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Abstract

Verifying robustness of neural network classifiers has at-
tracted great interests and attention due to the success of
deep neural networks and their unexpected vulnerability to
adversarial perturbations. Although finding minimum adver-
sarial distortion of neural networks (with ReLU activations)
has been shown to be an NP-complete problem, obtaining
a non-trivial lower bound of minimum distortion as a prov-
able robustness guarantee is possible. However, most pre-
vious works only focused on simple fully-connected layers
(multilayer perceptrons) and were limited to ReLU activa-
tions. This motivates us to propose a general and efficient
framework, CNN-Cert, that is capable of certifying robust-
ness on general convolutional neural networks. Our frame-
work is general – we can handle various architectures includ-
ing convolutional layers, max-pooling layers, batch normal-
ization layer, residual blocks, as well as general activation
functions; our approach is efficient – by exploiting the spe-
cial structure of convolutional layers, we achieve up to 17
and 11 times of speed-up compared to the state-of-the-art cer-
tification algorithms (e.g. Fast-Lin, CROWN) and 366 times
of speed-up compared to the dual-LP approach while our al-
gorithm obtains similar or even better verification bounds.
In addition, CNN-Cert generalizes state-of-the-art algorithms
e.g. Fast-Lin and CROWN. We demonstrate by extensive ex-
periments that our method outperforms state-of-the-art lower-
bound-based certification algorithms in terms of both bound
quality and speed.

Introduction

Recently, studies on adversarial robustness of state-of-the-
art machine learning models, particularly neural networks
(NNs), have received great attention due to interests in
model explainability (Goodfellow, Shlens, and Szegedy
2015) and rapidly growing concerns on security implica-
tions (Biggio and Roli 2017). Take image recognition as a
motivating example, imperceptible adversarial perturbations
of natural images can be easily crafted to manipulate the
model predictions, known as prediction-evasive adversarial
attacks. One widely-used threat model to quantify the at-
tack strengths is the norm-ball bounded attacks, where the
distortion between an original example and the correspond-
ing adversarial example is measured by the ℓp norm of their
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difference in real-valued vector representations (e.g., pixel
values for images or embeddings for texts). Popular norm
choices are ℓ1 (Chen et al. 2018), ℓ2 (Carlini and Wagner
2017b), and ℓ∞ (Kurakin, Goodfellow, and Bengio 2017).

The methodology of evaluating model robustness against
adversarial attacks can be divided into two categories: game-
based or verification-based. Game-based approaches mea-
sure the success in mitigating adversarial attacks via mount-
ing empirical validation against a (self-chosen) set of at-
tacks. However, many defense methods have shown to be
broken or bypassed by attacks that are adaptive to these
defenses under the same threat model (Carlini and Wag-
ner 2017a; Athalye, Carlini, and Wagner 2018), and there-
fore their robustness claims may not extend to untested at-
tacks. On the other hand, verification-based approaches pro-
vide certified defense against any possible attacks under a
threat model. In the case of an ℓp norm-ball bounded threat
model, a verified robustness certificate ǫ means the (top-1)
model prediction on the input data cannot be altered if the
attack strength (distortion measured by ℓp norm) is smaller
than ǫ. Different from game-based approaches, verification
methods are attack-agnostic and hence can formally certify
robustness guarantees, which is crucial to security-sensitive
and safety-critical applications.

Although verification-based approaches can provide ro-
bustness certification, finding the minimum distortion (i.e.,
the maximum certifiable robustness) of NNs with ReLU ac-
tivations has been shown to be an NP-complete problem
(Katz et al. 2017). While minimum distortion can be attained
in small and shallow networks (Katz et al. 2017; Lomus-
cio and Maganti 2017; Cheng, Nührenberg, and Ruess 2017;
Fischetti and Jo 2017), these approaches are not even scal-
able to moderate-sized NNs. Recent works aim to circum-
vent the scalability issue by efficiently solving a non-trivial
lower bound on the minimum distortion (Kolter and Wong
2018; Weng et al. 2018a; Dvijotham et al. 2018). However,
existing methods may lack generality in supporting differ-
ent network architectures and activation functions. In addi-
tion, current methods often deal with convolutional layers
by simply converting back to fully-connected layers, which
may lose efficiency if not fully optimized with respect to
the NNs, as demonstrated in our experiments. To bridge this
gap, we propose CNN-Cert, a general and efficient verifica-
tion framework for certifying robustness of a broad range
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Table 1: Comparison of methods for providing adversarial robustness certification in NNs.
Method Non-trivial bound Multi-layer Scalability & Efficiency Beyond ReLU Exploit CNN structure Pooling and other struc.

Reluplex (Katz et al. 2017), Planet (Ehlers 2017) X X × × × ×
Global Lipschitz constant (Szegedy et al. 2013) × X X X × X

Local Lipschitz constant (Hein and Andriushchenko 2017) X × X differentiable × ×
SDP approach (Raghunathan, Steinhardt, and Liang 2018) X × × X × ×
Dual approach (Kolter and Wong 2018) X X X × × ×
Dual approach (Dvijotham et al. 2018) X X codes not yet released X × X

Fast-lin / Fast-lip (Weng et al. 2018a) X X X × × ×
CROWN (Zhang et al. 2018) X X X X × ×
CNN-Cert (This work) X X X X X X

of convolutional neural networks (CNNs). The generality of
CNN-Cert enables robustness certification of various archi-
tectures, including convolutional layers, max-pooling lay-
ers batch normalization layers and residual blocks, and gen-
eral activation functions. The efficiency of CNN-Cert is op-
timized by exploiting the convolution operation. A full com-
parison of verification-based methods is given in Table 1.

We highlight the contributions of this paper as follows.

• CNN-Cert is general – it can certify robustness on
general CNNs with various building blocks, includ-
ing convolutional/pooling/batch-norm layers and residual
blocks, as well as general activation functions such as
ReLU, tanh, sigmoid and arctan. Other variants can easily
be incorporated. Moreover, certification algorithms Fast-
Lin (Weng et al. 2018a) and CROWN (Zhang et al. 2018)
are special cases of CNN-Cert.

• CNN-Cert is computationally efficient – the cost is similar
to forward-propagation as opposed to NP-completeness
in formal verification methods, e.g. Reluplex (Katz et
al. 2017). Extensive experiments show that CNN-Cert

achieves up to 17 times of speed-up compared to state-
of-the-art certification algorithms Fast-Lin and up to
366 times of speed-up compared to dual-LP approaches
while CNN-Cert obtains similar or even better verification
bounds.

Background and Related Work

Adversarial Attacks and Defenses. In the white-box set-
ting where the target model is entirely transparent to an ad-
versary, recent works have demonstrated adversarial attacks
on machine learning applications empowered by neural net-
works, including object recognition (Szegedy et al. 2013),
image captioning (Chen et al. 2017a), machine translation
(Cheng et al. 2018b), and graph learning (Zügner, Akbarne-
jad, and Günnemann 2018). Even worse, adversarial attacks
are still plausible in the black-box setting, where the adver-
sary is only allowed to access the model output but not the
model internals (Chen et al. 2017b; Ilyas et al. 2018; Tu et
al. 2018; Cheng et al. 2018a). For improving the robustness
of NNs, adversarial training with adversarial attacks is by
far one of the most effective strategies that showed strong
empirical defense performance (Madry et al. 2018; Sinha,
Namkoong, and Duchi 2018). In addition, verification-based
methods have validated that NNs with adversarial train-
ing can indeed improve robustness (Kolter and Wong 2018;
Weng et al. 2018b).

Robustness Verification for Neural Networks. Under
the norm-ball bounded threat model, for NNs with ReLU
activation functions, although the minimum adversarial dis-
tortion gives the best possible certified robustness, solv-
ing it is indeed computationally intractable due to its NP-
completeness complexity (Katz et al. 2017). Alternatively,
solving a non-trivial lower bound of the minimum distor-
tion as a provable robustness certificate is a more promising
option but at the cost of obtaining a more conservative ro-
bustness certificate. Some analytical lower bounds depend-
ing solely on model weights can be derived (Szegedy et al.
2013; Peck et al. 2017; Hein and Andriushchenko 2017;
Raghunathan, Steinhardt, and Liang 2018) but they are in
general too loose to be useful or limited to 1 or 2 hidden
layers. The robustness of NNs can be efficiently certified on
ReLU activation (Kolter and Wong 2018; Weng et al. 2018a)
and general activation (Zhang et al. 2018) but mostly on
models with fully-connected layers. (Dvijotham et al. 2018)
can also be applied to different activation functions but their
bound quality might decrease a lot as a trade-off between
computational efficiency due to its ‘any-time‘ property. This
paper falls within this line of research with an aim of provid-
ing both a general and efficient certification framework for
CNNs (see Table 1 for detailed comparisons).

Threat model, minimum adversarial distortion ρmin and
certified lower bound ρcert. Throughout this paper, we
consider the ℓp norm-ball bounded threat model with full
access to all the model parameters. Given an input im-
age x0 and a neural network classifier f(x), let c =
argmaxifi(x0) be the class where f predicts for x0. The
minimum distortion ρmin is the smallest perturbation that re-
sults in argmaxifi(x0+δ) 6= c, and ρmin = ‖δ‖p. A certified
lower bound ρcert satisfies the following: (i) ρcert < ρmin and
(ii) for all δ ∈ R

d and ‖δ‖p ≤ ρcert, argmaxifi(x0 + δ) = c.
In other words, a certified bound guarantees a region (an ℓp
ball with radius ρcert) such that the classifier decision can
never be altered for all possible perturbations in that region.
Note that ρcert is also known as un-targeted robustness, and
the targeted robustness ρcert,t is defined as satisfying (i) but
with (ii) slightly modified as ∀δ ∈ R

d and ‖δ‖p ≤ ρcert,
fc(x0 + δ) > ft(x0 + δ) given some targeted class t 6= c.

CNN-Cert: A General and Efficient

Framework for Robustness Certification

Overview of our results. In this section, we present a gen-
eral and efficient framework CNN-Cert for computing cer-
tified lower bounds of minimum adversarial distortion with
general activation functions in CNNs. We derive the range of

3241



Table 2: Expression of Ar
U and B

r
U . Ar

L and B
r
L have exactly the same form as Ar

U and B
r
U but with U and L swapped.
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u
S
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S
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∑
S

1
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Note 1: (~i, k) = (i, j, k) denotes filter coordinate indices and (~x, z) = (x, y, z) denotes output tensor indices.
Note 2: Ar

U ,B
r
U ,W, α, β,u, l are all tensors. Wr+,Wr− contains only the positive, negative entries of Wr with other entries equal 0.

Note 3: Ar
L,B

r
L for pooling block are slightly different. Please see Appendix (c) for details.

network output in closed-form by applying a pair of linear
upper/lower bound on the neurons (e.g. the activation func-
tions, the pooling functions) when the input of the network
is perturbed with noises bounded in ℓp norm (p ≥ 1). Our
framework can incorporate general activation functions and
various architectures – particularly, we provide results on
convolutional layers with activations (a.k.a Act-conv block),
max-pooling layers (a.k.a. Pooling block), residual blocks
(a.k.a. Residual block) and batch normalization layers (a.k.a.
BN block). In addition, we show that the state-of-the-art
Fast-Lin algorithm (Weng et al. 2018a) and CROWN (Zhang
et al. 2018) are special cases under the CNN-Cert framework.

General framework

When an input data point is perturbed within an ℓp ball with
radius ǫ, we are interested in the change of network output
because this information can be used to find a certified lower
bound of minimum adversarial distortion (as discussed in
the section Computing certified lower bound ρcert). To-
ward this goal, the first step is to derive explicit output
bounds for the neural network classifiers with various popu-
lar building blocks, as shown in Figure 1, Table 2 and Table
9 (with general strides and padding). The fundamental idea
of our method is to apply linear bounding techniques sepa-
rately on the non-linear operations in the neural networks,
e.g. the non-linear activation functions, residual blocks and
pooling operations. Our proposed techniques are general and
allow efficient computations of certified lower bounds. We
begin the formal introduction to CNN-Cert by giving no-
tations and intuitions of deriving explicit bounds for each
building block followed by the descriptions of utilizing such
explicit bounds to compute certified lower bounds ρcert in
our proposed framework.

Notations. Let f(x) be a neural network classifier func-
tion and x0 be an input data point. We use σ(·) to denote
the coordinate-wise activation function in the neural net-
works. Some popular choices of σ include ReLU: σ(y) =
max(y, 0), hyperbolic tangent: σ(y) = tanh(y), sigmoid:
σ(y) = 1/(1+e−y) and arctan: σ(y) = tan−1(y). The sym-
bol ∗ denotes the convolution operation and Φr(x) denotes
the output of r-th layer building block, which is a function
of an input x. We use superscripts to denote index of lay-
ers and subscripts to denote upper bound (U ), lower bound
(L) and its corresponding building blocks (e.g. act is short
for activation, conv is short for convolution, res is short for

residual block, bn is short for batch normalization and pool
is short for pooling). Sometimes subscripts are also used to
indicate the element index in a vector/tensor, which is self-
content. We will often write Φr(x) as Φr for simplicity and
we will sometimes use Φm(x) to denote the output of the
classifier, i.e. Φm = f(x). Note that the weights W, bias b,
input x and the output Φm of each layer are tensors since we
consider a general CNN in this paper.

(i) Tackling the non-linear activation functions and con-
volutional layer. For the convolutional layer with an ac-
tivation function σ(·), let Φr−1 be the input of activation
layer and Φr be the output of convolutional layer. The in-
put/output relation is as follows:

Φr = W
r ∗ σ(Φr−1) + b

r. (1)

Given the range of Φr−1, we can bound the range of Φr by
applying two linear bounds on each activation function σ(y):

αL(y + βL) ≤ σ(y) ≤ αU (y + βU ). (2)

When the input y is in the range of [l, u], the parameters
αL, αU , βL, βU can be chosen appropriately based on y’s
lower bound l and upper bound u. If we use (2) and consider
the signs of the weights associated with the activation func-
tions, it is possible to show that the output Φr in (1) can be
bounded as follows:

Φr ≤ A
r
U,act ∗ Φr−1 +B

r
U,act, (3)

Φr ≥ A
r
L,act ∗ Φr−1 +B

r
L,act, (4)

where A
r
U,act,A

r
L,act,B

r
U,act,B

r
L,act are constant tensors re-

lated to weights Wr and bias br as well as the correspond-
ing parameters αL, αU , βL, βU in the linear bounds of each
neuron. See Table 2 for full results. Note the bounds in
(3) and (4) are element-wise inequalities and we leave the
derivations in the Appendix (a). On the other hand, if Φr−1

is also the output of convolutional layer, i.e.

Φr−1 = W
r−1 ∗ σ(Φr−2) + b

r−1,

thus the bounds in (3) and (4) can be rewritten as follows:

Φr ≤ A
r
U,act ∗ Φr−1 +B

r
U,act

= A
r
U,act ∗ (Wr−1 ∗ σ(Φr−2) + b

r−1) +B
r
U,act

= A
r−1
U,conv ∗ σ(Φr−2) +B

r−1
U,conv +B

r
U,act (5)
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Figure 1: Cartoon graph of commonly-used building blocks (i)-(iv) considered in our CNN-Cert framework. The key step in
deriving explicit network output bound is to consider the input/output relations of each building block, marked as red arrows.
The activation layer can be general activations but here is denoted as ReLU.

and similarly

Φr ≥ A
r
L,act ∗ Φr−1 +B

r
L,act

= A
r−1
L,conv ∗ σ(Φr−2) +B

r−1
L,conv +B

r
L,act (6)

by letting A
r−1
U,conv = A

r
U,act ∗ W

r−1, Br−1
U,conv = A

r
U,act ∗

b
r−1, and A

r−1
L,conv = A

r
L,act ∗ W

r−1, Br−1
L,conv = A

r
L,act ∗

b
r−1. Observe that the form of the upper bound in (5) and

lower bound in (6) becomes the same convolution form
again as (1). Therefore, for a neural network consists of con-
volutional layers and activation layers, the above technique
can be used iteratively to obtain the final upper and lower
bounds of the output Φr in terms of the input of neural net-
work Φ0(x) = x in the following convolutional form:

A
0
L,conv ∗ x+B

0
L ≤ Φr(x) ≤ A

0
U,conv ∗ x+B

0
U .

In fact, the above framework is very general and is not
limited to the convolution-activation building blocks. The
framework can also incorporate popular residual blocks,
pooling layers and batch normalization layers, etc. The key
idea is to derive linear upper bounds and lower bounds for
each building block in the form of (3) and (4), and then plug
in the corresponding bounds and back-propagate to the pre-
vious layer.

(ii) Tackling the residual blocks operations. For the
residual block, let Φr+2 denote the output of residual block
(before activation) and Φr+1 be the output of first convolu-
tional layer and Φr be the input of residual block. The in-
put/output relation is as follows:

Φr+1 = W
r+1 ∗ Φr + b

r+1,

Φr+2 = W
r+2 ∗ σ(Φr+1) + b

r+2 +Φr.

Similar to the linear bounding techniques for up-wrapping
the non-linear activation functions, the output of residual
block can be bounded as:

Φr+2 ≤ A
r+2
U,res ∗ Φr +B

r+2
U,res,

Φr+2 ≥ A
r+2
L,res ∗ Φr +B

r+2
L,res,

where A
r+2
U,res,A

r+2
L,res,B

r+2
U,res,B

r+2
L,res are constant tensors re-

lated to weights W
r+2, W

r+1, bias b
r+2, b

r+1, and
the corresponding parameters αL, αU , βL, βU in the linear
bounds of each neuron; see Table 2 for details. Note that
in Table 2, all indices are shifted from r + 2 to r. The full
derivations are provided in the Appendix (b).

(iii) Tackling the batch normalization. The batch nor-
malization layer performs operations of scaling and shifting
during inference time. Let Φr be the output and Φr−1 be the
input, the input/output relation is the following:

Φr = γbn

Φr−1 − µbn
√

σ2
bn + ǫbn

+ βbn,

where γbn, βbn are the learned training parameters and µbn,
σ2

bn are the running average of the batch mean and variance
during training. Thus, it is simply scaling and shifting on
both upper bounds and lower bounds:

A
r
L,bn ∗ Φr−1 +B

r
L,bn ≤ Φr ≤ A

r
U,bn ∗ Φr−1 +B

r
U,bn

where A
r
U,bn = A

r
L,bn = γbn√

σ2
bn
+ǫbn

and B
r
U,bn = B

r
L,bn =

−γbn
µbn√
σ2

bn
+ǫbn

+ βbn.

(iv) Tackling the pooling operations. Let Φr and Φr−1

be the output and input of the pooling layer. For max-pooling
operations, the input/output relation is the following:

Φr
n = max

Sn

Φr−1
Sn

,

where Sn denotes the pooled input index set associated with
the n-th output. When the input Φr−1 is bounded in the
range [lr,ur], it is possible to bound the output Φr by linear
functions as follows:

Φr ≤ A
r
U,pool ∗ Φr−1 +B

r
U,pool,

Φr ≥ A
r
L,pool ∗ Φr−1 +B

r
L,pool,

where A
r
U,pool,A

r
L,pool,B

r
U,pool,B

r
L,pool are constant tensors

related to l
r and u

r. For average pooling operation, the range
of the output Φr is simply the the average of lr and u

r on the
corresponding pooling indices. See Table 2 and derivation
details in Appendix (c).

Computing global bounds ηj,U and ηj,L of network out-
put Φm(x). Let Φm(x) be the output of a m-th layer neu-
ral network classifier. We have shown that when the input
of each building block is bounded and lies in the range of
some [l,u], then the output of the building block can be
bounded by two linear functions in the form of input con-
volution. Since a neural network can be regarded as a cas-
cade of building blocks – the input of current building block
is the output of previous building block – we can propagate
the bounds from the last building block that relates the net-
work output backward to the first building block that relates
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the network input x. A final upper bound and lower bound
connect the network output and input are in the following
linear relationship:

A
0
L ∗ x+B

0
L ≤ Φm(x) ≤ A

0
U ∗ x+B

0
U . (7)

Recall that the input x is constrained within an ℓp ball
Bp(x0, ǫ) centered at input data point x0 and with radius
ǫ. Thus, maximizing (minimizing) the right-hand side (left-
hand side) of (7) over x ∈ Bp(x0, ǫ) leads to a global upper
(lower) bound of j-th output Φm

j (x):

ηj,U = ǫ‖vec(A0
U )‖q +A

0
U ∗ x0 +B

0
U , (8)

ηj,L = −ǫ‖vec(A0
L)‖q +A

0
L ∗ x0 +B

0
L, (9)

where ‖ · ‖q is ℓq norm and 1/p+ 1/q = 1 with p, q ≥ 1.

Computing certified lower bound ρcert. Recall that the
predicted class of input data x0 is c and let t be a targeted
class. Given the magnitude of largest input perturbation ǫ,
we can check if the output Φm

c (x) − Φm
t (x) > 0 by apply-

ing the global bounds derived in (8) and (9). In other words,
given an ǫ, we will check the condition if ηc,L−ηt,U > 0. If
the condition is true, we can increase ǫ; otherwise decrease
ǫ. Thus, the largest certified lower bound can be attained by
a bisection on ǫ. Note that although there is an explicit ǫ term
in (8) and (9), they are not a linear function in ǫ because all
the intermediate bounds of Φr depend on ǫ. Fortunately, we
can still find ρcert numerically via the aforementioned bisec-
tion method. On the other hand, also note that the derivation
of output bounds Φr in each building block depend on the
range [lr−1,ur−1] of the building block input (say Φr−1),
which we call the intermediate bounds. The value of inter-
mediate bounds can be computed similarly by treating Φr−1

as the final output of the sub-network which consists of all
building blocks before layer r − 1 and deriving the corre-
sponding A

0
U ,A

0
L,B

0
U ,B

0
L in (7). Thus, all the intermedi-

ate bounds also have the same explicit forms as (8) and (9)
but substituted by its corresponding A

0
U ,A

0
L,B

0
U ,B

0
L.

Discussions: Fast-Lin and CROWN are special cases of
CNN-Cert. Fast-Lin (Weng et al. 2018a) and CROWN

(Zhang et al. 2018) are special cases of CNN-Cert. In Fast-

Lin, two linear bounds with the same slope (i.e. αU = αL in
(2)) are applied on the ReLU activation while in CROWN

and CNN-Cert different slopes are possible (αU and αL

can be different). However, both Fast-Lin and CROWN only
consider fully-connected layers (MLP) while CNN-Cert can
handle various building blocks and architectures such as
residual blocks, pooling blocks and batch normalization
blocks and is hence a more general framework. We show
in Table 13 (appendix) that when using the same linear
bounds in ReLU activations, CNN-Cert obtains the same ro-
bustness certificate as CROWN; meanwhile, for the general
activations, CNN-Cert uses more accurate linear bounds and
thus achieves better certificate quality up to 260% compared
with CROWN (if we use exactly the same linear bounds,
then CNN-Cert and CROWN indeed get the same certificate).
Note that in all cases, CNN-Cert is much faster than CROWN

(2.5-11.4× speed-up) due to the advantage of explicit con-
volutional bounds in CNN-Cert.

Discussion: CNN-Cert is computationally efficient.
CNN-Cert has a similar cost to forward-propagation for gen-
eral convolutional neural networks – it takes polynomial
time, unlike algorithms that find the exact minimum adver-
sarial distortion such as Reluplex (Katz et al. 2017) which
is NP-complete. As shown in the experiment sections, CNN-

Cert demonstrates an empirical speedup as compared to (a)
the original versions of Fast-Lin (b) an optimized sparse ma-
trix versions of Fast-Lin (by us) and (c) Dual-LP approaches
while maintaining similar or better certified bounds (the im-
provement is around 8-20 %). For a pure CNN network with
m layers, k-by-k filter size, n filters per layer, input size r-
by-r, and stride 1-by-1, the time complexity of CNN-Cert
is O(r2m6k4n3). The equivalent fully connected network
requires O(r6m2n3) time to certify.

Discussion: Training-time operations are independent of
CNN-Cert. Since CNN-Cert is certifying the robustness of
a fixed classifier f at the testing time, techniques that only
apply to the training phase, such as dropout, will not affect
the operation of CNN-Cert (though the given model to be
certified might vary if model weights differ).

Experiments

We conduct extensive experiments comparing CNN-Cert

with other lower-bound based verification methods on 5
classes of networks: (I) pure CNNs; (II) general CNNs
(ReLU) with pooling and batch normalization; (III) resid-
ual networks (ReLU); (IV) general CNNs and residual net-
works with non-ReLU activation functions; (V) small MLP
models. Due to page constraints, we refer readers to the
appendix for additional results. Our codes are available at
https://github.com/AkhilanB/CNN-Cert.
Comparative Methods.

• Certification algorithms: (i) Fast-Lin provides certificate
on ReLU networks (Weng et al. 2018a); (ii) Global-
Lips provides certificate using global Lipschitz con-
stant (Szegedy et al. 2013); (iii) Dual-LP solves dual
problems of the LP formulation in (Kolter and Wong
2018), and is the best result that (Dvijotham et al. 2018)
can achieve, although it might not be attainable due to
the any-time property; (iv) Reluplex (Katz et al. 2017)
obtains exact minimum distortion but is computationally
expensive.

• Robustness estimation, Attack methods: (i) CLEVER
(Weng et al. 2018b) is a robustness estimation score with-
out certification; (ii) CW/EAD are attack methods (Car-
lini and Wagner 2017b; Chen et al. 2018).

• Our methods: CNN-Cert-Relu is CNN-Cert with the same
linear bounds on ReLU used in Fast-Lin, while CNN-Cert-

Ada uses adaptive bounds all activation functions. CNNs
are converted into equivalent MLP networks before eval-
uation for methods that only support MLP networks.

Implementations, Models and Dataset. CNN-Cert is im-
plemented with Python (numpy with numba) and we also
implement a version of Fast-Lin using sparse matrix multi-
plication for comparison with CNN-Cert since convolutional
layers correspond to sparse weight matrices. Experiments
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Table 3: Averaged bounds of CNN-Cert and other methods on (I) pure CNN networks with ReLU activations , see Compar-
ative Methods section for methods descriptions. ’-’ indicates the method is computationally infeasible.

Network Certified lower bounds CNN-Cert-Ada Improvement (%) Attack Uncertified

ℓp norm CNN-Cert-Ada Fast-Lin Global-Lips Dual-LP vs. Fast-Lin vs. Dual-LP CW/EAD CLEVER

MNIST, 4 layer ℓ∞ 0.0491 0.0406 0.0002 0.0456 +21% +8% 0.1488 0.0542
5 filters ℓ2 0.1793 0.1453 0.0491 0.1653 +23% +8% 3.1407 1.0355

8680 hidden nodes ℓ1 0.3363 0.2764 0.0269 0.3121 +22% +8% 14.4516 4.2955

MNIST, 4 layer ℓ∞ 0.0340 0.0291 0.0000 - +17% - 0.1494 0.0368
20 filters ℓ2 0.1242 0.1039 0.0221 - +20% - 3.0159 0.7067

34720 hidden nodes ℓ1 0.2404 0.1993 0.0032 - +21% - 13.7950 3.4716

MNIST, 5 layer ℓ∞ 0.0305 0.0248 0.0000 - +23% - 0.1041 0.0576
5 filters ℓ2 0.1262 0.1007 0.0235 - +25% - 1.8443 0.9011

10680 hidden nodes ℓ1 0.2482 0.2013 0.0049 - +23% - 11.6711 3.5369

CIFAR, 7 layer ℓ∞ 0.0042 0.0036 0.0000 - +17% - 0.0229 0.0110
5 filters ℓ2 0.0340 0.0287 0.0023 - +18% - 0.6612 0.3503

19100 hidden nodes ℓ1 0.1009 0.0843 0.0001 - +20% - 12.5444 1.2138

CIFAR, 5 layer ℓ∞ 0.0042 0.0037 0.0000 - +14% - 0.0172 0.0075
10 filters ℓ2 0.0324 0.0277 0.0042 - +17% - 0.4177 0.2390

29360 hidden nodes ℓ1 0.0953 0.0806 0.0005 - +18% - 11.6536 1.5539

Table 4: Averaged runtime of CNN-Cert and other methods on (I) pure CNN networks with ReLU activations
Network Average Computation Time (sec) CNN-Cert-Ada Speed-up

ℓp norm CNN-Cert-Ada Fast-Lin Global-Lips Dual-LP vs. Fast-Lin, sparse vs. Fast-Lin vs. Dual-LP vs. CLEVER

MNIST, 4 layer ℓ∞ 2.33 9.03 0.0001 853.20 1.9 3.9 366.1 31.4
5 filters ℓ2 0.88 9.19 0.0001 236.30 5.0 10.5 270.1 83.0

8680 hidden nodes ℓ1 0.86 8.98 0.0001 227.69 5.2 10.5 265.2 87.1

MNIST, 4 layer ℓ∞ 17.27 173.43 0.0001 - 2.0 10.0 - 11.2
20 filters ℓ2 17.19 180.10 0.0002 - 2.1 10.5 - 11.4

34720 hidden nodes ℓ1 17.35 179.63 0.0001 - 2.1 10.4 - 11.0

MNIST, 5 layer ℓ∞ 4.96 16.89 0.0001 - 1.4 3.4 - 19.0
5 filters ℓ2 2.25 18.47 0.0001 - 3.0 8.2 - 46.8

10680 hidden nodes ℓ1 2.32 16.70 0.0001 - 3.0 7.2 - 43.6

CIFAR, 7 layer ℓ∞ 15.11 78.04 0.0001 - 1.5 5.2 - 12.3
5 filters ℓ2 16.11 73.08 0.0001 - 1.4 4.5 - 11.8

19100 hidden nodes ℓ1 14.93 76.89 0.0001 - 1.5 5.1 - 12.9

CIFAR, 5 layer ℓ∞ 20.87 169.29 0.0001 - 1.5 8.1 - 8.0
10 filters ℓ2 16.93 170.42 0.0002 - 2.0 10.1 - 9.2

29360 hidden nodes ℓ1 17.07 168.30 0.0001 - 1.9 9.9 - 9.3

Table 5: Averaged bounds and runtimes on (II) general CNN networks with ReLU activations.
Network Certified Bounds CNN-Cert-Ada Imp. (%) Attack Uncertified Average Computation Time (sec)

ℓp norm CNN-Cert-Relu CNN-Cert-Ada Global-Lips vs. CNN-Cert-Relu CW/EAD CLEVER CNN-Cert-Ada Global-Lips CW/EAD

MNIST, LeNet ℓ∞ 0.0113 0.0120 0.0002 +6% 0.1705 0.0714 9.54 0.0001 20.50
ℓ2 0.0617 0.0654 0.0600 +6% 5.1327 1.2580 9.46 0.0001 5.56
ℓ1 0.1688 0.1794 0.0023 +6% 21.6101 5.5241 9.45 0.0001 3.75

MNIST, 7 layer ℓ∞ 0.0068 0.0079 0.0000 +16% 0.1902 0.1156 191.81 0.0001 41.13
ℓ2 0.0277 0.0324 0.0073 +17% 4.9397 1.7703 194.82 0.0007 10.83
ℓ1 0.0542 0.0638 0.0000 +18% 19.6854 6.8565 188.84 0.0001 6.31

MNIST, LeNet ℓ∞ 0.0234 0.0273 0.0001 +17% 0.1240 0.1261 10.05 0.0001 36.08
No Pooling ℓ2 0.1680 0.2051 0.0658 +22% 3.7831 2.4130 10.76 0.0003 8.17

ℓ1 0.5425 0.6655 0.0184 +23% 22.2273 10.6149 11.63 0.0001 5.34

MNIST, 4 layer ℓ∞ 0.0083 0.0105 0.0011 +26% 0.0785 0.0318 2.35 0.0001 30.49
5 filters ℓ2 0.0270 0.0333 0.3023 +23% 0.8678 0.6284 2.42 0.0002 8.26

Batch Norm ℓ1 0.0485 0.0604 0.1053 +25% 6.1088 2.4622 2.39 0.0001 5.46

MNIST, 4 layer ℓ∞ 0.0406 0.0492 0.0002 +21% 0.1488 0.0536 1.66 0.0001 22.23
5 filters ℓ2 0.1454 0.1794 0.0491 +23% 3.1407 1.0283 1.31 0.0001 5.78

ℓ1 0.2764 0.3363 0.0269 +22% 14.4516 4.4930 1.49 0.0001 3.98

Tiny ImageNet ℓ∞ 0.0002 0.0003 - +24% 0.4773 0.0056 5492.35 - 257.06
7 layer ℓ2 0.0012 0.0016 - +29% - 0.4329 5344.49 - -

ℓ1 0.0038 0.0048 - +28% - 7.1665 5346.08 - -

MNIST, LeNet ℓ∞ 0.0117 0.0124 0.0003 +6% 0.1737 0.0804 6.89 0.0001 38.76
ℓ2 0.0638 0.0678 0.0672 +6% 5.1441 1.4599 6.85 0.0001 9.22

100 images ℓ1 0.1750 0.1864 0.0027 +7% 22.7232 5.7677 6.91 0.0001 5.57

MNIST, 4 layer ℓ∞ 0.0416 0.0500 0.0002 +20% 0.1515 0.0572 0.98 0.0001 40.02
5 filters ℓ2 0.1483 0.1819 0.0516 +23% 3.2258 1.0834 0.85 0.0001 8.93

100 images ℓ1 0.2814 0.3409 0.0291 +21% 14.7665 4.2765 0.83 0.0001 6.25

are conducted on a AMD Zen server CPU. We evaluate
CNN-Cert and other methods on CNN models trained on
the MNIST, CIFAR-10 and tiny Imagenet datasets. All pure
convolutional networks use 3-by-3 convolutions. The gen-
eral 7-layer CNNs use two max pooling layers and uses 32

and 64 filters for two convolution layers each. LeNet uses
a similar architecture to LeNet-5 (LeCun et al. 1998), with
the no-pooling version applying the same convolutions over
larger inputs. The residual networks (ResNet) evaluated use
simple residual blocks with two convolutions per block and
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Table 6: Averaged bounds and runtimes on (III) ResNet with ReLU activations .
Network Certified Bounds CNN-Cert-Ada Imp. (%) Attack Uncertified Average Computation Time (sec)

ℓp norm CNN-Cert-Relu CNN-Cert-Ada vs. CNN-Cert-Relu CW/EAD CLEVER CNN-Cert-Relu CNN-Cert-Ada CW/EAD

MNIST, ResNet-2 ℓ∞ 0.0183 0.0197 +8% 0.0348 0.0385 2.26 2.25 24.96
ℓ2 0.0653 0.0739 +13% 0.2892 0.7046 2.21 2.25 5.59
ℓ1 0.1188 0.1333 +12% 4.8225 2.2088 2.19 2.22 3.00

MNIST, ResNet-3 ℓ∞ 0.0179 0.0202 +13% 0.0423 0.0501 10.39 10.04 32.82
ℓ2 0.0767 0.0809 +5% 0.3884 1.0704 10.13 10.11 6.89
ℓ1 0.1461 0.1514 +4% 5.9454 3.8978 10.20 10.15 4.22

MNIST, ResNet-4 ℓ∞ 0.0153 0.0166 +8% 0.0676 0.0455 28.66 28.18 35.13
ℓ2 0.0614 0.0683 +11% 1.0094 0.9621 28.43 28.20 7.89
ℓ1 0.1012 0.1241 +23% 9.1925 3.7999 27.81 28.53 5.34

Table 7: Averaged bounds and runtimes on (IV) general CNNs and ResNet with general activation functions. 7-layer sigmoid
network results are omitted due to poor test accuracy.

Network Certified lower bounds Uncertified Average Computation Time (sec)

ℓp norm CNN-Cert-Relu CNN-Cert-Ada Sigmoid Tanh Arctan CLEVER CNN-Cert-Relu CNN-Cert-Ada Sigmoid Tanh Arctan

MNIST, Pure CNN ℓ∞ 0.0203 0.0237 0.0841 0.0124 0.0109 0.0354 18.34 18.27 18.81 20.31 19.03
8-layer ℓ2 0.0735 0.0877 0.3441 0.0735 0.0677 0.4268 18.25 18.22 18.83 19.70 19.05
5 filters ℓ1 0.1284 0.1541 0.7319 0.1719 0.1692 1.2190 18.35 18.51 19.40 20.00 19.36

MNIST, General CNN ℓ∞ 0.0113 0.0120 0.0124 0.0170 0.0153 0.0714 9.71 9.54 9.55 9.66 9.37
LeNet ℓ2 0.0617 0.0654 0.0616 0.1012 0.0912 1.2580 9.45 9.46 9.42 9.49 9.50

ℓ1 0.1688 0.1794 0.1666 0.2744 0.2522 5.5241 9.44 9.45 9.59 9.69 9.86

MNIST, General CNN ℓ∞ 0.0068 0.0079 - 0.0085 0.0079 0.1156 193.68 191.81 - 191.26 195.08
7-layer ℓ2 0.0277 0.0324 - 0.0429 0.0386 1.7703 194.21 194.82 - 193.85 194.81

ℓ1 0.0542 0.0638 - 0.0955 0.0845 6.8565 187.88 188.84 - 188.83 188.79

MNIST, ResNet-3 ℓ∞ 0.0179 0.0202 0.0042 0.0058 0.0048 0.0501 10.39 10.04 10.08 10.39 10.26
ℓ2 0.0767 0.0809 0.0147 0.0223 0.0156 1.0704 10.13 10.11 10.14 10.43 10.27
ℓ1 0.1461 0.1514 0.0252 0.0399 0.0277 3.8978 10.20 10.15 10.40 10.84 10.69

Table 8: Averaged bounds and runtimes on (V) small MLP networks.
Network Certified Bounds CNN-Cert-Ada Improvement (%) Exact Attack Uncertified

ℓp norm Fast-Lin CNN-Cert-Relu CNN-Cert-Ada Dual-LP vs. Fast-Lin vs. Dual-LP Reluplex CW/EAD CLEVER

MNIST, 2 layer ℓ∞ 0.0365 0.0365 0.0371 0.0372 +2% 0% 0.0830 0.0871 0.0526
20 nodes ℓ2 0.7754 0.7754 0.7892 0.9312 +2% -15% - 1.9008 1.1282

Fully Connected ℓ1 5.3296 5.3252 5.4452 5.7583 +2% -5% - 15.8649 7.8207

MNIST, 3 layer ℓ∞ 0.0297 0.0297 0.0305 0.0308 +3% -1% - 0.0835 0.0489
20 nodes ℓ2 0.6286 0.6289 0.6464 0.7179 +3% -10% - 2.3083 1.0214

Fully Connected ℓ1 4.2631 4.2599 4.4258 4.5230 +4% -2% - 15.9909 6.9988

ResNet with k residual blocks is denoted as ResNet-k. We
evaluate all methods on 10 random test images and attack
targets (in order to accommodate slow verification methods)
and also 100 images results for some networks in Table 5. It
shows that the results of average 100 images are similar to
average 10 imagess. We train all models for 10 epochs and
tune hyperparameters to optimize validation accuracy.

Results (I): pure CNNs with ReLU activation. Table 3
demonstrates that CNN-Cert bounds consistently improve
on Fast-Lin over network size. CNN-Cert also improves on
Dual-LP. Attack results show that all certified methods leave
a significant gap on the attack-based distortion bounds (i.e.
upper bounds on the minimum distortions). Table 4 gives
the runtimes of various methods and shows that CNN-Cert is
faster than Fast-Lin, with over an order of magnitude speed-
up for the smallest network. CNN-Cert is also faster than
the sparse version of Fast-Lin. The runtime improvement
of CNN-Cert decreases with network size. Notably, CNN-

Cert is multiple orders of magnitude faster than the Dual-
LP method. Global-Lips is an analytical bound, but it pro-
vides very loose lower bounds by merely using the product
of layer weights as the Lipschitz constant. In contrast, CNN-

Cert takes into account the network output at the neuron
level and thus can certify significantly larger lower bounds,
and is around 8-20 % larger compared to Fast-Lin and Dual-
LP approaches.

Results (II), (III): general CNNs and ResNet with ReLU
activation. Table 5 gives certified lower bounds for var-
ious general CNNs including networks with pooling lay-
ers and batch normalization. CNN-Cert improves upon Fast-

Lin style ReLU bounds (CNN-Cert-Relu). Interestingly, the
LeNet style network without pooling layers has certified
bounds much larger than the pooling version while the net-
work with batch normalization has smaller certified bounds.
These findings provide some new insights on uncovering the
relation between certified robustness and network architec-
ture, and CNN-Cert could potentially be leveraged to search
for more robust networks. Table 6 gives ResNet results and
shows CNN-Cert improves upon Fast-Lin.

Results (IV): general CNNs and ResNet with general ac-
tivations. Table 7 computes certified lower bounds for net-
works with 4 different activation functions. Some sigmoid
network results are omitted due to poor test set accuracy.
We conclude that CNN-Cert can indeed efficiently find non-
trivial lower bounds for all the tested activation functions
and that computing certified lower bounds for general acti-
vation functions incurs no significant computational penalty.

Results (V): Small MLP networks. Table 8 shows re-
sults on small MNIST MLP with 20 nodes per layer. For
the small 2-layer network, we are able to run Reluplex and
compute minimum adversarial distortion. It can be seen that
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the gap between the certified lower bounds method here are
all around 2 times while CLEVER and attack methods are
close to Reluplex though without guarantees.

Conclusion and Future Work

In this paper, we propose CNN-Cert, a general and efficient
verification framework for certifying robustness of CNNs.
By applying our proposed linear bounding technique on
each building block, CNN-Cert can handle a wide variety of
network architectures including convolution, pooling, batch
normalization, residual blocks, as well as general activation
functions. Extensive experimental results under four differ-
ent classes of CNNs consistently validate the superiority of
CNN-Cert over other methods in terms of its effectiveness in
solving tighter non-trivial certified bounds and its run time
efficiency.
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