels or DCT coefficients.
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On the other side of the game, steganalysis aims to reveal the

presence of secret information by detecting whether there are

abnormal artifacts left by data embedding.

The developing history of steganography and steganalysis is

rich of interesting stories, as they compete with each other and

they benefit and evolve from the competition [1]. The earliest

steganographic method was implemented by substituting the

least significant bits of image elements with message bits. The

stego artifacts introduced by this method can be effectively

detected by Chi-squared attack [2], or steganalytic features

based on first-order statistics [3]. In this initial phase of the

competition, statistical hypothesis testing or a simple linear

classifier such as FLD (Fisher Linear Discriminant) can serve

the need of steganalysis. The first-order statistics can be

restored after data embedding, as was done in [4]. The abnor-

mal artifacts in the first-order statistics can also be avoided

as in [5] and [6]. As a consequence, more powerful stegan-

alytic features based on the second-order statistics [7], [8]

were proposed. In this period, advanced machine learning

(ML) tools, such as SVM (Support Vector Machine), were

operated on high-dimensional features (where the dimension is

typically several hundreds). These methods were very effective

in detecting steganographic schemes even if the first-order

statistics were preserved. Modern steganographic schemes

are designed under the framework of distortion minimiza-

tion [9]. The embedding cost of changing each image element

is specified by a cost function, and a coding scheme is

employed to convey information by minimizing the distortion,

which is computed as the total cost of modified elements.

The schemes in [10]–[15] use effective cost functions. As a

counter-measure, state-of-the-art steganalytic methods adopt

higher-order statistics with much higher dimensional features

(where the dimension is typically thousands or even more

than ten thousands), such as in [16]–[20]. More sophisticated

ML methods, such as the ensemble classifier [21], have also

been employed. Steganalytic methods based on deep learning

[22]–[27] have rapidly gained an increasing attention in recent

years. Without the need of designing hand-crafted features,

deep convolutional neural networks (CNN) shows a promising

way in automatic feature extraction and classification for

steganalysis. Incorporating some prior domain knowledge into

the network design, such as using high-pass filters for pre-

processing, outstanding performance can be obtained.

The high-dimensional hand-crafted or deep-learned fea-

tures with the powerful supervised ML schemes present a

great challenge to steganography. A promising strategy for
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the steganographer is to use side information which is not

available to the steganalyst, such as using the camera sensor

noise during message embedding [28] and the compression

noise during JPEG compression [12]. However, the side infor-

mation is not always available for all kinds of cover images,

especially for those already compressed in JPEG format. As a

consequence, better steganographic schemes suitable for more

general conditions are needed.

As the dimension of steganalytic features increases, it is

difficult for steganograhpy to preserve all statistical features

during data embedding. This motivates us to find a better way

to resist steganalysis by countering the ML based classifier.

Recent studies [29], [30] have shown that ML systems are

vulnerable to intentional adversarial operations. For example,

Do et al. [31] showed that the image retrieval system based

on SIFT features could be attacked by tweaking the keypoint

orientations. Chen et al. [32] showed that the performance

of an image forensics detector with a SVM classifier could

be greatly degraded by a rather simple gradient based attack.

There are also some research evidences indicating that classi-

fier based on deep learning can be easily fooled by adversarial

examples [33]–[37], which are formed by applying small but

intentional perturbations to inputs in order to make the clas-

sification model yield erroneous outputs. However, applying

adversarial perturbations as in [33] on stego images may

lead to data extraction failures. The perturbations may also

introduce unexpected artifacts detectable by other classifiers.

The progress in adversarial signal processing [38] inspired

us to design a steganographic scheme that is resistant

against ML based steganalyzers. In this paper, we propose a

scheme called ADV-EMB (Adversarial Embedding). Targeted

to counter a deep learning based steganalyzer [26], we generate

stego images via adversarial embedding, an operation that

takes into account both the embedding of the stego message

and the necessity to fool the target steganalyzer. ADV-EMB is

implemented under the framework of distortion minimization,

and based on a baseline steganographic scheme adopting

a conventional embedding mechanism. Specifically, ADV-

EMB adapts the cost assignment process by asymmetrically

adjusting a portion of embedding costs according to the

gradients backpropagated from the deep learning steganalyzer.

In order to avoid unnecessary extra modifications, the amount

of image elements with adjustable costs is kept to be minimal.

Experimental results show that the adversarial stego images

generated by ADV-EMB can successfully fool the target deep

learning steganalyzer, which was trained with several hundreds

of thousands of training images.

Note that although to some extent being similar to the ASO

(Adaptive Steganography by Oracle) scheme [39], [40] which

also utilizes the information of a classifier, ADV-EMB does

not aim to preserve any specific statistical model and does not

directly generate embedding costs as [39] and [40]. ADV-EMB

has a wider range of application than SI-UNWIARD [12],

as it does not require side information which is only available

at the steganographer’s side. The target steganalyzer can be

constructed on the steganographer’s side and does not need

to be exactly the same as the one used by a steganalyst.

At the same time as the submission of this article, a related

work proposed by Zhang et al. [41] tried to iteratively add

adversarial perturbations on cover images first, and then embed

messages into the “enhanced” cover images. The stego images

generated in this way are robust against the detection of the

target steganalyzer. However, the perturbations may introduce

unexpected artifacts detectable by other non-target stegana-

lyzers. In contrast, by our proposed method without over-

adaption, although the adversarial stego images have a slightly

higher rate of modifications then conventional stego images,

they are less detectable by other advanced hand-crafted feature

based steganalyzers and deep learning based steganalyzers.

The main contributions of our work are as follows:

1) A new strategy to fool the ML based steganalyzers,

which is not based on the attempt to preserve a specific

image statistical model, is proposed. We believe this is

a promising way to counter steganalysis.

2) A practical steganographic scheme called ADV-EMB

with adversarial embedding operation is proposed.

As opposed to conventional approaches used to create

adversarial examples in other machine learning domain,

adversarial stego images generated by the ADV-EMB

scheme are capable of carrying secret information.

3) Based on the knowledge available to the steganographer

and the steganalyst, different adversarial models are

considered, wherein the proposed scheme can achieve

state-of-the-art security performance.

The rest of the paper is organized as follows. In Section II,

we give the foundation of the proposed steganographic

scheme, and differentiate two kinds of adversarial scenarios.

We present the idea as well as a practical implementation of

the proposed ADV-EMB steganographic scheme in Section III.

Extensive experiments are performed and the results are

reported in Section IV to demonstrate the performance of

the ADV-EMB scheme under different adversarial conditions

when compared to a baseline steganographic method. Conclu-

sions are presented in Section V.

II. TECHNICAL FOUNDATION

In this article, capital letters in bold are used to repre-

sent matrices. The corresponding lowercase letters are used

for matrix elements. The flourish letters are used for sets.

Specifically, cover and stego images are respectively denoted

as C = (ci, j )
H×W and S = (si, j )

H×W , where H and W are the

height and width of the image. We use Z = (zi, j )
H×W ∈ Z to

denote the proposed adversarial stego image. Note that Z is a

special type of S. The corresponding image sets are denoted

as C, S, and Z , respectively.

A. Practical Evaluation Metrics for Steganographic Security

The fundamental requirement of steganalysis is to differ-

entiate stego images from cover images. To accomplish this

task in a supervised ML setting, for analyzing an image X,

the steganalyzer may train a classifier φC,S with binary output

using training data from C and S, and obtain the decision

criterion as follows:
{

X is a cover image, if φC,S(X) = 0,

X is a stego image, if φC,S(X) = 1.
(1)
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The trained classifier is called steganalyzer. The missed detec-

tion happens when stego images are misclassified, and the

false alarm happens when cover images are misclassified. The

corresponding error probabilities are defined as:

P
φC,S

md = Pr{φC,S(S) = 0}, (2)

and

P
φC,S

f a = Pr{φC,S(C) = 1}. (3)

Under equal Bayesian prior for cover and stego, the total error

rate is

P
φC,S
e =

P
φC,S

md + P
φC,S

f a

2
. (4)

The goal of a steganalyst is to minimize P
φC,S
e , while the goal

of a steganographer is the opposite.

B. Distortion Minimization Framework for Steganography

Under the distortion minimization framework, steganogra-

phy is formulated as an optimization problem with a payload

constraint, i.e.,

min
S

D(C, S), s.t. ψ(S) = k, (5)

where D(C, S) is a function measuring the distortion caused

by modifying C to S, ψ(S) represents the message payload

extracted from S, and k is the amount of payload (measured

in bits). A typical additive distortion function for ternary

embedding, such as those used in [11]–[15], is defined as:

D(C, S) =

H
∑

i=1

W
∑

j=1

ρ+
i, j δ(mi, j − 1) + ρ−

i, j δ(mi, j + 1), (6)

where mi, j = si, j − ci, j is the difference between the cover

and the stego elements, δ(·) is an indication function:

δ(x) =

{

1, x = 0,

0, otherwi se,
(7)

and ρ+
i, j and ρ−

i, j are respectively the cost of increasing

and decreasing ci, j by 1. Although different steganographic

schemes may employ different cost functions, a rule of thumb

is that large cost values are assigned to elements more likely to

introduce abnormal artifacts and thus leading to low probabil-

ities of modification, and vice versa. In most schemes, ρ+
i, j =

ρ−
i, j , leading to equal probabilities of increasing or decreasing

ci, j . With the CMD (clustering modification direction) strategy

[42], [43], the costs of increasing or decreasing are asymmet-

rically updated during embedding in favor to a synchronized

direction in neighborhood.

C. Steganographer’s Knowledge About Steganalyzer

The steganographer may have different levels of knowl-

edge about φC,S , such as the classification scheme and the

training data. In this paper, we will not discuss what is the

best strategy the steganographer should take according to

the accessibility of these knowledge. Instead, we assume the

gradients of the loss function with respect to the input, which

are backpropagated from a ML based steganalyzer φC,S , are

accessible to the steganographer. This is the foundation of

the proposed steganographic scheme. In Section III, we will

propose a scheme to fool such a steganalyzer with adversarial

stego images. We will also investigate in the experimental part

how well the adversarial stego images perform under other

advanced steganalyzers (e.g., φ′
C,S

) when the knowledge of

these steganalyzers is unavailable.

D. Steganalyst’s Knowledge About Adversarial Stego Images

If a steganalyst is unaware of the adversarial operation pre-

sented to his steganalyzer, he is called adversary-unaware ste-

ganalyst. Otherwise, he is called adversary-aware steganalyst.

One of the possible reactions of an adversary-aware stegana-

lyst is to re-train the classifier with adversarial stego samples

to obtain a new steganalyzer φC,Z , or use other advanced

steganalyzers (e.g., φ′
C,Z

) unknown to the steganographer. This

may present two challenging cases for a steganographer and

we will discuss these scenarios in the experiments.

III. THE PROPOSED ADV-EMB

STEGANOGRAPHIC SCHEME

In this section, we will propose a novel steganographic

scheme, called ADV-EMB, to counter a target steganalyzer.

First, we will outline the basic idea of the proposed scheme.

Then we will discuss the two most important operations in the

proposed scheme, i.e., adversarial embedding and minimizing

the amount of adjustable elements, in detail. Finally, we will

give a practical implementation of ADV-EMB.

A. Basic Idea

In the proposed scheme, the image elements are randomly

divided into two groups, i.e., a common group containing com-

mon elements, and an adjustable group containing adjustable

elements. Data embedding is performed in two phases. In the

first phase, a portion of the stego message is embedded into

the common group by using a conventional baseline stegano-

graphic scheme. In the second phase, the remaining part of

the stego message is embedded into the adjustable group by

using the proposed adversarial embedding scheme. Adjustable

elements are modified in such a way that a target steganalyzer

would output a wrong class label. We use a well-performed

deep learning based steganalyzer, i.e., Xu’s CNN [26], as

the target steganalyzer, since the gradient values of its loss

function with respect to the input can be used to guide

the modification of adjustable elements. Other steganalyzers

possessing such a property may also be used. The details will

be given in Section III-B. In order to prevent over-adaption to

the target steganalyzer and enhance the security performance

against other advanced steganalyzers, the number of adjustable

elements is minimized, resulting in a minimization problem

with constraints. The details will be given in Section III-C.

In adversarial ML, an attack with full knowledge of a

ML classifier is called a white-box attack. When the model,

parameters and training data of the target classifier are not

known, the attack is referred to as a black-box attack [44].
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In our case, we adopt a white-box assumption in designing the

steganographic scheme, however, we also test the new scheme

in black-box scenarios against feature-based and CNN-based

steganalyzers other than the targeted one (see Section IV).

B. Adversarial Embedding

Denote y as the ground truth label of X. In steganalysis,

we have y ∈ {0, 1}, where 0 indicates a cover and 1 indicates a

stego. Let L(X, y; φC,S) be the loss function of a steganalyzer

φC,S . For example, for a deep neural network steganalyzer, the

binary decision could be given as

φC,S (X) =

{

0, if F(X) < 0.5,

1, if F(X) ≥ 0.5,
(8)

where F(X) ∈ [0, 1] is the network output indicating the

probability that X is a stego. The corresponding loss function

may be designed in a form of cross entropy as

L(X, y; φC,S) = −y log
(

F(X)
)

− (1 − y) log
(

1 − F(X)
)

(9)

In [33]–[35], adversarial examples are generated to fool

ML models by updating input elements xi, j according to

the gradient of the loss function with respect to the input

(abbreviated as gradient if it is not specified otherwise),

i.e., ▽xi, j L(X, ŷ; φC,S), by using a target label ŷ. However,

it is impossible to directly apply these methods for securing

steganography. In fact, modifying the elements of a stego

image may lead to the failure of data extraction thus contra-

dicting the aim of steganography. This motivates us to design

an embedding method with two objectives of equal impor-

tance: performing adversarial operation to combat steganalyzer

φC,S and performing data embedding to carry information. To

this end, we propose a method that we will call adversarial

embedding to generate adversarial stego images under the

framework of steganographic distortion minimization [9].

In [33], it is observed that when a perturbation signal

associated with a target label is added to the input, the updated

input, called adversarial example, is usually misclassified into

the target class by the ML classifier. The perturbation signal

can be designed in various ways, including using the gradient

of the loss function with respect to the input. Since adding

a perturbation with the inverse sign of the gradient has an

adversarial effect, the objective of the proposed adversarial

embedding is to modify image elements in such a way that

the sign of the modification tends to be in accordance with the

inverse sign of the gradient. To achieve such an objective with

a high probability, together with data embedding, we operate

under the distortion minimization framework by making the

embedding costs bear the following properties:
⎧

⎪

⎨

⎪

⎩

ρ+
i, j < ρ−

i, j , if − ▽xi, j L(X, ŷ; φC,S) > 0,

ρ+
i, j = ρ−

i, j , if − ▽xi, j L(X, ŷ; φC,S) = 0,

ρ+
i, j > ρ−

i, j , if − ▽xi, j L(X, ŷ; φC,S) < 0.

(10)

Such costs yield asymmetric probabilities of increasing and

decreasing the element xi, j , if the gradient is not zero. In

this way, data can be embedded into the image elements, and

the direction of the modification has the effect of inducing

the steganalyzer φC,S to decide for the target label ŷ = 0.

Please note that the adversarial embedding may lead to higher

modification rates due to the asymmetric embedding costs.

C. Minimum Amount of Adjustable Elements

With adversarial embedding, the adversarial stego images

may effectively evade steganalysis. However, since the costs

of increasing and decreasing are asymmetric, it increases the

number of changed image elements. The reason is that the

maximum entropy can only be obtained when the image

element has an equal probability of increasing and decreasing.

With the payload constraint, asymmetric costs lead to a higher

change rate when compared to symmetric costs. Although

a higher change rate may not necessarily lead to a worse

security performance, we would still like to minimize it by

reducing the frequency of adversarial embedding. This is due

to three facts. First, it is sufficient to fool the ML classifier by

using only a part of the elements to perform the adversarial

operation, as shown in [44]. In fact, it is even unnecessary to

perform adversarial embedding to those stego images which

are generated by conventional steganographic schemes but

are already incorrectly classified by the target steganalyzer.

Second, if all elements are used for adversarial embedding,

the generated adversarial stego images may be overly adapted

to the target steganalyzer and may possibly become more

detectable by other advanced steganalyzers. We may minimize

the amount of elements for adversarial embedding to prevent

introducing other detectable artifacts that can be exploited by

an adversary-aware steganalyzer. Third, when the change rate

is minimized, the image quality should be preserved better.

We propose to divide image elements into two groups i.e.,

a common group containing common elements for conven-

tional steganographic embedding, and an adjustable group

containing adjustable elements for adversarial embedding. The

objective is that the amount of adjustable elements should

be minimized while the target steganalyzer should output a

wrong class label. Mathematically speaking, the problem is

formulated as

min β, s.t. φC,S(Z) = 0 and ψ(Z) = k, (11)

where β ∈ [0, 1] denotes the ratio of the amounts of adjustable

elements to all image elements, and ψ(·) and k have the

same definition as in Eq.(5). It is obvious that there is no

explicit solution to such a problem. To solve it efficiently,

the target steganalyzer is employed to numerically search for

“just enough” amount of adjustable elements to satisfy the

constraints in (11). The details will be described in the next

subsection.

D. A Practical Implementation of ADV-EMB

In this part, we present a practical ADV-EMB stegano-

graphic scheme. Since JPEG images are widely used and

pervasive on the Internet, we use them as cover. We use

Xu-CNN [26] as the target steganalyzer and J-UNIWARD

[12] as the baseline steganographic scheme for conventional

data embedding. The target steganalyzer is a CNN model
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Fig. 1. Illustration of the process of the proposed ADV-EMB scheme.

composed of a fixed DCT filtering layer and 20 learn-

able convolutional layers. To the best of our knowl-

edge, it achieves the best performance in detecting JPEG

image steganography. In this paper, we use JPEG cover

images and stego images generated by J-UNIWARD to

train the target steganalyzer. However, other image for-

mats, conventional embedding schemes or steganalyzers,

may also be applicable, as indicated in Section III-A.

The detailed steps of the proposed scheme are described as

follows, and Fig. 1 illustrates an example.

1) For a cover image C = (ci, j )
H×W , use a conventional

cost function (such as in J-UNIWARD) to compute the

initial embedding costs, i.e., {ρ+
i, j , ρ

−
i, j }, for the DCT

coefficients. Initialize the parameter β = 0.

2) Divide the elements in C into two disjoint groups, i.e.,

a common group containing l1 = [H × W × (1 − β)]

common elements, and an adjustable group containing

l2 = H ×W −l1 adjustable elements. In Fig. 1, common

group and adjustable group are labeled as blue and red

boxes respectively. The positions of these two kinds of

elements can be fixed in advance or randomized with

the details to be discussed later.

3) Embed k1 = [k × (1 − β)] bits into the common

group using the initial embedding costs computed in

Step 1 by applying a distortion minimization coding

scheme, such as STC (syndrome-trellis codes) [45]. The

resulting image is denoted as Zc. In Fig. 1, the modified

coefficients in common group are highlighted with blue

strides.

4) Compute the gradients ▽zi, j L(Zc, ŷ; φC,S) of the ste-

ganalyzer using the target label ŷ = 0. Update the

embedding costs for the adjustable elements by

q+
i, j =

⎧

⎪

⎨

⎪

⎩

ρ+
i, j /α, if − ▽zi, j L(Zc, 0; φC,S) > 0,

ρ+
i, j , if − ▽zi, j L(Zc, 0; φC,S) = 0,

ρ+
i, j .α, if − ▽zi, j L(Zc, 0; φC,S) < 0,

(12)

q−
i, j =

⎧

⎪

⎨

⎪

⎩

ρ−
i, j /α, if − ▽zi, j L(Zc, 0; φC,S) < 0,

ρ−
i, j , if − ▽zi, j L(Zc, 0; φC,S) = 0,

ρ−
i, j .α, if − ▽zi, j L(Zc, 0; φC,S) > 0,

(13)

where α is a scaling factor larger than 1 to ensure that

equations(12) and (13) necessarily fulfill equation(10).

α is set to 2 in this work. Embed k2 = k − k1 bits into

the adjustable elements by using the updated embedding

costs computed from (12) and (13) and the same coding

scheme used for the common group. The resultant image

is Z. Figure 1 shows that the costs of the elements in the

adjustable group are either doubled or halved, depending

on the signs of the corresponding gradients. After data

embedding, the modified coefficients in adjustable group

are highlighted with red strides.

5) Take Z as the input of the steganalyzer φC,S . If

φC,S(Z) = 0, which means the adversarial stego Z can

fool the steganalyzer with a minimum value of β, use

Z as the output and terminate the embedding process.

Otherwise, the amount of adjustable elements may not

be enough. In this case, update β by β +�β, and repeat

Step 2 to Step 5 until β = 1 . We use �β = 0.1 in this

work. If β = 1 and φC,S (Z) = 1, which corresponds to

the failure case of adversarial embedding, we just use a

conventional steganographic scheme for embedding and

output a conventional stego image.

Since the same coding scheme, such as STC, is used both

in the adjustable group and the common group, the message

receiver neither needs to be informed about the value of β,

nor needs to know which image elements belong to to the

adjustable group or the common group. Data is extracted in

the same way as the baseline steganographic scheme.

As we know, in most existing steganographic schemes, an

embedding order of image elements is generated by scram-

bling the indexes of image elements, where the scrambling
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operation is determined by a secret key shared between the

sender and the receiver. The secret key can be fixed for

different images, or changed as a session key. In the ADV-

EMB implementation, the positions of the common elements

and that of adjustable elements can be determined as follows.

First, generate an embedding order in the same way as the

baseline steganographic scheme. Then, the common group

is formed by the first l1 = [H × W × (1 − β)] elements

according to the embedding order. Finally, the adjustable group

is formed by the remaining elements. In other words, the posi-

tions of adjustable elements can be fixed or randomized for

different images, depending on whether the embedding order

is fixed or randomized. We recommend randomization for

enhancing security.

IV. EXPERIMENTS

In order to evaluate the performance of the proposed ADV-

EMB scheme, we conducted the following experiments.

1) We evaluated the performance of ADV-EMB in the pres-

ence of an adversary-unaware steganalyst who trained

his steganalyzer with conventional stego images. This

corresponds to a white-box attack in adversarial exam-

ples [33] and it is the most favorable case for the

steganographer. It will be reported in Section IV-B. We

also evaluated the performance when non-target feature-

based or CNN-based steganalyzers were used.

2) We evaluated the performance of ADV-EMB in the pres-

ence of an adversary-aware steganalyst who re-trained

his steganalyzer with adversarial stego images. This

corresponds to a challenging case for the steganographer.

It will be reported in Section IV-C.

3) We simulated the situation when the knowledge of

the steganographer and that of the steganalyst were

alternatively updated. To the best of our knowledge,

this is the first work to investigate iterative adversarial

conditions for steganography and steganalysis. It will be

demonstrated in Section IV-D.

4) Experimental results in Section IV-E will show why

adversarial embedding guided by gradients and mini-

mum amount of adjustable elements are important in

the proposed scheme.

5) The role of randomizing the positions of the adjustable

elements will be discussed in Section IV-G.

6) We performed some experiments on another image set

for further evaluation, and the results will be shown in

Section IV-H.

7) We evaluated the performance on spatial domain images,

and the results will be given in Section IV-I.

The common settings and notations in the experiments will

be described in Section IV-A. Some statistical information

about the stego image sets will be provided in Section IV-F.

A. Settings

1) Image Set: The following two cover image sets were

respectively used.

• Basic500k, denoted by CB . It was obtained by randomly

selecting 5 × 105 JPEG images with size larger than

256×256 from ImageNet and then cropping their left

top 256×256 regions. The images were further converted

to grayscale and re-compressed into JPEG format with

quality factor 75. This dataset has been used in [27] to

train CNN-based steganalyzers. Although the images in

Basic500K suffer from double/multiple JPEG compres-

sion, their use does not jeopardize the practical security

of the embedded scheme. In fact, double/multiple JPEG

compressed images are common in practice. Unless spec-

ified otherwise, the experiments were carried out on this

image set. To use the images efficiently under different

circumstances, CB was randomly split into three disjoint

subsets, C0
B , C1trn

B , and C
1t st
B , with 2.5×105 images, 1.5×

105, and 1×105 images, respectively. C0
B was used to train

the target steganalyzer, while C
1trn
B and C

1t st
B were used to

generate adversarial stego images. Specifically, C1trn
B and

its stego counterparts were used for training adversary-

aware steganalyzers, and C
1t st
B and its stego counterparts

were used for testing the performance of both adversary-

unaware and adversary-aware steganalyzers.

• JPEG-BOSSBase, denoted by CJ . In order to verify the

performance of ADV-EMB on an image set with distinct

difference from CB , we generated this set without any

possible double JPEG compression artifacts. We used

Photoshop CS6 for demosaicking the full-resolution raw

images from the BOSSBase v1.01 image set [46] and then

converted them into grayscale images. Later we down-

sampled the obtained images with a Bicubic kernel so

that the smaller image dimension was 256. Then we

central cropped the longer dimension and we got images

of size 256×256. Finally, we compressed the images into

JPEG format with quality factor 75 to obtain the JPEG-

BOSSBase dataset. The experiments in Section IV-H

were carried out on this image set. CJ was randomly

split into two disjoint subsets, Ctrn
J and C

t st
J , each with

5000 images. Both C
trn
J and C

t st
J were used to generate

adversarial stego images, and their roles are similar to

C
1trn
B and C

1t st
B , respectively.

2) Steganalyzers: Four different steganalyzers were used

to evaluate the security of the steganographic schemes. The

details are described as follows.

• Xu-CNN steganalyzer [26], denoted as φ . To the best

of our knowledge, it is the best performing date-driven

JPEG CNN steganalyzer. The 20-layer CNN steganalyzer

was proposed by Xu, and we built the CNN structure and

set all training parameters as in [26], with the only differ-

ence that the batch size was set to 100 during the training

stage, with 50 cover images and their corresponding stego

counterparts. The CNN model trained at the 100000-th

iteration was used as the steganalyzer.

• Zeng-CNN steganalyzer [27], denoted as φ′. This deep

learning steganalyzer involves two stages, a hand-crafted

stage including quantization and truncation operation, and

a learnable stage composed of three subset networks.

We trained this steganalyzer with the same settings as

in [27].

• GFR steganalyzer [20], denoted as φ′′. It is based on

17000 histogram features generated with Gabor filters and

an FLD ensemble classifier [21].
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TABLE I

THE SECURITY PERFORMANCE (IN %) AGAINST AN ADVERSARY-UNAWARE STEGANALYZER

• DCTR steganalyzer [19], denoted as φ′′′. It is based on

8000 dimensional DCT residual features and an FLD

ensemble classifier [21].

The steganalytic performance was evaluated by the missed

detection rate as in (2), the false alarm rate as in (3), and the

total error rate as in (4) .

3) Steganographic Schemes: We used two steganographic

schemes to generate stego images.
• J-UNIWARD [12]: It was used as a baseline stegano-

graphic scheme. The embedding costs of DCT coeffi-

cients were calculated in the wavelet domain using a

Daubechies wavelet filter bank. The corresponding stego

image sets are denoted as S0
B , S1

B , S trn
J , and S

t st
J .

• ADV-EMB: In the proposed scheme, J-UNIWARD was

used to compute the initial embedding costs and perform

the conventional embedding. The steganalyzer φ
C0

B ,S0
B

based on Xu-CNN was used as the target steganalyzer

for adversarial embedding. The corresponding adversarial

stego image sets are denoted as Z
0
B , Z1

B , Z trn
J , and Z

t st
J .

The scaling parameter used in (12) and (13) was set to

α = 2, where we have tried α ∈ {1.5, 2, 3, 5, 10} and

found only minor difference in performance.
The optimal embedding simulator [9] was employed for

both J-UNIWARD and ADV-EMB. The Matlab implemen-

tation of J-UNIWARD was used1. Our proposed ADV-EMB

scheme was implemented using TensorFlow with Python inter-

face. The experiments were run on a NVIDIA Tesla K80 GPU

platform. The embedding payload was measured by bits per

non-zero cover AC DCT coefficient (bpnzAC) as in [12], [26],

and [27]. In Section IV-B and IV-C, we conducted experiments

on 0.1, 0.2, 0.3, 0.4, and 0.5 bpnzAC. For the rest of the

experiments, we used 0.4 bpnzAC since the steganalyzers

perform better on higher payloads.

B. Performance Against an Adversary-Unaware Steganalyst

In this part, we study the case where the knowledge of

the steganalyzer is exposed to the steganographer, but the

1It is downloaded from http://dde.binghamton.edu/download/stego_
algorithms/

steganalyst is unaware of the adversarial operation and still

uses the current steganalyzer. In particular, we assume that the

Xu-CNN steganalyzer φ
C0

B ,S0
B

, which has been trained on the

image set
{

C0
B,S0

B

}

, is available to the steganographer. Note

that the steganographer does not need to have
{

C
0
B,S0

B

}

given

that the steganalyzer φ
C0

B ,S0
B

is known. The steganographer can

use φ
C0

B ,S0
B

to generate an adversarial stego set Z1
B from the

cover set C1
B .

We would like to know how well does the steganalyzer

φ
C0

B ,S0
B

perform on classifying
{

C
1t st
B ,Z1t st

B

}

when compared

to classifying
{

C
1t st
B ,S1t st

B

}

. The experimental results are

reported in Table I and the better performed results are shown

in bold. Note that under the same payload rate, the false alarm

rate P f a is the same for
{

C
1t st
B ,Z1t st

B

}

and
{

C
1t st
B ,S1t st

B

}

, due

to the fact that the steganalyzer was trained on
{

C
0
B ,S0

B

}

but tested on C
1t st
B , which is shared in

{

C
1t st
B ,Z1t st

B

}

and
{

C
1t st
B ,S1t st

B

}

. However, we can observe that the missed detec-

tion rate Pmd is much higher for Z
1t st
B than for S

1t st
B . These

results indicate that the adversarial stego images generated

by ADV-EMB can effective evade detection by the target

steganalyzer.

In order to investigate the case where the adversarial stego

images are analyzed by steganalyzers other than the target

one, we conducted experiments by using three advanced

steganalyzers, i.e., φ′
C0

B ,S0
B

, φ′′
C0

B ,S0
B

, and φ′′′
C0

B ,S0
B

, to perform

the same classification tasks. The experimental results reported

in Table I show that the performance of these detectors on

the adversarial stego images are, at least to some extent,

worse than those obtained on the stego images generated

by J-UNIWARD. Although being designed to fool a target

steganalyzer, the ADV-EMB scheme shows a certain effec-

tiveness also against non-target steganalyzers. We speculate

that this adaptability to other steganalyzers is due to the

transferability of adversarial stego images. As shown by recent

studies [44], [47], adversarial examples can be transferred

across different machine learning models as long as such

models are used to carry out the same task. Our results indicate

that this phenomenon also applies to steganalysis (at least in
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TABLE II

THE SECURITY PERFORMANCE (IN %) AGAINST AN ADVERSARY-AWARE STEGANALYZER

the framework studied in this paper). As a result, to counter an

unknown steganalyzer, a steganographer may use a local well-

performing CNN-steganalyzer as the target steganalyzer. Such

an observation largely widens the use range of the proposed

ADV-EMB scheme.

C. Performance Against an Adversary-Aware Steganalyst

In this part, we study the case where the steganalyst is aware

of the adversarial embedding operation. As stated in Section II-

D, one of his possible reactions is to re-train the steganalyzers

with adversarial stego images. The adversarial stego images

Z
1trn
B and Z

1t st
B were generated as in Section IV-B, where

the steganographer only relies on the steganalyzer φ
C0

B ,S0
B

to

generate adversarial stego images. Then, we trained the stegan-

alyzers based on
{

C
1trn
B ,Z1trn

B

}

and tested on
{

C
1t st
B ,Z1t st

B

}

.

In this way, the image sets for data embedding (i.e., C1trn
B and

C
1t st
B ) and that for the training target steganalyzer (i.e., C0

B )

were different, thus ensuring that ADV-EMB did not use any

prior knowledge of the image set.

The experimental results we obtained are reported

in Table II. It can be observed that compared to the target

steganalyzer which is easily fooled by the adversarial stego

images, a re-trained steganalyzer can better detect the adversar-

ial embedding operations. However, compared to the baseline

J-UNIWARD scheme, the proposed ADV-EMB scheme still

achieves a better security performance. For example, ADV-

EMB gets a 25.8% total error rate for 0.4 bpnzAC, which is

comparable to J-UNIWARD with 25.3% for 0.3 bpnzAC. This

means that under the same risk level of detection, ADV-EMB

attains 0.1 bpnzAC more payload. As also shown in Table II,

when we used the other three non-target steganalyzers φ′, φ′′,

and φ′′′ for detection, higher total error rates are obtained on
{

C
1t st
B ,Z1t st

B

}

than on
{

C
1t st
B ,S1t st

B

}

, showing once again that

ADV-EMB outperforms the baseline scheme.

D. Sequential Iterative Process Between

Steganographer and Steganalyst

In this part, we study a scenario wherein the steganographer

and the steganalyst adjust their steganalyzer iteratively each

time by adapting their knowledge about the scheme adopted

by the adversary. It is assumed the steganographer takes the

first step and then the steganalyst takes the second, together

defining a round in the competing process.

The experiments were carried out under the following

assumptions for each round. We assume that the steganog-

rapher uses a target steganalyzer which is trained by con-

ventional stego images and adversarial stego images from all

previous rounds, as it is reasonable to use all the available

knowledge. Such a steganalyzer can be regarded as adversary-

unaware for the current round (and also future rounds), but

as adversary-aware for previous rounds. The adversary-aware

steganalyst uses the latest generated adversarial stego images

to train the steganalyzer. Such a steganalyzer may be more

focused on detecting adversarial stego images generated in

the current round.

We used the following experimental setting.

1) The current-round-adversary-unaware steganalyst is

unaware of the adversarial stego images generated in

the current round. For the first round, conventional

stego images generated with the baseline steganographic

scheme are used for training. For the subsequent rounds,

the steganalyzer is trained on C0
B and the corresponding

adversarial stego images obtained in all previous rounds.

2) The steganographer sets the target steganalyzer to be the

same as the adversary-unaware steganalyzer in the cur-

rent round and tries to attack it by generating adversarial

stego images from C1
B .

3) The current-round-adversary-aware steganalyst is aware

of the adversarial operation performed in the current

round. Hence the steganalyzer is trained on C
1trn
B

and the adversarial stego counterpart in the current

round.

4) To ease the comparison, the C
1t st
B and the corresponding

adversarial stego counterpart are used to evaluate the

performance for both the adversary-unaware stegana-

lyzer and the adversary-aware steganalyzer. Each ste-

ganalyzer is used to detect stego images not only in the

current round, but also in all previous rounds and future

rounds.
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TABLE III

THE STEGANALYTIC PERFORMANCE (IN %), GIVEN AS Pe (P f a , Pmd ), IN THE ITERATIVE PROCESS WHEN THE STEGANOGRAPHER

AND THE STEGANALYST ITERATIVELY UPDATE THEIR KNOWLEDGE OF THE OTHER SIDE

Although the iterative process can be endless, we per-

formed three iteration rounds to illustrate the interplay

between the steganographer and steganalyst. The current-

round-adversary-unaware steganalyst used J-UNIWARD to

generate the conventional stego image set S in the first round.

The steganographer generated the adversarial stego sets Z ,

Ż , and Z̈ from the first to the third round, respectively. The

embedding payload was set to 0.4 bpnzAC. The performances

of current-round-adversary-unaware steganalyzer are shown

in the first row of each round, and those of current-round-

adversary-aware steganalyzer are shown in the second row

of each round. From Table III, we can draw the following

conclusions for the Pe.
1) Expectedly, the adversarial stego images generated in

the current round can fool the current-round-adversary-

unaware steganalyzer with the highest Pe. Compared to

conventional stego images, all kinds of adversarial stego

images achieve better security under the same stegana-

lyzer. This implies that it is better to use adversarial

stego images in any round.

2) For the current-round-adversary-unaware steganalyzers,

as iterations go on, a steganalyzer in a higher round

is less effective in detecting conventional stego images.

Since the steganalyzers in higher rounds are trained

not only on conventional stego images but also on

adversarial stego images, the results may imply that the

adversarial stego images in higher rounds disturb the

current-round-adversary-unaware steganalyzer in detect-

ing conventional stego images.

3) For the current-round-adversary-aware steganalyzer,

although it is only trained with the adversarial stego

images from the current round, it is also (more or less)

effective to detect conventional stego images and adver-

sarial stego images from other rounds. However, there is

no clear trend to indicate whether it performs better on

adversarial stego images from previous rounds or future

rounds. For example, in Round 3, we can observe that

the detection error rate is 27.75% for the current round,

which is higher than 26.92% for the first round and lower

than 30.57% for the second round. These results seem to

show that adversarial stego images introduce somewhat

similar modifications to fool the steganalyzer, no matter

from which round.

E. Investigation on Two Important Steps in ADV-EMB

Performing adversarial embedding according to the inverse

signs of gradients and using minimum amount of adjustable

elements are the two most important steps of the ADV-

EMB scheme. In this part, we investigate the effectiveness of

each step. Both adversary-unaware and adversary-aware CNN

steganalyzers were used for the evaluation, and the embedding

payload was set to 0.4 bpnzAC.

1) Case I (Reversing the Signs in ADV-EMB): In the ADV-

EMB scheme, the embedding costs of adjustable elements are

asymmetrically adjusted according to the inverse signs of the

gradients, as shown in (12) and (13). For comparison, we used

the signs of the gradients, instead of the inverse signs, as in

the following equations, to conduct experiments:

q+
i, j =

⎧

⎪

⎨

⎪

⎩

ρ+
i, j /α, if ▽zi, j L(Zc, 0; φC,S) > 0,

ρ+
i, j , if ▽zi, j L(Zc, 0; φC,S) = 0,

ρ+
i, j .α, if ▽zi, j L(Zc, 0; φC,S) < 0,

(14)

q−
i, j =

⎧

⎪

⎨

⎪

⎩

ρ−
i, j /α, if ▽zi, j L(Zc, 0; φC,S) < 0,

ρ−
i, j , if ▽zi, j L(Zc, 0; φC,S) = 0,

ρ−
i, j .α, if ▽zi, j L(Zc, 0; φC,S) > 0.

(15)

The results are shown in Table IV. Compared with the previous

results (see Table I and II), the total error rate of the adversary-

unaware steganalyzer drops from 58.5% to 18.3%, and that of

the adversary-aware steganalyzer from 25.8% to 19.3%. The

degraded performance indicates that taking into account the

signs of the gradients plays an important role in producing

the adversarial effect.

2) Case II (Disabling Minimum Amount of Adjustable Ele-

ments): In the ADV-EMB scheme, the number of adjustable

elements is minimized through iteratively finding a minimum

value of β for (11). In the comparative experiment, we used

a fixed value of β for each image, and thus the amount of

adjustable elements was the same for all the images. The

results for β = 0.1, 0.3, and 0.5 are presented in Table IV.

It can be observed that as β increases, the missed detection

rate of the adversary-unaware steganalyzer increases, but the

total error rate of the adversary-aware steganalyzer decreases.

The results indicate that when increasing the number of

adjustable elements, it becomes easier to fool the target ste-

ganalyzer. However, an excess of adversarial operations may
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TABLE IV

THE SECURITY PERFORMANCE (IN %) WITH DIFFERENT SETTING FOR ADV-EMB UNDER THE PAYLOAD OF 0.4 BPNZAC

TABLE V

THE FREQUENCIES OF OCCURRENCES OF β (IN %) IN GENERATING STEGO

IMAGE SET Z1
B

FOR EACH PAYLOAD. THE SUM OF EACH

COLUMN IS 100%

introduce unnecessary artifacts, leading to easier detection by

an adversary-aware steganalyzer. Consequently, it is a better

choice to use “just enough” amount of adjustable elements by

balancing the performance of an adversary-unaware stegana-

lyzer and an adversary-aware steganalyzer.

F. Supplementary Statistical Information

To further understand the proposed ADV-EMB scheme,

we provide some supplementary statistical information on the

adversarial stego images as follows.

1) Frequency of Adversarial Embedding Operation: To

investigate the statistics on how many adjustable elements

are used in the ADV-EMB scheme, the occurrences of β in

generating the 2.5×105 adversarial stego images Z1
B are given

in Table V. Based on the statistics, we can make the following

observations.

• For a low payload, such as 0.1 bpnzAC, since the ste-

ganalyzer is less effective in detecting conventional stego

images, adversarial embedding is not necessary for a large

portion of the stego images, which corresponds to the case

of β = 0. As the payload increases, more stego images

requires adversarial embedding (β �= 0).

• A lower failure rate of adversarial embedding is obtained

for a higher payload (from 7.52% on 0.1 bpnzAC to

0.47% on 0.5 bpnzAC). This is due to the fact that more

elements are involved in modification as the payload

increase. For instance, less than 2% elements are used

for modification for 0.1 bpnzAC, while more than 11%

elements are used for modification for 0.5 bpnzAC,

as shown in Table VI. Note that the failure rate is exactly

TABLE VI

THE MODIFICATION RATE COMPUTED AS THE CHANGE PER NON-ZERO

AC DCT COEFFICIENT (IN %) FOR THE TWO STEGANOGRAPHIC

SCHEMES UNDER DIFFERENT PAYLOADS

the same as 1 − Pmd of the adversary-unaware CNN

steganalyzer given in Table I.

• For all payloads, larger values of β occur less frequently

than lower values. However, this phenomenon cannot

be taken for granted since it may be due to the spe-

cific images, the baseline steganographic scheme, the

target steganalyzer, and the step �β used to search the

minimum β.

2) Modification Rate: In Section III-C, we have stated that

adversarial embedding would lead to an increasing number of

modified image elements due to the asymmetric costs assigned

to the adjustable elements. We define the modification rate

as the ratio of the number of changed coefficients to the

total amount of non-zero AC DCT coefficients. In Table VI,

we show the averaged modification rate for J-UNIWARD and

ADV-EMB under different payloads on the image set C1
B .

As expected, we can observe that the modification rates for

ADV-EMB are slightly higher than for J-UNIWARD. Besides,

the gap in the modification rate between J-UNIWARD and

ADV-EMB widens as the payload increases (0.04%, 0.07%,

0.11%, 0.15%, 0.2% for the five payloads, respectively). This

is due to the fact that more cases of β �= 0 occur for a higher

payload, as indicated in Table V. Please note that a higher

modification rate may result in lower image quality, which

may be a minor disadvantage of the proposed scheme.

G. Discussion on the Role of Randomizing

the Positions of Adjustable Elements

In our previous experiments, the positions of adjustable ele-

ments are randomized by using different embedding orders for

different images. One question is whether there is a difference

in security performance between randomized positions and

fixed positions. To answer the question, we conducted two

comparative experiments and report the results in this part.

In the first experiment, we used a fixed embedding order

for different images. As indicated in Section III-D, the fixed

embedding order results in the fixed positions of adjustable

elements. We adopted the same setting we have used in
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TABLE VII

THE SECURITY PERFORMANCE (IN %), GIVEN IN Pe , OF ADV-EMB WITH

A FIXED EMBEDDING ORDER AGAINST THE ADVERSARY-UNAWARE

STEGANALYZER AND THE ADVERSARY-AWARE STEGANALYZER.
THE TESTING IMAGE SET IS {C1tst

B ,Z1tst
B }. PERFORMANCE

COMPARISON WITH THE IMPLEMENTATION USING A

RANDOMIZED EMBEDDING ORDER IS SHOWN IN

THE PARENTHESIS

TABLE VIII

THE SECURITY PERFORMANCE (IN %) OF ADV-EMB WITH A FIXED

EMBEDDING ORDER AND A FIXED NUMBER OF ADJUSTABLE

ELEMENTS (β = 0.3) AGAINST THE ADVERSARY-UNAWARE

STEGANALYZER AND THE ADVERSARY-AWARE

STEGANALYZER. THE TESTING IMAGE

SET IS {C1tst
B ,Z1tst

B }. PERFORMANCE

COMPARISON WITH THE IMPLEMENTATION

USING A RANDOMIZED EMBEDDING

ORDER IS SHOWN IN THE PARENTHESIS

Section IV-B and IV-C. Adversary-unaware and adversary-

aware CNN-based steganalyzers were respectively used for

detection. The results we got are shown in Table VII. It

can be observed that ADV-EMB with the fixed positions of

adjustable elements and that with the randomized positions

of adjustable elements do not have obvious difference in

performance against the CNN-based steganalyzers. In the sec-

ond experiment, we used a fixed embedding order and a

fixed number of adjustable elements (β = 0.3) for each

image. The payload was set to 0.4 bpnzAC. The results we

got are given in Table VIII. It can be observed that the

performance does not change much for an adversary-unaware

steganalyzer, while it degrades greatly for an adversary-aware

steganalyzer. This phenomenon is interesting. Although the

fixed positions of adjustable elements are not directly leaked

to the adversary-aware steganalyzer, the experimental evidence

shows that the data-driven steganalyzer can automatically learn

such information. In a similar scenario, when the same key is

re-used for data embedding simulation, a CNN-based method

[48] is highly effective in detecting different stego images with

synchronized modification locations. The performance drops

greatly when different keys are used for different images. The

phenomenon does not occur for feature based steganalyzers.

We speculate that modifications in the same location may

present a chance of “collision attack” from the perspective of

CNN-based steganalyzers. The neurons may learn strong acti-

vations from the synchronized modification positions. Since

ADV-EMB employs minimum amount of adjustable elements,

TABLE IX

THE SECURITY PERFORMANCE (IN %) ON JPEG-BOSSBASE IMAGE

SET UNDER THE PAYLOAD OF 0.4 BPNZAC

the collision effect is eliminated, even when a fixed embedding

order is used, as the results reported in Table VII show.

H. Performance on JPEG-BOSSBase Image Set

In this part, we evaluate the performance of ADV-EMB on

the image set JPEG-BOSSBase. The Xu-CNN steganalyzer

φ
C0

B ,S0
B

trained on Basic500k was still used as the target

steganalyzer in the ADV-EMB scheme and we generated

adversarial stego images on JPEG-BOSSBase CJ . We used

three adversary-aware steganalyzers to detect ADV-EMB, and

used J-UNIWARD as the baseline for comparison. The embed-

ding payload was set to 0.4 bpnzAC. From the results shown

in Table IX, we can observe that ADV-EMB performs better

than J-UNIWARD on JPEG-BOSSBase. The results indicate

that the good performance of the proposed ADV-EMB scheme

does not rely much on a specific image set.

I. Experiments on Images in Spatial Domain

In this part, we investigate whether ADV-EMB can be

extended to pixel domain staganography. The BOSSBase

v1.01 image set [46], which contains 10000 grayscale

512 × 512 images, was used and denoted by CBS . We

randomly split it into three disjoint subsets, C0
BS , C1trn

BS , and

C
1t st
BS , respectively with 5000, 2500, and 2500 images. The

process of generating adversarial stego images is the same as

in Section IV-A, except for the baseline steganographic scheme

and the target steganalyzer. We selected S-UNIWARD [12]

as the baseline steganographic scheme. The corresponding

stego image sets are referred to as S0
BS , S

1trn
BS , and S

1t st
BS .

Xu-Net [24], denoted as ϕ , was used as steganalyzer. This is

a 6 layer CNN steganalyzer working in the spatial domain by

using deep learning techniques, such as, batch normalization,

1×1 convolution, and global pooling. The Xu-Net steganalyzer

trained on {C0
BS,S

0
BS} i.e., ϕ

C0
BS,S0

BS

was used as the target

steganalyzer. The corresponding adversarial stego images are

denoted as Z0
BS , Z

1trn
BS , and Z

1t st
BS . The embedding payload

is given in bits per pixel (bpp). A hand-crafted SRM (Spatial

Rich Model) feature based steganalyzer equipped with an FLD

ensemble classifier [16], denoted as ϕ′, was used for perfor-

mance evaluation. From Table X, we can observe that in the

case of adversary-unaware steganalysis, the missed detection

rate of ADV-EMB against target steganalyzer φ
C0

BS ,S0
BS

under
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TABLE X

THE SECURITY PERFORMANCE (IN %) ON SPATIAL IMAGES AGAINST AN ADVERSARY-UNAWARE STEGANALYZER

TABLE XI

THE SECURITY PERFORMANCE (IN %) ON SPATIAL IMAGES AGAINST AN ADVERSARY-AWARE STEGANALYZER

the payload 0.4 bpp reaches 100%, and that against φ′
C0

BS,S0
BS

is 5%-12% higher than S-UNIWARD. From Table XI, we can

observe that in the case of adversary-aware steganalyst, ADV-

EMB outperforms S-UNWIARD by 2% on 0.4 bpp. The

experimental results indicate that ADV-EMB can be easily

extended to work in the pixel domain.

V. CONCLUSIONS

In this paper, we proposed a novel approach to look

at the steganographic problem; namely, we proposed to embed

the stego message while simultaneously taking into account

the necessity of countering an advanced CNN-based stegana-

lyzer. Such an aim is achieved by introducing a new adversarial

embedding method, which takes both data embedding and

adversarial operation into account. A practical steganographic

scheme, ADV-EMB, which generates adversarial stego images

with minimum amount of adjustable elements, has been illus-

trated to counter a deep learning based target steganalyzer.

The extensive experiments we have carried out permitted us

to reach the following conclusions:

1) When the target steganalyzer is accessible by the

steganographer but the steganalyst is unaware of the

adversary operation, a high missed detection rate can

be achieved by ADV-EMB to counter the target stegan-

alyzer.

2) When the steganalyst is aware of the adversarial embed-

ding, and uses adversarial stego images to re-train the

steganalyzer, the proposed ADV-EMB leads to a higher

detection error rate compared to the state-of-the-art

baseline steganographic scheme, for both target and non-

target steganalyzers.

3) When both the steganographer and the steganalyst iter-

atively adjust their strategies according to the updated

knowledge about the other side, adversarial stego

images still have an advantage over their conventional

counterparts.

Our approach to adversarial embedding shows a promising

way to enhance steganographic security, still there are several

unsolved issues to consider. To start with, the proposed ADV-

EMB scheme uses only the signs of the gradients. It worths

investigating whether the amplitudes of the gradients can also

be helpful. Besides, it is worth studying on whether universal

perturbations [49] are feasible in obtaining adversarial stego

images. Furthermore, for a complete characterization of the

interplay between the steganographer and the steganalyst, it

would be interesting to resort to a game-theoretic formulation

of the problem [38], [50], [51].
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