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ABSTRACT In this paper, the problem of fault-tolerant control is investigated for turbofan engines with

actuator faults. The controller involvement has repressed the effects of actuator faults on the controlled

outputs of turbofan engines, making fault-tolerant control difficult. To solve this problem, the internal

gas-path data of turbofan engines is introduced to provide conducive fault information. Besides, the useful

property of the convolution neural network (CNN) is explored and utilized in fault-tolerant control. Based on

the analysis of actuator faults, by using the Lyapunov stability and L2-gain like theorems, a novel CNN-based

intelligent fault-tolerant control system for turbofan engines is proposed, including a CNN-based fault diag-

nosis module and a nonlinear fault-tolerant control with corresponding reconfiguration unit. The CNN-based

intelligent fault-tolerant control system has the advantages of reducing the accuracy requirements of the

mathematical description of turbofan engines. Furthermore, the proposed system can diagnose actuator faults

and reduce the adverse effects of actuator faults on turbofan engines. Finally, simulation results are presented

to demonstrate the efficiency of the designed method.

INDEX TERMS CNN-based intelligent fault-tolerant control, actuator faults, gas-path data, fault diagnosis,

nonlinear fault-tolerant controller, turbofan engines.

I. INTRODUCTION

In the event of actuator faults, the controlled outputs of tur-

bofan engines are with small changes for a short time due

to controller engagement [1]. The unappealing phenomenon

may lead to the so-called effect of actuator faults, which

has serious consequences and even produces catastrophic

accidents [2]–[5]. Fault-tolerant control plays a critical role

in enhancing the safety and reliability of turbofan engines.

The existing fault-tolerant control techniques of turbofan

engines are categorized into two classes: passive approach

and active approach [6], [7]. The parameters of the passive

fault-tolerant control are selected overly conservatively such

that the turbofan engines may have a loss of performance in

the nominal case [8]. On the contrary, the active fault-tolerant

controller can be reconfigured flexibly according to the faults

information provided by the diagnosis module to reduce the

conservation. Therefore, the research on active fault-tolerant
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control (AFTC) for turbofan engines has received some

attention.

The fault diagnosis of AFTC is to provide all possible

information regarding the abnormal functioning of systems.

As one of the most important technologies of fault diagno-

sis, redundancy is to monitor, isolate and estimate system

faults by obtaining multiple signals of the same variable.

Redundancy is mainly divided into hardware redundancy and

analytical redundancy [9]. In hardware redundancy, multiple

backup sensors or actuators are used to perform the same

task thereby preventing the failure of the system [10], such

as dual redundancy [11], triple modular redundancy [12],

and modified triple redundancy [13]. Owing to increasing the

cost, weight, and physical size, hardware redundancy is often

not an option for turbofan engines. In analytical redundancy,

filters [12], adaptive observers [14], linear regression-based

observers [15] are designed to estimate the operation of

components, which are mainly used in the case of sensor

faults. To estimate actuator faults, many other fault diagnosis

approaches have been proposed for turbofan engines, such
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as Kalman filter [16]–[21], observer [22], [23], and other

related methods [16], [24]–[28]. These approaches detect

actuator faults only based on the behaviour of the controlled

outputs. However, due to controller engagement, the small

change of the controlled outputs makes fault detection dif-

ficult. Besides, some of these fault diagnosis approaches are

developed as a diagnostic or monitoring tool, rather than an

integral part of the fault-tolerant control system for turbofan

engines.

The fault-tolerant controller of AFTC is to adjust the sys-

tem against faults for the stable operation according to the

fault information. Some interesting work has been reported

on the design of fault-tolerant controllers, such as robust con-

trol [29], sliding mode control [30], and other methods [31].

For instance, considering time-varying delay, actuator sat-

uration, and actuator faults, R. Sakthivel et al. proposed

a nonlinear fault-tolerant controller method to guarantee

the finite-time stability of the closed-loop system [31]. For

power systems with actuator failures, time-varying delays,

and admissible parameter uncertainties, B. Kaviarasan et al.

designed a fault-tolerant state feedback controller by linear

matrix inequality based optimization algorithm to guarantee

the robust stochastic stability of the whole system [32]. These

controllers require accurate fault information during the

design process. Nevertheless, most of the above fault-tolerant

controllers assume that a perfect fault diagnosis scheme is

available. Without proper consideration of the fault diagnosis

parts, combined AFTC systems with these controllers may do

not work as expected.

Each part of the integrated AFTC is taken into account

in the design to ensure the coordinated operation [33].

Much research in recent years has focused on the inte-

grated AFTC for turbofan engines [34]–[36]. In the work

of X. Liu et al. [34], a jointly state/fault estimator and a

corresponding output feedback controller were constructed

to guarantee the input-to-state stability and mitigate fault

effects. In the presence of the sensor and actuator faults,

Xiao et al. [35] designed an adaptive observer and a sliding

mode fault-tolerant controller to stabilize aircraft engine sys-

tems. Chang et al. [36] applied a second-order sliding mode

observer to estimate the engine states and sensor faults and

then designed an estimated-state feedback controller against

the faults for aircraft engines. One feature of the works men-

tioned above is that the integrated AFTC needs not only the

precise mathematical description of turbofan engines but also

the reliable observer-based fault-detection residual. However,

the accuracy of the mathematical description cannot be guar-

anteed due to the complex structure of turbofan engines.

The residual can magnify or suppress the fault information

and not always be effective [1]. Besides, the lack of the

self-organizing and self-learning abilities of these methods is

rooted in the fact.

Motivated by the above discussion, except for controlled

outputs, other operational information of turbofan engines

needs to be introduced into fault diagnosis to improve the

reliability of AFTC. The design of the AFTC method should

also reduce the dependence of the mathematical description

of turbofan engines. Furthermore, the AFTC method of tur-

bofan engines is expected to operate in coordination and

intelligence with full consideration to each part. To solve

the above problems, a CNN-based intelligent fault-tolerant

control (CIFTC) method is proposed for turbofan engines

against actuator faults. Firstly, besides the controlled outputs,

the internal operation data of turbofan engines is used to

enrich fault information. Secondly, a CNN-based diagnosis

module is designed to detect actuator faults to avoid the

adverse effects of the imprecise mathematical description of

turbofan engines. Thirdly, we develop an integrated CIFTC

system for turbofan engines. The Lyapunov function and

L2-gain like theorems are used for the stability proof of the

CIFTC system. Simulation results show that the proposed

method is an effective tool for handling fault-tolerant control

issues for turbofan engines.

The main contributions of the paper can be summarized as

follows.

1) The measurable gas-path data of turbofan engines is

introduced into the CIFTC system. Compared with

[17]–[23], [34]–[36], more operational data is uti-

lized in fault diagnosis to solve the problem of

limited fault information provided by the controlled

outputs.

2) The CNN-based diagnosis module is proposed for tur-

bofan engines. The characteristics of CNN is developed

for the proposed diagnosis module. The data-based

diagnosis method can relax the accuracy requirements

of the mathematical description of turbofan engines for

the CIFTC system.

3) An integrated CIFTC system is designed for turbofan

engines against actuator faults. The system consists of

the CNN-based diagnosis module, a nonlinear fault-

tolerant controller, and the corresponding reconfigura-

tion unit. Each part of CIFTC is unified in the frame-

work of the nonlinear H∞ control theory, which can

ensure the stability and control performance of the

closed-loop system for turbofan engines.

The rest of the paper is organized as follows. In Section II,

the modeling of turbofan engines with actuator faults is given.

Besides, the objective of CIFTC is formulated. In Section III,

the structure of the proposed CIFTC system is presented.

In Section IV, the CNN-based fault diagnosis module is

developed. In Section V, the design method, theory, and solu-

tion of the nonlinear fault-tolerant controllers for turbofan

engines are given. Case studies are presented in Section VI.

Finally, Section VII draws the conclusion.

Notations: In this paper, R, Rn, and R
n×m denote the

real numbers, the real n-vectors and the real n×m matrices,

respectively. If x denotes a given vector or matrix, then

xT indicates its transpose. The variables with 1 represents

the deviation of engine variables from their steady-state

values for the specified operation condition. We denote by

diag(a1, . . . , an) a block diagonal matrix with a1, . . . , an as

the diagonal elements. Let 0a×b and 0a represent the zero
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TABLE 1. Classifications and modes of actuator faults for turbofan engines.

matrices with dimensions a×b and a×a. Let In represent an
identity matrix with dimension n.

II. PROBLEM FORMULATION

In this section, the modeling of actuator faults is presented

firstly. Then, the polynomial state-space model of turbofan

engines is introduced. The objective of CIFTC for turbofan

engines with actuator faults is given finally.

A. MODELING OF ACTUATOR FAULTS

Multiple operating loads, long-running, and poor conditions

may cause actuator faults of turbofan engines [21], [37].

As shown in Table 1, these unavoidable fault examples of tur-

bofan engines can result in the degradation of actuators. The

actuator degradation leads to a mismatch (called fault inputs)

between actual inputs and commanded inputs. In the event of

actuator faults, the actual input 1u(t) =
[
1wf 1vsv

]T ∈ R
q

is composed of commanded control inputs and fault inputs

given by

1u(t) = 1uc(t)+1uf (t), (1)

where the variables labeled c and f denote the commanded

input and the fault input caused by actuator faults. Actuator

faults are categorized into additive and multiplicative faults.

According to their way of representation [29], [38], the fault

input 1uf (t) =
[
1wff 1vsvf

]T ∈ R
q is described by

{
1uaf (t) = 8a

f (t)+̺af (t),

1umf (t) = 8m
f (t)1u

m
c (t)+̺mf (t),

(2)

where the variables with superscripts a and m represent the

case of actuators with additive faults andmultiplicative faults.

1umc (t) and 1uac(t) that appears later are the commanded

inputs of turbofan engines with multiplicative faults and addi-

tive faults, and the vector 8a
f (t) =

[
φ
a,1
f (t) φ

a,2
f (t)

]T
∈ R

q

and the matrix 8m
f (t) = diag(φ

m,1
f (t), φ

m,2
f (t)) ∈ R

q×q

represent the fault parameters, where the scalars φ
a,j
f (t) and

φ
m,j
f (t) for j ∈ 1, . . . , q take values between -1 and 0, making

it possible to represent partial actuator faults. The mixed

error vectors ̺af (t) =
[
̺
a,1
f (t) ̺

a,2
f (t)

]T
∈ R

q and ̺mf (t) =
[
̺
m,1
f (t) ̺

m,2
f (t)

]T
∈ R

q account for diagnosis errors, model

inadequacy, and so on.

Remark 1: Note that the fault input in the fault-free case

can also be represented as (2) with φ
a,j
f (t) = 0 and

φ
m,j
f (t) = 0.

Remark 2: Experience has shown that faults are likely to

occur alone [1]. Due to the presence of the first faulty actuator

in the system, other faults may be triggered sequentially.

We always have to consider which fault occurs first. There-

fore, the single fault situation is considered in the design of

the fault-tolerant system in practical applications.

B. POLYNOMIAL STATE-SPACE MODEL OF TURBOFAN

ENGINES WITH ACTUATOR FAULTS

Consider the polynomial state-space model describing turbo-

fan engines given by

1ẋ(t) =
p∑

i=1

Ai1x
{i}(t)+B21u(t)+B1d(t), (3)

where 1x(t) =
[
1nl 1nh

]T ∈ R
n denotes the low-pressure

and high-pressure shaft speeds as the state vector, 1x{i}(t) =[
1nl i 1nhi

]T ∈ R
n for i = 1, 2, . . . , p, where p is the order

of the state polynomial, 1u(t) =
[
1wf 1vsv

]T ∈ R
q is
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fuel flow and variable stator vanes as the actual input vector,

d(t) =
[
d1(t) d2(t)

]T ∈ R
k is the various uncertain term due

tomodel simplification, disturbances, and so on. Thematrices

have appropriate dimensions with B1 ∈ R
n×k and Ai ∈ R

n×n

for i ∈ 1, 2, . . . , p. B2 ∈ R
n×q is full column rank and define

its left inverse as B2
−1
L . In this paper, n = k = q = 2.

In the case of actuators with additive faults and multiplica-

tive faults, according to (1) and (2), the actual inputs 1u(t)

can be represented by 1ua(t) and 1um(t) in (4), respectively.
{

1ua(t) = 1uac(t)+8a
f (t)+̺af (t),

1um(t) =
(
Iq+8m

f (t)
)
1umc (t)+̺mf (t),

(4)

where the commanded inputs 1uac(t), 1umc (t), the fault

parameters 8a
f (t), 8m

f (t), and the mixed error vectors ̺af (t),

̺mf (t) are in (2).

C. THE OBJECTIVE OF THE CIFTC SYSTEM

This paper is expected to design an integrated CIFTC sys-

tem for turbofan engines to improve the performance of

turbofan engines with actuator faults. To indicate the per-

formance, a fictitious performance vector κf (t) is given and

will be described later. Before proposing the specific objec-

tive, we define the following L2 gain-like and nonlinear H∞
fault-tolerant control performance specifications.

Definition 1 (L2 Gain-Like): For turbofan engines with

actuator faults (3) (4), d(t), ̺f (t) (represented by ̺af (t) and

̺mf (t)), κf (t) are the uncertain term, the mixed error vec-

tor, and the fictitious performance vector, respectively. The

closed-loop system is said to satisfy the L2 gain-like perfor-

mance, if there exist positive constants γ and δ such that
∫ T

0

κTf (t)κf (t)dt ≤
∫ T

0

(
γ 2dT (t)d(t)+δ2̺Tf (t)̺f (t)

)
dt,(5)

where γ and δ represent the limitations from the uncertain

term and the mixed error vector to the fictitious performance,

respectively.

Definition 2 (Nonlinear H∞ Fault-Tolerant Control Per-

formance Specifications): Nonlinear H∞ fault-tolerant con-

trol performance specifications (NHFTCPS) require that the

closed-loop system can make turbofan engines asymptoti-

cally track reference signals for d(t) = 0 and ̺f (t) = 0, and

satisfy the L2 gain-like performance with γ > 0 and δ > 0

for d(t) 6= 0 and ̺f (t) 6= 0.

The objective of this paper is to design a CNN-based

intelligent fault-tolerant control system for turbofan engines

to ensure that NHFTCPS are achieved for given γ > 0 and

δ > 0.

Remark 3: The main difference between Definition 1 and

L2 gain is that a more general condition is defined here. The

closed-loop fault-tolerant control system of turbofan engines

has L2 gain-like, which is represented as a multiple-input

single-output map, from the inputs of d(t) and ̺f (t) to the

defined penalty variable κf (t). The closed-loop fault-tolerant

control system satisfies the L2 gain-like performance, which

guarantees that the effects of d(t) and ̺f (t) on turbofan

engines is finite and the upper bounds can be calculated.

FIGURE 1. Schematic of the dual spool high bypass turbofan engine JT9D
in T-MATS.

TABLE 2. Ten measurable gas-path variables of turbofan engines.

Remark 4: The notion of L2-like gain in Definition 1 is

to guarantee the robust performance of the closed-loop con-

trol system. Robustness is one of the basic functions of the

designed control system for turbofan engines.

III. STRUCTURE OF CIFTC FOR TURBOFAN ENGINES

With the development of communication technologies,

the operation data of turbofan engines can be acquired from

the Quick Access Recorder (QAR) for safety analysis. This

operation data includes specific gas-path data of turbofan

engines, which can provide effective support for the safety

and reliability analysis of the engine system [21], [39], [40].

The CIFTC system is developed according to the operation

data from QAR of turbofan engines in the paper.

Figure 1 shows the schematic of the main components

of the JT9D engine in T-MATS (the Toolbox for the Mod-

eling and Analysis of Thermodynamic Systems), such as

Fan, high-pressure compressor (HPC), Burner, high-pressure

turbine (HPT), Bypass Nozzle, and so on. Furthermore, loca-

tions along the flow path are indicated by the station num-

bers, which can be used to analyze the overall operation of

turbofan engines [37]. The gas-path data of turbofan engines

contains useful operational information and has been used in

component fault diagnosis [37], remaining useful life esti-

mation [41], health monitoring [42], and so on. To provide

the operation information of actuator faults, the difference

between actual and normal sensor signals of the key engine

stations is called gas-path total measurable fault information

(GToMFI). The GToMFI is introduced into the design of the

CIFTC system (see Table 2).
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FIGURE 2. General scheme of the CIFTC for turbofan engines with actuator faults. 99K indicates the offline design process and → indicates the
real-time online operation in the figure.

FIGURE 3. Working process of the CIFTC system for turbofan engine.

Figure 2 shows that the general scheme of the CIFTC

system for turbofan engines. Similar to other fault-tolerant

control systems, the proposed CIFTC system in the paper

contains a turbofan engine, a CNN-based diagnosis module,

a nonlinear fault-tolerant controller, and the corresponding

reconfiguration unit. Based on the database of GToMFI,

the CNN-based fault diagnosis module is to provide diagnosis

results for the controller reconfiguration unit. According to

the diagnosis results, the controller reconfiguration unit is

to choose suitable controller parameters and reconfigure the

existing nonlinear controller effectively. The reconfigured

controller is to reduce the impacts of actuator faults on tur-

bofan engines. These four parts need to work in harmony

to complete fault-tolerant control tasks for turbofan engines

under both normal and fault conditions.

The fault-tolerant control of the proposed system is imple-

mented in three steps. The first step is the fault diagnosis

process, in which the temporary diagnosis result is provided

by the CNN diagnosis model and the final diagnosis result

is provided by the stack decision model. In the second step,

the fault parameters and controller design parameters are

given by the controller reconfiguration unit according to

the final diagnosis result. With these suitable parameters,

the fault-tolerant controller provides the control input to the

turbofan engine. In the third step, under the reconfigured

fault-tolerant controller, the turbofan engine can provide new

data to the GToMFI database for training, verifying, and

saving the CNN diagnosis model. The completed working

process of the CIFTC system for turbofan engine is illustrated

in Fig. 3.
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IV. CNN-BASED FAULT DIAGNOSIS

In this section, the CNN-based fault diagnosis module is

developed in the CIFTC system for turbofan engines. In this

module, the CNN diagnosis model and the stack decision

model are designed in detail.

A. CNN DIAGNOSIS MODEL

As an effective deep learning method, CNN has been suc-

cessfully utilized in various applications involving time series

data, especially in control systems [37], [43]–[46]. Based on

the GToMFI database, the CNN diagnosis model is designed

including data processing, cross-entropy calculation, key

neural layers such as convolutional layer, pooling layer, and

fully connected layer, etc.

1) DATA PROCESSING

To normalize the GToMFI data, the min-max normalization

method adopted from [47] is given by

χ∗ = χ−χmin

χmax−χmin
(6)

where χmin and χmax denote the minimum and the maximum

of the GToMFI data (represented by χ ) of turbofan engines,

and χ∗ denotes the normalized value of χ .

Figure 4 shows that the GToMFI data is re-scaled within

the range [0, 1] after normalization. The normalized GToMFI

data is divided into several short segments with equal

length by sliding-window sampling for feature extraction.

To improve the correlation between adjacent segments,

the sampling length of the segments is much large than the

sliding step.

FIGURE 4. Segmentation of the GToMFI data by sliding-window sampling.

Through the above data processing, more and standard

data samples are obtained for training and testing the CNN

diagnosis model.

2) CONVOLUTIONAL LAYER

The convolutional layer contains a series of learnable kernels

and parameters. The convolutional operation involves the

application of dot products between the raw input data and

the convolution kernels. The convolution process [47] with a

nonlinear activation is described by

ζ
(b)
h = ReLU (

R∑

r=1

α
(b)
h ⊗χ

(r)
(h−1)+β

(b)
h ), (7)

where ζ
(b)
h is the output of the b th kernel in the hth convolu-

tional layer, χ
(r)
(h−1) is the r th output of the previous network

layer, ⊗ represents the convolutional operator, α
(b)
h and β

(b)
h

denotes the weight and bias of the b th kernel of the h th

convolutional layer, ReLU is the activation function Rectified

Linear Unit.

3) POOLING LAYER

To avoid over-fitting, a pooling layer is often appended to a

convolutional layer. The max-pooling operator is applied to

each feature map separately by fusing nearby feature values

into one value [48]. The max-pooling is given by

ξ
(b)
h+1 = max

(v−1)w<y≤vw

[
ζ
(b)
h (y)

]
, (8)

where ζ
(b)
h (y) represents the y th value in the b th feature map

of the h th layer, ξ
(b)
h+1 is the outcome in the b th feature map

of the h+1 th pooling layer, w is the height of the pooling

window.

4) FULLY-CONNECTED LAYER

After alternately stacking multiple convolutional layers and

pooling layers, a flatten layer is followed to transform the

extracted feature map into a one-dimensional array [49]. The

softmax activation function is used in the output layer for

normalizing the result of the fully-connected layer to meet

probability distribution [50]. The output of the softmax func-

tion is defined by

Pl =




P(Ll = 1)

· · ·
P(Ll = g)

· · ·
P(Ll = z)




T

= 1
z∑

g=1

eυg




eυ1

· · ·
eυg

. . .

eυz




T

, (9)

where υg is the input of the softmax function for g =
1, 2, · · · , z, Pl =

[
P
(1)
l . . . P

(g)
l . . . P

(z)
l

]
is the output value

of the l th sample after normalization by the softmax function,

P(Ll = g) is the probability value of the l th sample belonging

to label g. The label corresponding to the maximum value of

each row in Pl is the CNN diagnosis result.

5) CROSS-ENTROPY LOSS CALCULATION

By comparing the normalized diagnosis result with the actual

label of the corresponding sample, the loss error of the CNN

diagnosis model can be calculated. To represent the loss error,

the cross-entropy loss function [51] is defined as follows

J = −1

s

( s∑

l=1

z∑

g=1

F{L̄l = g}log
(
P(Ll = g

))
, (10)

where l represents the l th training sample (the total number

of training sample is s), g represents the g th label (the total

number of labels is z), and F{L̄l = g} is a logical indication
function, returning 1 if the statement is true, and 0 if the

statement is false.

In this paper, the Adam optimization algorithm is used for

minimizing the cross-entropy loss function J according to

the rule of error back-propagation, where the learning rate
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can automatically adjust its step length according to the local

error surface of the mini-batch sample [52]. The learnable

parameters of the CNN diagnosis model are updated in the

training process.

Figure 5 shows the flow chart of the CNN diagnosis model

used for monitoring the operation of actuators. In addition to

the important layers mentioned above, a BatchNormalization

layer is added after the convolutional layer to make the data

in the current training batch follow a normal distribution.

The BatchNormalization was introduced back in 2014 in

the second version of GoogLeNet by Szegedy et al. [53].

The introduction of the BatchNormalization layer not only

accelerates the convergence speed in training but also allows

for higher learning rates. Hence. the CNN diagnosis model

can prevent overfitting and improve generalization capability.

The designed CNN diagnosis model can provide real-time

monitoring for the engine operation.

FIGURE 5. The flow chart of the CNN diagnosis model.

B. STACK DECISION MODEL

According to the monitoring results provided by the CNN

diagnosis model, a stack decision model is developed to give

the final fault determination. The specific expression of the

stack decision model is given by

L̀K =
{
LK , if Lsf ,K = LK∗Esf
L̀K−1, others,

(11)

where LK is the monitoring result provided by the CNN

diagnosis model at the K th sampling time, Lsf ,K =[
LK−sf+1 LK−sf+2 . . . LK

]T ∈ R
sf is the stack decision

vector composed of the monitoring results of the sampling

time from K−sf+1 to K , sf > 1 represents the stack length

of the stack decision model, Esf is a sf -dimensional column

vector with all elements of 1, L̀K and L̀K−1 are the final

fault determinations at the K th sampling time and previous

moment, respectively.

The stack diagnosis model and the CNN diagnosis model

constitute the CNN-based diagnosis module of the CIFTC

system. Themodule can provide the final fault determinations

for the nonlinear fault-tolerant controller in the CIFTC system

for turbofan engines.

Remark 5: The expression of the stack decision model

in (11) means that the previous fault determination is changed

only if sf consecutive temporary diagnosis results are con-

sistent. The selection of the stack length needs to consider

the acceptable fault-tolerance time of the control system for

turbofan engines.

Remark 6: The CNN-based diagnosis model is to extract

the information of actuator faults from the gas-path data,

which helps relax the accuracy requirements of the math-

ematical description of turbofan engines for the whole

fault-tolerant control system. Meanwhile, in addition to the

controlled shaft speeds, other gas-path data is also used to

provide the fault information of turbofan engines, which can

improve the reliability and security of the CIFTC system.

V. NONLINEAR FAULT-TOLERANT CONTROL

In this section, the nonlinear fault-tolerant controller of the

CIFTC system is designed to achieve NHFTCPS. To tackle

the nonlinearity of turbofan engines, a solvable Hamilton-

Jacobi-Issacs (HJI) inequality is constructed by a Lyapunov

function to obtain the nonlinear robust fault-tolerant con-

troller. Firstly, the tracking error dynamic model of the

closed-loop fault-tolerant control system is established.

Based on the tracking error dynamics, the nonlinear fault-

tolerant control problem of turbofan engines is converted into

the stability and robustness analysis with establishing corre-

sponding criteria. Then, we propose a suboptimal nonlinear

H∞ control problem in Theorem 1, and then construct an

analytical solution and a sufficient condition to the subop-

timal nonlinear H∞ control problem in Theorem 2. Finally,

the solution of the nonlinear fault-tolerant controller is given

in terms of linear matrix inequalities.

A. NONLINEAR ROBUST FAULT-TOLERANT CONTROL

DESIGN

According to the final fault determination provided by the

CNN-based fault diagnosis module, the fault parameters can

be obtained. In the case of the additive and multiplicative
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faults, the matrix and vector of the fault parameters can be

expressed as

8̂a
f (t) =

[
φ̂
a,1
f (t) φ̂

a,2
f (t)

]T
∈ R

q, (12)

8̂m
f (t) = diag(φ̂

m,1
f (t), φ̂

m,2
f (t)) ∈ R

q×q. (13)

The corresponding mixed error vectors are presented bŷ̺af (t)
and ̺̂mf (t), respectively.
Based on (4), a uniform model of the actual inputs of

turbofan engines is formulated by

1u(t) = 2̂f (t)1ω̂f (t)+̺f (t), (14)

where 2̂f (t) = 2̂a
f (t) = Iq, 1ω̂f (t) = 1ω̂a

f (t) = 1uac(t)+
8̂a
f (t), and ̺f (t) = ̺̂af (t) = ̺af (t)+

(
8a
f (t)−8̂a

f (t)
)
in the

additive fault case, 2̂f (t) = 2̂m
f (t) = Iq+8̂m

f (t), 1ω̂f (t) =
1ω̂m

f (t) = 1umc (t), and ̺f (t) = ̺̂mf (t) = ̺mf (t)+
(
8m
f (t)−

8̂m
f (t)

)
1umc (t) in the multiplicative fault case.

Substitute 1u(t) in (14) into the polynomial state-space

model of turbofan engines in (3) yields

1ẋ(t) =
p∑

i=1

Ai1x
{i}(t)+B2

(
2̂f (t)1ω̂f (t)+̺f (t)

)

+B1d(t) (15)

where 1x(t) and d(t) are the state vector and the various

uncertain term, Ai, B2, and B1 are the system matrices in (3).

Given that 1r(t) ∈ R
n is the bounded reference signal,

the tracking error 1e(t) of turbofan engines is defined as

1e(t) , 1x(t)−1r(t), (16)

To eliminate the steady-state error, the integral action of the

tracking error1σ (t) of turbofan engines is introduced into the

closed-loop control system by

1σ (t) ,

∫ t

0

1e(τ )dτ. (17)

The derivatives of the tracking error and its integral with

respect to t are given by

1σ̇ (t) = 1e(t), (18)

1ė(t) =
p∑

i=1

Ai1e
{i}(t)+B21̂ufe(t)+B1d(t), (19)

where 1̂u
f
e(t) in (20) is the inputs of the error dynamics of

turbofan engines.

1̂ufe(t) = −B2−1
L

( p∑

i=1

Ai1x
{i}(t)−

p∑

i=1

Ai1e
{i}(t)−1ṙ(t)

)

+2̂f (t)1ω̂f (t)+̺f (t) (20)

Refer to (18) and (19) together as the error dynamical

model of the closed-loop system for turbofan engines,

1ζ̇1(t) = ϒ1ζ (t)+41̂ufe(t)+�d(t), (21)

where 1ζ1(t) =
[
1σ (t)T 1e(t)T

]T ∈ R
2n is the state

vector, 1ζ (t) =
[
1ζ1(t)

T . . . 1ζi(t)
T . . . 1ζp(t)

T
]T ∈

R
2np is the polynomial state vector, where 1ζi(t) =[
1σ {i}(t)T 1e{i}(t)T

]T ∈ R
2n for i = 1, 2, . . . , p, d(t) =[

d1(t) d2(t)
]T ∈ R

k is the uncertain term due to model

simplification, disturbance, and so on. 1̂u
f
e(t) is the input

vector rewritten as

1̂ufe(t) = 2̂f (t)1ω̂f
e (t)+̺f (t), (22)

where 2̂f (t) and ̺f (t) are in (14), and

1ω̂f
e (t)

= 2̂−1
f (t)B2

−1
L

( p∑

i=1

Ai1x
{i}(t)−

p∑

i=1

Ai1e
{i}(t)−1ṙ(t)

)

+1ω̂f (t).

The system matrices of (21) are given by

� =
[
0n×k
B1

]
∈ R

2n×k , 4 =
[
0n×q
B2

]
∈ R

2n×q,

ϒ =
[
ϒ1 . . . ϒi . . . ϒp

]
∈ R

2n×2np,

where

ϒ1 =
[
0n In
0n A1

]
∈ R

2n×2n, ϒi =
[
0n 0n
0n Ai

]
∈ R

2n×2n,

i = 2, 3, . . . , p.

To indicate the control performance of the closed-loop

system for turbofan engines, the fictitious performance vector

κf (t) in (5) is defined by

κf (t) ,

[
H

(
1ζ1

)

θ1ω̂
f
e (t)

]
(23)

where θ is a positive coefficient andH
(
1ζ1

)
is a cost function

of the state of the error dynamical model.

Assumption 1: The cost functionH
(
1ζ1

)
in (23) satisfies

H
T
(
1ζ1

)
H

(
1ζ1

)
≤ 1ζ T (t)51ζ (t), (24)

where 5 ∈ R
2np×2np is a symmetric positive definite matrix.

Remark 7: In Assumption 1, HT
(
1ζ1

)
H

(
1ζ1

)
is less

than or equal to a polynomial of a certain degree. This is a

necessary condition for Theorem 1 in this paper.

Remark 8: As shown in (14), the commanded inputs

1uac(t) and1umc (t) are included in1ω̂f (t). According to (22),

1ω̂f (t) is a part of 1ω̂
f
e (t). These mean that once 1ω̂

f
e (t) is

given, the fault-tolerant controllers of the CIFTC system for

turbofan engines can be designed.

To satisfy the NHFTCPS of the closed-loop system of

turbofan engines, firstly, we propose

1ω̂f
e (t) = −2̂f (t)4

TŴ(1, p)391ζ (t). (25)

Then, in case of actuators with additive faults and mul-

tiplicative faults, we design nonlinear robust fault-tolerant

controllers1uac(t) and1umc (t) in (26) and (27) for the CIFTC

system, respectively,

1uac(t) = η(t)−4TŴ(1, p)391ζ (t)−8̂a(t), (26)
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1umc (t) = −
(
Im+8̂m(t)

)
4TŴ(1, p)391ζ (t)

+
(
Im+8̂m(t)

)−1
η(t), (27)

where

η(t)

= −B2−1
L

( p∑

i=1

Ai1x
{i}(t)−

p∑

i=1

Ai1e
{i}(t)−1ṙ(t)

)
, (28)

the 3 =
[

31 02n×2n(p−1)

02n(p−1)×2n 32

]
∈ R

2np×2np is a symmet-

ric positive definite matrix,31,32 are 2n×2n and 2n(p−1)×
2n(p−1) symmetric positive definite matrices. 9 ∈ R

2np×2np

is a square matrix. The conditions that the matrices 3 and 9

need to satisfy will be given in Theorem 2 later. Ŵ(1, p) =[
I2n 02n×2n(p−1)

]
∈ R

2n×2np. 8̂a(t) and 8̂m(t) are the matrix

and vector of fault parameters provided by the CNN-based

fault diagnosis module.

FIGURE 6. Block diagram of the fault-tolerant controllers of the CIFTC
system for turbofan engines.

Finally, the block diagram of the fault-tolerant controllers

of the CIFTC system are shown in Fig. 6. The nonlinear fault-

tolerant controllers are reconfigured flexibly according to the

fault parameters provided by the CNN-based fault diagnosis

module.

Remark 9: The proposed nonlinear fault-tolerant con-

troller is a typical active fault-tolerant controller. Based on

the CNN-based diagnosis module, the proposed fault-tolerant

controller is designed as a part of an integrated fault-tolerant

control system. The actuator faults of the value within a

certain range belong to the same fault mode. The design

method of the proposed controller can relax the accuracy

requirement of the diagnosis module and avoid reconfiguring

the controller of turbofan engines frequently in the case of

minor changes of the fault value.

B. STABILITY AND CONTROL PERFORMANCE

Theorem 1: For the error dynamics of the closed-loop sys-

tem for turbofan engines with actuator faults in (21), d(t),

̺f (t) in (22), κf (t) in (23) are the uncertain term, the mixed

error vector, and the fictitious performance vector, respec-

tively. For given positive coefficients θ , γ , and δ, if there is

a continuously differentiable positive definite function V (t)

with V (0) = 0 for 1ζ1(0) = 0 such that (29) holds,

1

4δ2
∂TV (t)

∂1ζ1(t)
44T ∂V (t)

∂1ζ1(t)
+H

T
(
1ζ1

)
H

(
1ζ1

)

+ ∂TV (t)

∂1ζ1(t)
ϒ1ζ (t)+ ∂TV (t)

∂1ζ1(t)
42̂f (t)1ω̂f

e (t)

+ 1

4γ 2

∂TV (t)

∂1ζ1(t)
��T ∂V (t)

∂1ζ1(t)
+κTf (t)κf (t)

+θ21ω̂f
e

T
(t)1ω̂f

e (t) ≤ 0 (29)

then the NHFTCPS in Definition 2 can be satisfied by the

proposed CIFTC system for turbofan engines.

Proof: A scalar function G(t) is given by

G(t)

,
dV (t)

dt
+κTf (t)κf (t)−γ 2dT (t)d(t)−δ2̺Tf (t)̺f (t). (30)

Considering V (t) is a function of 1ζ1(t), (30) can be

written as

G(t)

= ∂TV (t)

∂1ζ1(t)

(
ϒ1ζ (t)+�d(t)+4

(
2̂f (t)1ω̂f

e (t)+̺f (t)
))

+κTf (t)κf (t)−γ 2dT (t)d(t)−δ2̺Tf (t)̺f (t)

= ∂TV (t)

∂1ζ1(t)
42̂f (t) 1ω̂f

e (t)+
∂TV (t)

∂1ζ1(t)
ϒ1ζ (t)

+ ∂TV (t)

∂1ζ1(t)
�d(t)+H

T
(
1ζ1

)
H

(
1ζ1

)

+ ∂TV (t)

∂1ζ1(t)
4̺f (t)+θ21ω̂f

e

T
(t)1ω̂f

e (t)

−γ 2dT (t)d(t)−δ2̺Tf (t)̺f (t), (31)

which is a quadratic function of d(t) and ̺f (t). Therefore,

equation (31) has the maximum value at d∗(t) and ̺∗
f (t) (for

a fixed V (t)).

d∗(t) = 1

2γ 2
�T ∂V (t)

∂1ζ1(t)
, (32)

̺∗
f (t) = 1

2δ2
4T ∂V (t)

∂1ζ1(t)
. (33)

Taking d∗(t) and ̺∗
f (t) into (31) yields

G(t) ≤ 1

4δ2
∂TV (t)

∂1ζ1(t)
44T ∂V (t)

∂1ζ1(t)
+H

T
(
1ζ1

)
H

(
1ζ1

)

+ ∂TV (t)

∂1ζ1(t)
ϒ1ζ (t)+ ∂TV (t)

∂1ζ1(t)
42̂f (t)1ω̂f

e (t)

+ 1

4γ 2

∂TV (t)

∂1ζ1(t)
��T ∂V (t)

∂1ζ1(t)
+κTf (t)κf (t)

+θ21ω̂f
e

T
(t)1ω̂f

e (t)

≤ 0. (34)

Integrating (34) yields

∫ T

0

κTf (t)κf (t)dt−γ 2

∫ T

0

dT (t)d(t)dt

+V (T )−V (0)−δ2
∫ T

0

̺Tf (t)̺f (t)dt ≤ 0. (35)
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According to V (T ) > 0 and V (0) = 0 for 1ζ1(0) = 0,

rearranging terms yields
∫ T

0

κTf (t)κf (t)dt

≤
∫ T

0

(
γ 2dT (t)d(t)+δ2̺Tf (t)̺f (t)

)
dt−V

(
T

)

≤
∫ T

0

(
γ 2dT (t)d(t)+δ2̺Tf (t)̺f (t)

)
dt. (36)

Thus, the closed-loop control system of turbofan engines

satisfies the L2 gain-like performance with γ > 0 and δ > 0

for nonzero d(t) and σf (t) with γ > 0 and δ > 0.

Moreover, if d(t) = 0 and ̺f (t) = 0, equation (34) can be

rewritten as

V̇ (t)+κTf (t)κf (t)−γ 2dT (t)d(t)−δ2̺Tf (t)̺f (t)

= V̇ (t)+H
T
(
1ζ1

)
H

(
1ζ1

)
+θ21ω̂f

e

T
(t)1ω̂f

e (t)

≤ 0 (37)

Because of Assumption 1, V̇ (t) < 0 expect at

1ζ1(0) = 0. Hence, the error dynamics of the closed-loop

system of turbofan engines with actuator faults is locally

asymptotically stable for d(t) = 0 and ̺f (t) = 0, which

means that the controlled outputs of turbofan engines by the

CIFTC system can asymptotically track reference signals for

d(t) = 0 and ̺f (t) = 0.

The proof is completed.

Theorem 2: For given positive constants θ , γ , and δ,

if there exists a symmetric positive definite matrix 3 =[
31 02n×2n(p−1)

02n(p−1)×2n 32

]
∈ R

2np×2np and a square matrix

9 ∈ R
2np×2np that satisfy

3ŴT (1, p)ϒ−3ŴT (1, p)42̂2
f (t)4

TŴ(1, p)39

+ϒTŴ(1, p)3−9T3ŴT (1, p)42̂2
f (t)4

TŴ(1, p)3

+2θ29T3ŴT (1, p)42̂2
f (t)4

TŴ(1, p)39+25

+ 1

2γ 2
3ŴT (1, p)��TŴ(1, p)3

+ 1

2δ2
3ŴT (1, p)44TŴ(1, p)3 ≤ 0, (38)

then the NHFTCPS in Definition 2 can be satisfied by the

proposed CIFTC system for turbofan engines.

Proof: Consider the Lyapunov function candidate

V (t) = 1

2
1ζ T1 (t)311ζ1(t), (39)

where 31 ∈ R
2n×2n is a symmetric positive definite matrix.

The partial derivative of V (t) with respect to 1ζ1(t) is given

by

∂V (t)

∂1ζ1(t)
= Ŵ(1, p)31ζ (t), (40)

where 3 =
[

31 02n×2n(p−1)

02n(p−1)×2n 32

]
is a symmetric posi-

tive definite matrix.

Taking ∂V (t)
/
∂1ζ1(t) in (40), 1ω̂

f
e (t) in (25), and

Assumption 1 in (24) into (29) yields

1

4δ2
∂TV (t)

∂1ζ1(t)
44T ∂V (t)

∂1ζ1(t)
+H

T
(
1ζ1

)
H

(
1ζ1

)

+ ∂TV (t)

∂1ζ1(t)
ϒ1ζ (t)+ ∂TV (t)

∂1ζ1(t)
42̂f (t)1ω̂f

e (t)

+ 1

4γ 2

∂TV (t)

∂1ζ1(t)
��T ∂V (t)

∂1ζ1(t)
+κTf (t)κf (t)

+θ21ω̂f
e

T
(t)1ω̂f

e (t)

≤ θ21ζ T (t)9T3ŴT (1, p)42̂2
f (t)4

TŴ(1, p)391ζ (t)

+1ζ T (t)3ŴT (1, p)ϒ1ζ (t)+1ζ T (t)51ζ (t)

−1ζ T (t)3ŴT (1, p)42̂2
f (t)4

TŴ(1, p)391ζ (t)

+ 1

4γ 2
1ζ T (t)3ŴT (1, p)��TŴ(1, p)31ζ (t)

+ 1

4δ2
1ζ T (t)3ŴT (1, p)44TŴ(1, p)31ζ (t)

= 1

2
1ζ T (t)

(
3ŴT (1, p)ϒ

−3ŴT (1, p)42̂2
f (t)4

TŴ(1, p)39

+ϒTŴ(1, p)3−9T3ŴT (1, p)42̂2
f (t)4

TŴ(1, p)3

+2θ29T3ŴT (1, p)42̂2
f (t)4

TŴ(1, p)39+25

+ 1

2γ 2
3ŴT (1, p)��TŴ(1, p)3

+ 1

2δ2
3ŴT (1, p)44TŴ(1, p)3

)
1ζ (t)

≤ 0. (41)

Therefore, 9 and 3 satisfying (38) can guarantee that the

V (t) in (39) is a solution to (29). Hence, the NHFTCPS in

Definition 2 can be satisfied by the proposed CIFTC system

for turbofan engines.

The proof is completed.

Remark 10: To obtain the key matrices 3 and 9 of the

nonlinear robust fault-tolerant controllers in (27) and (28),

we define a symmetric positive definite symmetric matrix

3̆ = 3−1 and a square matrix 9̆ = 393−1. The inequal-

ity (38) ismultiplied by 3̆ both the sides, which can bewritten

as

3̆×(38)×3̆

= ŴT (1, p)ϒ3̆−ŴT (1, p)42̂2
f (t)4

TŴ(1, p)9̆

+3̆ϒTŴ(1, p)−9̆TŴT (1, p)42̂2
f (t)4

TŴ(1, p)

+2θ29̆TŴT (1, p)42̂2
f (t)4

TŴ(1, p)9̆

+ 1

2γ 2
ŴT (1, p)��TŴ(1, p)+23̆53̆

+ 1

2δ2
ŴT (1, p)44TŴ(1, p)

≤ 0. (42)

According to Schur complement lemma, (42) can take the

form of (43), as shown at the bottom of the next page.
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TABLE 3. The detail hyper-parameters of the CNN diagnosis model.

where

O1(3̆, 9̆) = ŴT (1, p)ϒ3̆+3̆ϒTŴ(1, p)

−9̆TŴT (1, p)42̂2
f (t)4

TŴ(1, p)

−ŴT (1, p)42̂2
f (t)4

TŴ(1, p)9̆,

O2 =
√

ŴT (1, p)��TŴ(1, p),

O3 =
√

ŴT (1, p)44TŴ(1, p),

O4 =
√
25,

and (*) denotes the symmetric term.

VI. SIMULATION RESULTS

In this section, the effectiveness of the proposed CIFTC sys-

tem is verified for turbofan engines. The diagnosed and con-

trolled object is the component level model of the dynamic

dual spool high bypass engine JT9D in T-MATS provided by

NASA Glenn Research Center. The operation condition of

the engine model JT9D is set as follows: gas path flow W =
639.89 pps, enthalpy ht = 130 BTM/lbm, total temperature

Tt = 448.46 degR, total pressure Pt = 5.528 psia and ambi-

ent pressure Pamb = 3.626 psia. To monitoring the engine

operation, the GToMFI database is employed for training and

verifying the CNN diagnosis model. The total number of the

GToMFI data samples is 95375, amongwhich 16625 samples

are corresponding to the label L0, 15750 samples are corre-

sponding to the label L1, 17500 samples are corresponding

to the label L2, 10500 samples are corresponding to the

label L3, 17500 samples are corresponding to the label L4, and

17500 samples corresponding to the label L5. 70% of these

samples (66762 samples) are randomly selected as training

samples, and the remaining samples (28613 samples) are used

as test samples. The nature of solving the system is to use

TABLE 4. The accuracy, loss and training time of the MLP, BLSTM, and
CNN diagnosis models.

CNN to approximate the characteristics between the GToMFI

data and the actuators in all fault modes, so as to realize the

fault diagnosis of the turbofan engines with actuator faults.

The detailed hyper-parameters of the CNN diagnosis model

are shown in Table 3. The simulation platform is Python

installed on a personal computer with a 64-bit Windows

10 system of Intel(R)Core(TM) i5-7400 CPU@ 3.00 GHz

with 8 GB RAM.

For comparison purposes, two other diagnosis approaches,

multi-layer perceptron neural network (MLP) [54] and bidi-

rectional long short-term memory networks (BLSTM) [55]

have been given. The MLP neural network adopts the struc-

ture of two hidden layers, with the learning rate 0.0001,

the optimization function Adam, and the hidden layer neuron

numbers 128 and 32. The BLSTM network with the learning

rate of 0.0005 has three hidden layers with 16 and 16 hidden

neurons in the first two hidden layers, and 128 hidden neurons

in the dense layer of the third layer. The comparison of the

accuracy and loss of the three methods are shown in Fig. 7.

Table 4 shows the accuracy, loss, and training time of the three

diagnosis models. The results of the comparison show that

the accuracy of the CNN diagnosis model tends to be stable

after about 100 training epochs. Although there are still some

small fluctuations in the later stage, the training accuracy is




O1(3̆, 9̆) (∗) (∗) (∗) (∗)
O2 −2γ 2I2np (∗) (∗) (∗)
O3 02np −2δ2I2np (∗) (∗)

θ2̂f (t)4
TŴ(1, p)9̆ 0q×2np 0q×2np −1

2
Iq (∗)

O43̆ 02np 02np 02np×q −I2np




≤ 0 (43)
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TABLE 5. Relevant parameters of the nonlinear fault-tolerant controllers.

FIGURE 7. Results the accuracy and loss of MLP, BLSTM, and CNN.
7(a) Responses of the accuracy of the MLP model; 7(b) Responses of the
loss of the MLP model; 7(c) Responses of the accuracy of the BLSTM
model; 7(d) Responses of the loss of the BLSTM model; 7(e) Responses of
the accuracy of the CNN model; 7(f) Responses of the loss of the CNN
model.

95.21% and the test accuracy approaches 93.77%. In contrast,

the MLP network has the poorest diagnosis performance,

and its test accuracy is as low as 66.78%. The accuracy of

the BLSTM network is higher than the MLP network, but

its convergence speed is slowest, and the required training

epochs for convergence is much larger than CNN. In addition,

the training time required for CNN is 13828 seconds, which

is the shortest in the three diagnosis models. Apparently,

the CNN model shows the best diagnosis performance.

Based on the CNN diagnosis model, the stack diagno-

sis model with sf = 4 gives the final fault determina-

tion (the sampling period is 0.04 seconds). In the study,

FIGURE 8. Results of the closed-loop system in fault-free case in Test 1.
8(a) Responses of the CNN-based diagnosis module; 8(b) Responses of
1nl of the JT9D engine by EFTC, NRC, and CIFTC; 8(c) Responses of 1nh of
the JT9D engine by EFTC, NRC, and CIFTC. Note that the same controller

1u
L0
c (t) is adopted by NRC and CIFTC in fault-free case.

the CNN-based fault diagnosis module is implemented on

Python supported by TensorFlow. By using the command

’nlgreyest’ of the System Identification Toolbox in MAT-

LAB, we can obtain the normalized polynomial state-space

model in (44) of the JT9D engine. Based on the enginemodel,

the vector η(t) =
[
η1(t) η2(t)

]T
can be obtained in (45)

by (28) without difficulty. The system matrices of the error

dynamical model of the closed-loop control in (22) are given.
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FIGURE 9. Results of the closed-loop system with 1wf a
f

= 0.85 in Test 2.
9(a) Responses of the CNN-based diagnosis module; 9(b) Responses of
1nl of the JT9D engine by EFTC, NRC, and CIFTC; 9(c) Responses of 1nh of
the JT9D engine by EFTC, NRC, and CIFTC.

Hence, the nonlinear fault-tolerant controller for the JT9D

engine with actuator faults are designed in (26) and (27).

Choosing the relevant design parameters for actuator faults

in Table 5 gives the key matrices 3 and 9 of the nonlinear

robust fault-tolerant controllers. Therefore, we can obtain the

nonlinear robust fault-tolerant controllers 1u
L0
c (t)-1u

L5
c (t)

in (46)−(51). For comparison purposes, the nonlinear robust

controller 1u
L0
c (t) in (46) (called NRC) and the fault-tolerant

controller with an estimator [56] in (52), (53), and (54) (called

EFTC) are given, where 1ẽ =
[
1ẽnl 1ẽnh

]T
in (52) and

1ũf =
[
1ũf ,wf 1ũf ,vsv

]T
in (53) are the estimation of

the tracking errors and actuator faults of EFTC, 1uEFTC =[
1wfEFTC 1vsvEFTC

]T
in (54) is the control input for the

turbofan engine by EFTC.

To check the control performance for the turbofan engine,

simulation is set as follows: The actuator fault event occurs

at 2.04 seconds; The CNN-based fault diagnosis module

monitors the operation of the turbofan engine in real-time

and the corresponding nonlinear fault-tolerant controller is

scheduled according to the diagnosis results and works lasted

until 40 seconds; A step command is given at 17 seconds;

And the pressure disturbances from Inlet and Burner (d1(t)

and d2(t)) are shown as follows, which helps to verify the

TABLE 6. Six tests and results with specific actuator faults.

FIGURE 10. Results of the closed-loop system with 1vsva
f

= 0.85 in
Test 3. 10(a) Responses of the CNN-based diagnosis module; 10(b)
Responses of 1nl of the JT9D engine by EFTC, NRC, and CIFTC; 10(c)
Responses of 1nh of the JT9D engine by EFTC, NRC, and CIFTC.

disturbance rejection of the CIFTC system for turbofan

engines after fault occurrence.

d1(t) =
{
0.05

(
sin(6.28t)+R(0, 1)

)
+0.5, 27 ≤ t ≤ 29

0, others,

d2(t) =
{
0.01

(
sin(62.8t)+R(0, 1)

)
+5, 27 ≤ t ≤ 29

0, others,

where R(0, 1) denotes a random noise with zero mean and

unity variance.

Six tests for the turbofan engine with some specific actua-

tor faults are carried out as shown in Table 6. The simulation

results are shown in Figs. 8−13. Moreover, the comparison

of the control performance of the JT9D engine after actuator
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FIGURE 11. Results of the closed-loop system with 1wf m
f

= 0.41wf m
c in

Test 4. 11(a) Responses of the CNN-based diagnosis module; 11(b)
Responses of 1nl of the JT9D engine by EFTC, NRC, and CIFTC; 11(c)
Responses of 1nh of the JT9D engine by EFTC, NRC, and CIFTC.

faults is shown in Fig. 14, including rise time tr (seconds),

settling time ts (seconds), overshoot ǫ (%), the maximum

value xdmax (rpm) and variance xdvar (rpm
2) of the fluctuation

of the shaft speeds affected by disturbances.

According to Figs. 8−14, four observations can be gener-

alized as follows.

1) In the case of fault-free, the states of the JT9D engine

can track the reference signal by the NRC and CIFTC

strategies with the same controller 1u
L0
c (t). As shown

in Fig. 8, both EFTC and CIFTC (NRC) can guaran-

tee the stable operation of the turbofan engine in the

case of fault-free in Test 1. Furthermore, compared with

EFTC, the proposed CIFTC strategy can help the JT9D

engine complete the tracking task faster and make it less

affected by disturbances.

2) Over the time interval (0, 17) of Figs. 9−13 shows that in

the event of actuator faults, the states of the JT9D engine

deviated from the ideal operating state instantaneously.

In the occurrence of the faults, the influence of additive

faults on the shaft speeds of the JT9D engine is more

obvious than multiplicative faults as shown in Fig. 9 and

Fig. 12. In the aspect of fault tolerance, the three control

methods can all maintain the stability of the closed-loop

systems even actuator faults occur. In the CIFTC system,

FIGURE 12. Results of the closed-loop system with 1wf m
f

= 0.851wf m
c

in Test 5. 12(a) Responses of the CNN-based diagnosis module; 12(b)
Responses of 1nl of the JT9D engine by EFTC, NRC, and CIFTC; 12(c)
Responses of 1nh of the JT9D engine by EFTC, NRC, and CIFTC.

the CNN-based fault diagnosis module can provide a

reliable final diagnosis result within 0.2 seconds after the

fault occurs, as shown in Figs. 9(a)−13(a). In addition,

the subfigures (b) and (c) of Figs. 9−13 show that in

the event of actuator faults, the shaft speeds of the JT9D

engine by CIFTC can recover to the ideal state more

rapidly than EFTC. Compared with NRC, the CIFTC

system significantly can reduce the amplitude of

fluctuation of the controlled outputs caused by the actua-

tor faults. Thus, the proposed CIFTC system can weaken

the influences of actuator faults on the JT9D engine.

3) Over the time interval (17, 27) of Figs. 9−13 shows the

effects of the actuator faults on the transient performance

of the JT9D engine after faults occur. The transient

performance of the JT9D engine is more affected by

multiplicative faults of actuators than by additive faults,

as shown in Figs. 9 and 12. As shown in Figs 11−13,

the CIFTC system can effectively improve the transient

performance of the JT9D engine after the multiplicative

faults occur. The rise time, settling time, and overshoot

are important indexes to reflect the transient perfor-

mance of the closed-loop system. Fig. 14 shows that the

CIFTC system can improve the transient performance

of the JT9D engine in the six tests. Moreover, compared
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FIGURE 13. Results of the closed-loop system with 1vsvm
f

= 0.851vsvm
c

in Test 6. 13(a) Responses of the CNN-based diagnosis module;
13(b) Responses of 1nl of the JT9D engine by EFTC, NRC, and CIFTC;
13(c) Responses of 1nh of the JT9D engine by EFTC, NRC, and CIFTC.

with EFTC, the total rise time of the CIFTC system in the

six tests can be shortened by 5.87 seconds and 3.82 sec-

onds, and the total settling time by 12.86 seconds and

13.08 seconds. Compared with NRC, the total overshoot

of the speed of the high-pressure shaft by CIFTC can

be reduced by 15.73%, which is beneficial to reduce the

requirement of high-temperature materials and prolong

the service life of turbofan engines. Hence, the CIFTC

system can guarantee the transient performance of the

JT9D engine after actuator faults.

4) Over the time interval (27, 40) of Figs. 9−13 shows

the influence of actuator faults on the JT9D engine in

terms of disturbance rejection after faults occur. Com-

pared with NRC and EFTC, the CIFTC system can sup-

press the influence of external disturbances on the JT9D

engine. In Fig. 12, the disturbance rejection of CIFTC is

superior to EFTC and NRC significantly. The maximum

value and variance value of the fluctuation caused by

interference are used to reflect the ability of disturbance

rejection of the closed-loop control systems. Further-

more, in Fig. 14, compared with the other two systems,

the CIFTC system can keep the maximum value of the

fluctuations of the controlled outputs as 8.72 rpm and

8.78 rpm, which are 84.2% and 89.0% lower than EFTC,

respectively. The states controlled by CIFTC is with the

smallest variance values of the fluctuation in the three

closed-loop control systems, which means the proposed

CIFTC can quickly restore the states at the ideal level

after disturbance. Accordingly, the CIFTC system can

improve the control performance of disturbance rejec-

tion for the JT9D engine after actuator faults occurrence.

VII. CONCLUSION

This paper dealt with the fault-tolerant control problem of

turbofan engines with actuator faults. Aiming at actuator

faults, we designed a CIFTC system for turbofan engines

including the CNN-based fault diagnosis module and the non-

linear fault-tolerant controller. The CNN-based fault diagno-

sismodule is to extract the fault information from the valuable

gas-path data, which can provide fault parameters for the

design of the fault-tolerant controller. According to the fault

parameters, the nonlinear robust fault-tolerant controller is

adjusted to ensure the stability and satisfy the L2 gain-like

performance of the closed-loop control system for turbofan

engines. Simulation results are presented to illustrate the

effectiveness of the proposed CIFTC strategy. Similar to other

work [57], [58], the dimensionality considered in the paper is

reasonable for the design of the fault-tolerant control system

for turbofan engines. In future work, the proposed method

will be applied for turbofan engines with higher dimensional-

ity. Meanwhile, when the actuator fault is more complex, for

example, with saturation and time-varying delay, the design

FIGURE 14. Comparison of the control performance of the JT9D engine after actuator faults occurrence by EFTC,
NRC, and CITFC in Tests 1-6.
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of fault-tolerant control is more challenging and the problem

deserves further study. In addition, the engineering applica-

tions of the control scheme presented in this paper will form

part of our further research.

APPENDIX

The polynomial state-space model of the turbofan engine is

given by (44).





d1nl

dt
= −2.5221nl+1.0941nh+0.3261nl2

−0.0451nh2+0.3931nl3+0.0941nh3

+0.8511wf+0.2861vsv−0.078d1

−0.005d2
d1nh

dt
= 1.5701nl−4.4101nh−0.5961nl2

+0.0351nh2+0.1241nl3−0.0631nh3

+2.0741wf−0.7411vsv−0.202d1

+0.241d2

(44)

The vector η(t) =
[
η1(t) η2(t)

]T
of nonlinear robust fault-

tolerant controllers is given by (45).





η1(t) = −1.1601nl−0.3681nh+0.3371nl2

−0.0191nh2+0.2671nl3+0.0421nh3

+1.1601enl+0.3681enh−0.3371e2nl
+0.0191e2nh−0.2671e3nl−0.0421e3nh
−0.6061ṙnl−0.2331ṙnh

η2(t) = −5.3661nl+4.9211nh+0.1381nl2

−0.1011nh2+0.5801nl3+0.2031nh3

+5.3661enl−4.9211enh−0.1381e2nl
+0.1011e2nh−0.5801e3nl−0.2031e3nh
−1.6951ṙnl+0.6951ṙnh

(45)

The nonlinear robust fault-tolerant controllers of CIFTC

for the JT9D engine are given by (46)∼(51).





1wf
L0
c (t) = −27.5511σnl−9.7951σnh−η1(t)

−16.6401enl−5.8171enh−0.0581e2nl
+0.0191e2nh−0.2671e3nl−0.0431e3nh

1vsv
L0
c (t) = −73.3321σnl+33.8481σnh−η2(t)

−42.1931enl+17.0551enh−0.9671e2nl
+0.1001e2nh−0.5801e3nl−0.2041e3nh

(46)





1wf
L1
c (t) = −28.3331σnl−16.9621σnh−η1(t)

−17.1181enl−9.7121enh−0.0601e2nl
+0.0191e2nh−0.2691e3nl−0.0431e3nh
+0.5

1vsv
L1
c (t) = −63.8551σnl+31.0121σnh−η2(t)

−37.1811enl+15.4771enh−0.9741e2nl
+0.1011e2nh−0.5851e3nl−0.2051e3nh

(47)





1wf
L2
c (t) = −33.2641σnl−13.9801σnh−η1(t)

−19.6361enl−7.9911enh−0.0581e2nl

+0.0191e2nh−0.2671e3nl−0.0431e3nh

1vsv
L2
c (t) = −86.1551σnl+39.1921σnh−η2(t)

−49.0711enl+19.7501enh−0.9671e2nl

+0.1001e2nh−0.5801e3nl−0.2041e3nh

+0.5

(48)





1wf
L3
c (t) = −49.1731σnl−17.3601σnh−1.25η1(t)

−28.5911enl−10.1091enh−0.0731e2nl

+0.0241e2nh−0.3331e3nl−0.0531e3nh

1vsv
L3
c (t) = −107.2821σnl+47.8821σnh−η2(t)

−60.1651enl+24.3721enh−0.9661e2nl

+0.1001e2nh−0.5791e3nl−0.2041e3nh

(49)





1wf
L4
c (t) = −107.4211σnl−16.3861σnh−2η1(t)

−77.6011enl−30.3621enh−14.7791e2nl

+2.6981e2nh−29.4851e3nl−5.8071e3nh

1vsv
L4
c (t) = −25.3221σnl+16.3421σnh−η2(t)

−16.4351enl+7.0241enh−4.1131e2nl

+0.6891e2nh−7.1041e3nl−1.4721e3nh

(50)





1wf
L5
c (t) = −42.1811σnl−15.7841σnh−η1(t)

−24.5591enl−9.0451enh−0.0581e2nl

+0.0191e2nh−0.2671e3nl−0.0431e3nh

1vsv
L5
c (t) = −226.0991σnl+100.7691σnh−2η2(t)

−127.7311enl+51.9071enh−1.9321e2nl

+0.2011e2nh−1.1581e3nl−0.4071e3nh

(51)

The estimator of EFTC for the JT9D engine is given by (52)

and (53).





1 ˙̃enl(t) = −2.5221ẽnl+1.0941ẽnh+0.3261ẽ2nl
−0.0451ẽ2nh+0.3931ẽ3nl−0.0941ẽ3nh
+0.8511wfEFTC (t)+0.2861vsvEFTC (t)

+0.8511ũwf ,f (t)+0.2861ũvsv,f (t)

+6.478(1enl−1ẽnl)+1.094(1enh−1ẽnh)

1 ˙̃enh(t) = 1.5701ẽnl−4.4101ẽnh−0.5961ẽ2nl
+0.0351ẽ2nh+0.1241ẽ3nl−0.0631ẽ3nh
+2.0741wfEFTC (t)−0.7411vsvEFTC (t)

+2.0741ũwf ,f (t)−0.7411ũvsv,f (t)

+1.570(1enl−1ẽnl)+10.590(1enh−1ẽnh)

(52)





1 ˙̃uwf ,f (t) = 74.817(1enl−1ẽnl)

+12.636(1enh−1ẽnh)

1 ˙̃uvsv,f (t) = 18.134(1enl−1ẽnl)

+122.312(1enh−1ẽnh)

(53)
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The nonlinear fault-tolerant controller of EFTC for the JT9D

engine is given by (52).





1wfEFTC (t) = 0.5691ẽnl+0.9981ẽnh−0.0581ẽ2nl
+0.0191ẽ2nh−0.2671ẽ3nl+0.0431ẽ3nh
−0.6061ũwf ,f (t)−0.2341ũvsv,f (t)

1vsvEFTC (t) = 5.3721ẽnl−2.4821ẽnh−0.9661ẽ2nl
+0.1001ẽ2nh−0.5791ẽ3nl−0.2041ẽ3nh
−1.6941ũwf ,f (t)+0.6951ũvsv,f (t)

(54)
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