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CNN Based Detectors on Planetary
Environments: A Performance
Evaluation
Federico Furlán*, Elsa Rubio*, Humberto Sossa and Víctor Ponce

Instituto Politécnico Nacional, Centro de Investigación en Computación, Ciudad de México, México

An essential characteristic that an exploration robot must possess is to be autonomous.

This is necessary because it will usually do its task in remote or hard-to-reach places.

One of the primary elements of a navigation system is the information that can be

acquired by the sensors of the environment in which it will operate. For this reason,

an algorithm based on convolutional neural networks is proposed for the detection of

rocks in environments similar to Mars. The methodology proposed here is based on the

use of a Single-Shot-Detector (SSD) network architecture, which has been modified to

evaluate the performance. The main contribution of this study is to provide an alternative

methodology to detect rocks in planetary images because most of the previous works

only focus on classification problems and used handmade feature vectors.

Keywords: convolutional neural network (CNN), rock detection, machine learning, planetary exploration, remote

sensing

1. INTRODUCTION

Research interest in planetary missions centered on exploring on-site regions of Mars or the Moon
is increasing. Remarkable examples of this are the next NASA mission to Mars with a new Rover
generation (NASA, 2020) or the recent Chinese (Amos, 2020) and Arabian launches. Projects that
have reached singular success are the exploration missions performed by geologist robots. Their
main task is to retrieve samples that could give clues about the past of the terrain conditions
of vital importance for future missions. A serious problem in these missions originates from
data transmission latency, which is the time needed to send information from the robot location
back to Earth, in contrast to a reduced time window for this assignment. Therefore, the robot
must be able to detect objects of interest like rocks autonomously. A typical method used for
object detection is through image processing. But conditions typically encountered in planetary
environments, like arid terrains devoid of any kind of vegetation, as well as similar color and
texture scenarios, results in poor performance of conventional image processing methods that
usually are not adequate to different lighting conditions. This makes it necessary to experiment with
models capable of handling information with uncertainty and effective in recognizing objects of
interest with tolerance to the disturbances present in the captured images, such as Artificial Neural
Networks (ANN).

In Gao et al. (2014) several approaches to detect objects in planetary terrains are introduced,
suggesting that neural networks could provide promissory results. In many research works found
in literature, ANN and recently, Convolutional Neural Networks (CNN), have demonstrated
astonishing results in a diversity of problems related to object recognition, surpassing the
performance of other approaches. Typical works deal meanly with images that focus on scenes
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taken from houses, offices, or cities. Other works are specialized
in medical or biological images. However, the number of articles
that employ CNN to process planetary terrain images or lands
with characteristics alike is reduced.

Results from testing two CNN architectures, along with a
Visual Geometry Group Neural Network (VGG) type and a
Residual Neural Network (Resnet) for rock classification are
reported in Li et al. (2020), where an approach called transfer
learning is employed, which consists of using the trained
weights of a model processed over a large amount of data as
the initial weights of the CNN. The second training model
named fine-tuning adjusts the CNN weights with a smaller
dataset of the object of interest. They reported extraordinary
results with an accuracy of 100%, by using a VGG16. Also,
they compare the results with conventional methodologies, like
HistogramOriented Gradients (HOG) or Scale-Invariant Feature
Transform (SIFT), plus a Support Vector Machine (SVM) that
reaches a humble accuracy of around 63% and 75%. They used,
as the dataset, images captured from the Curiosity mission,
Nevertheless, images are trim and show only a rock.

In Furlán et al. (2019), a methodology to detect rocks using a
CNN is presented, where a U-net, which is a convolutional neural
network introduced in Ronneberger et al. (2015), was adapted
to segment panoramic images taken in a Mars-like environment
located on Earth. An F1-score of 78% while improving the
inference latency of the algorithm is reported. The results were
satisfactory and similar to other methodologies.

This work is aimed to evaluate the performance of
some CNN’s models for rock detection tasks, in a Mars-
like environment, demonstrating that a CNN can be an
alternative to conventional image detection techniques, due to
their inherent advantage for handling the uncertainty found
typically in unexplored terrains, paving the way for ambitious
exploration traversals. Indeed, a combination of CNNs with
neuromorphic computing, based on memristor technologies are
gaining attention as future intelligent computing platforms for
image detection due to their ultra-low power consumption and
implementation on integrated circuits (Amravati et al., 2018)
and (Chen et al., 2019). A combination of CMOS-camera with
a neuromorphic chip, running CNN based algorithms for image
recognition is expected to become the next step for planetary
Rover missions.

2. MATERIALS AND METHODS

Recent advances in object detection that use CNN models have
achieved successful results with different datasets, like COCO
(Lin et al., 2014) or Pascal VOC (Everingham et al., 2010).
COCO and Pascal VOC are datasets consisting of images taken
in different scenarios, focused on detecting objects like cars,
people, cats, dogs, among other daily life objects. Due to those
promising results, we considered testing the performance of
such CNN architectures with unstructured objects typical in
outdoor environments.

We are interested in experimenting with the CNN
architectures in a Mars-like environment where the main

task is to detect rocks. The methodology proposed uses a
Single-shot Multibox Detector (SSD) to detect rocks, which are
objects of interest in an exploration mission.

2.1. Single-shot Multibox Detector
The Single-shot Multibox Detector was introduced in 2016 (Liu
et al., 2016). The architecture is formed by three parts, a backbone
followed by a series of convolutional feature extraction layers
and the detection layers. It is required to apply a non-maxima
suppression process to obtain the correct output, which are the
corresponding predicted boxes in the image, see Figure 1.

In the original paper, the backbone corresponds to a truncated
VGG-16 network that works as a feature extraction phase. The
extra feature extraction layers decrease gradually in size to make
predictions on different scales. The detection layers align the top
feature layers with bounding boxes that have multiple predefined
scales and ratios. The predictions obtain for each bounding box
related to the feature layer are the offset of the position of the
bounding box and a confidence value that means whether a class
is present in the region or not. An advantage of this architecture
is that it makes predictions at multiple scales, which improves the
detection in comparison with other models like Faste R-CNN.

The function of the extra feature extraction layers is to
generate default bounding boxes using convolution filters. For
each feature layer, a small kernel operates to obtain amembership
value for each class or an offset measured relative to the default
bounding box position, depending on the convolutional layer.

A set of default bounding boxes is associated with each feature
layer where the predictions will be made. So, each bounding box
will produce c score values, where c is the number of classes
to be detected, and 4 location offsets relative to the initial box
position. For example, an m × n feature map produces a total of
(c + 4)k filters that are applied around each location, where k is
the number of boxes, generating (c+ 4)kmn outputs.

The loss function is a weighted sum of two functions.

L(x, c, l, g) =
1

N
(Lconf (x, c)+ αLloc(x, l, g)) (1)

The localization loss function (Lloc(x, l, g)) estimates the closeness
between the predicted box (l) and the ground truth box (g).
It measures the difference in the center location (cx, cy) and
the width (w) and height (h) of the predicted box relative to
the ground truth box. It uses a Smooth L1 norm and α is a
weight term.

The confidence loss function (Lconf (x, c)) compares the
predicted classes with the ground truth classes for each bounding
box. It uses a softmax function. For a detailed explanation of the
loss functions consult (Liu et al., 2016).

2.2. Dataset
The images used with the CNN model are from (Furgale
et al., 2012) created by the Autonomous Space Robotics Lab
(ASRL) from the University of Toronto. The original dataset is
a compilation of more than 50,000 images captured during a
10-kilometer traverse in the Mars analog site on Devon Island
located in Canada. The dataset is not labeled. Hence to avoid the
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FIGURE 1 | SSD architecture as presented in Liu et al. (2016).

FIGURE 2 | Sample images form dataset (A) Devon Island (Furgale et al., 2012) and (B) Katwijk beach (Hewitt et al., 2018).

laborious task of manually mark every image, we separated an
image each five frames ending with a dataset of 5172 images.

During the labeling process, we discarded images that didn’t
display rocks. In the end, the final dataset has 1,600 labeled
images that include a total of 8,372 objects labeled as rocks. Then,
we divided the dataset into 1,280 images for training and 320 for
validation. To examine the performance of the CNN model, we
selected a different dataset for testing.

We used The Katwijk beach planetary rover dataset (Hewitt
et al., 2018) that uses artificial models of rocks of different sizes
and distribute them around a beach to resemble a planetary
terrain. We manually labeled 331 images to estimate the
generalization ability of the models. In Figure 2, we show an
image from each dataset.

2.3. Proposed CNN
We introduce two modified versions of the original SSD
architecture presented in Liu et al. (2016). We resized the dataset
images to 512× 512, which is the input size of the models. ReLu
is the activation function used in all convolution operations.

The scales are parameters required in the detection layers,
which are obtained using the next equation:

sk = smin +
smax − smin

m− 1
(i− 1) (2)

where smin = 0.1 and smax = 1.06, m is the number of
predictions layers for all models. In this work, m = 7 is
considered, the first scale is set as 0.04, and i is the number of
scales needed in the model. The scales used in all models are
[0.04, 0.1, 0.26, 0.42, 0.58, 0.74, 0.9, 1.06].

The models proposed makes predictions over 7 layers, the
aspect ratios used for all models are the same as in the original
paper (Liu et al., 2016). The aspect ratios for prediction layers
1, 6 and 7 are [1, 2, 12 ] and for prediction layers 2, 3, 4 and 5

are [1, 2, 12 , 3,
1
3 ].

The first introducedmodel is amodified version of the original
SSD architecture that reduces the number of filters in the VGG16
backbone in half. This backbone has 13 convolutional layers with
3 × 3 kernels. The input size is reduced from 512 to 32 due to
5 max-pooling operations. A detailed diagram of the Backbone
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FIGURE 3 | (A) Modified VGG16 backbone and (B) Modified Extra Feature Layers in SSD A architecture.

FIGURE 4 | SSD architecture version A.

is presented in Figure 3. Additionally, the Extra Feature Layers
also reduced its filters in half and is formed by 12 convolutional
layers with 1 × 1 and 3 × 3 kernels with strides of 2 that caused
feature maps dimension reduction. A detailed diagram of the
Extra Feature Layers is presented in Figure 3.

These modifications lessen the number of parameters. The full
SSD A architecture is shown in Figure 4.

Previous works like (He et al., 2017) used ResNet
configurations as a backbone to improve the performance
for detections and instance segmentation tasks but require
big datasets for training since its large number of trainable

parameters. In the second model, the VGG16 net is replaced
with a convolutional network inspire in ResNet50. The new
backbone uses two types of building blocks known as identity
block and convolutional block. Their unique property is the
shortcut connection, which consists of an add operation between
an early convolution and the final convolution. A detailed
diagram of these blocks is shown in Figure 5. The identity
block has 3 convolutional layers and the convolutional block
has 4 layers.

The backbone architecture is similar to the ResNet50, but we
use the same number of filters in all convolutions in each building
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FIGURE 5 | Building blocks for the ResNet50, (A) Identity block and (B) Convolutional block.

FIGURE 6 | (A) Modified ResNet50 backbone and (B) Modified Extra Feature Layers in SSD B architecture.

block and truncate it at stage 4. In the original ResNet50 model,
the last convolution has more filters than the other convolutions
in each block. Figure 6 presents the backbone configuration. This
backbone has 43 layers. The Extra Feature Layers are configured
as in Figure 6 and have 12 layers. These modifications in the
model reduce the number of trainable parameters. The full SSD
B architecture is shown in Figure 7.

An original SSD configuration serves as a baseline for
comparing performance with the introduced models.
The original model is named SSD O in tables and

graphics and shares the same configuration as the SSD A
model. The only difference is the number of filters in the
convolutional operations.

The code from (Ferrari, 2018), which is a Keras
implementation of the original SSD architecture, was modified
to run with Tensorflow 2.2. The generator function was
transformed to read CSV files from the label datasets. The
corresponding architectures presented in this article were
developed as functions for the training process. Each training
process took about 18 h of time execution, using an Intel
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i9 computer equipped with 64 Gb of RAM and two GPU
cards installed, to complete the job with a learning rate
of 0.001.

We utilized stochastic gradient descent (SGD) during 500
epochs to adjust the parameters during the training process.
We used data augmentation to change the images with one of
four transformations, which could be photometric distortion,
expansion, random crop, or random horizontal flip. The
intention of using data augmentation is to evade overfitting
while training the models. The training process of a model
requires only one execution to generate a weights file, that
later will be loaded in the model to implement the inference
task. Each execution will produce similar results, but not the
same since the weights are randomly initialized using a He
normal distribution. The resulting learning curves are shown
in Figure 8.

3. RESULTS

Table 1 shows a comparison of the number of parameters
within the architectures. The number of parameters is associated
with the complexity of the net and the inference time.
The inference time denotes how long does the CNN take

TABLE 1 | Comparison of the number of parameters and inference time.

Model Number of parameters Inference time

(milliseconds)

FPS

SSD Original - VGG16 24,088,664 55.36 18

SSD A - VGG16 6,320,632 38.70 25

SSD B - ResNet50 10,088,664 39.01 25

FIGURE 7 | SSD architecture version B.

FIGURE 8 | SSD architectures training curves.
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to produce a prediction. A remarkable characteristic of the
SSD architecture is that it delivers what can be considered
real-time performance. Table 1 shows the average inference
times for each model for each model running over the
training computer.

The mean average precision per dataset (Train, Validation,
and Testing) is listed in Table 2. This value represents how many
target objects are predicted or detected by a CNN. The higher the
number obtained, the network performance is better. This value
is bounded to the [0,1] interval.

Additionally, the graphs of the mAP for each model and
dataset are shown in Figure 9.

The original architecture shows signs of overfitting, caused
by a large number of trainable parameters, more than twice the
number of parameters of the proposed models. Another factor
that contributes to the overfitting is the reduced amount of
images of the dataset. Since this model posses a large number
of parameters, it shows an undesired behavior conducting to
memorize the training data, which results in a high mAP
for training and validation but a significant drop for the
testing dataset.

The results showed that there is plenty of room for
improvement. Model A achieved better results for training and
validation, while model B scored better in testing. Hence to
determine which model is better, we need to remember that most

TABLE 2 | Comparison of the mean average precision.

mAP

Model Train Validation Testing Standard deviation

SSD Original -VGG16 0.815 0.604 0.233 29.46%

SSD A -VGG16 0.627 0.520 0.174 23.68%

SSD B - ResNet50 0.451 0.353 0.253 9.90%

of the planetary applications are focus on exploring unknown
environments to find valuable scientific information.

Therefore we need a model capable of generalizing, which
means, be capable of achieving high-grade performance with
unknown data slightly different from the training data. Model
B has a lower standard deviation among its mAP over
all datasets.

We show some testing images with their corresponding
predictions and ground truths in Figures 10, 11. The predictions
made by the network are depicted with a red square along with
its confidence value, which means the grade of accuracy that the
boxed object is a rock. Lastly, the ground truth is labeled with a
green square.

4. DISCUSSION

Previous methodologies employed to detect rocks in planetary
environments require algorithms that need handmade
feature vectors, which are complicated to design and are
dependant on expert knowledge and the feature extractors
applied that sometimes are not robust. This study evaluates
an alternative solution adopting a supervised learning
algorithm to avoid selecting feature extractors. Since CNN’s
are tolerant of translation transformations, and also trained
appropriately permit small rotations or scale transformations,
it adds a factor of robustness. It could become part of
an autonomous navigation system because rocks are the
main obstacles for rovers traversals, and with the same
algorithm fulfill two functions detecting valuable samples
and obstacles.

This methodology can improve while operating in an
unknown environment by collecting new images and adding
them to the training dataset. The training process can be
performed remotely in a high-performance computer and then
transmit the weights file to be updated on the operation site.
The expected result would be an enhanced performance caused

FIGURE 9 | Comparative graphic of the mAP.
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FIGURE 10 | Examples of predictions with Devon Island dataset, (A) SSD A and (B) SSD B.

FIGURE 11 | Examples of predictions with Katwijk beach dataset, (A) SSD A and (B) SSD B.

by the new knowledge acquired from the unexplored area. Space
exploration missions use remote sensing equipment to broadcast
information to a control center. Hence this methodology would
be suitable for object detection process.
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