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Abstract

Given an image of a handwritten word, a CNN is em-

ployed to estimate its n-gram frequency profile, which is the

set of n-grams contained in the word. Frequencies for un-

igrams, bigrams and trigrams are estimated for the entire

word and for parts of it. Canonical Correlation Analysis is

then used to match the estimated profile to the true profiles

of all words in a large dictionary. The CNN that is used

employs several novelties such as the use of multiple fully

connected branches. Applied to all commonly used hand-

writing recognition benchmarks, our method outperforms,

by a very large margin, all existing methods.

1. Introduction

The most prominent method in the current application

of deep learning to computer vision is the Convolutional

Neural Network (CNN) [30]. Developed initially for the

task of reading handwritten digits, this method is now uti-

lized for almost every perceptual task relating to image and

video data. In many such tasks, CNNs lead to state of the

art performance. It is, therefore, somewhat surprising that

in the field of handwriting recognition, CNNs are currently

not leading the performance charts.

CNNs are trained in a supervised way. The first question

when training it, is what type of supervision to use. Previous

applications of CNNs in the field of printed word recogni-

tion [25] have demonstrated that a word based encoding is

preferable to encoding using bag-of-n-grams. The results

presented in this work show that, at least for handwriting

recognition, a very effective system can be built using an

attributes based encoding, in which the input image is de-

scribed as having or lacking a set of n-grams in some spatial

sections of the word.

The attributes used in our work are heavily based on the

earlier work of Almazán et al. [3]. These binary attributes

check whether the word contains a specific n-gram in some

part of the word. For example, one such property may be:

Does the word contain the bigram “ou” in the second half of

the word? If the examined word is “ingenious” then the an-

swer is positive, whereas if the checked word is “outstand-

ing” the answer is negative.

While the original work of [3] uses SVMs over Fisher

Vectors of SIFTs, we employ CNNs directly over raw pixel

values. Moreover, in order to reach high levels of perfor-

mance, multiple novelties had to be incorporated. These in-

clude the creation of specialized sub-networks that focus on

subsets of the set of 600-1200 attributes used (this number

depends on the size of the alphabet).

The obtained network is fairly large, and training it

on the relatively small datasets available for handwriting

recognition is challenging. We incorporate gradual training

and other ideas in order to tackle this.

The resulting method is extremely potent. The same ar-

chitecture applied to all significant handwriting benchmarks

that we are aware of, achieves a very sizable improvement

over state of the art. While the network was not designed

for printed text, it also achieves state of the art results on the

Street View Text (SVT) benchmark [54] and results compa-

rable to state of the art on IIIT5K [37] benchmark.

2. Related work

Currently, the leading handwriting recognition bench-

marks are IAM, RIMES and IFN/ENIT. The performance

charts for these datasets are currently dominated by the use

of Recurrent Neural Networks (RNNs) and its extensions

such as Long-Short-Term-Memory (LSTM) networks, Hid-

den Markov Models (HMMs), and various combinations of

these methods. CNNs are absent from current results.

The IAM dataset [33] contains images of handwritten

English words. The current state of the art on the IAM

benchmark is a system by Bluche et al. [10] which uses

the ROVER voting scheme [15] for combining four models.

Two of them are based on Bidirectional Long Short-Term

Memory (BDLSTM) RNNs, and the other two are based on

deep Multi-Layer Perceptrons (MLPs).

A close second to the state of the art method on IAM is

a system by Doetsch et al. [11], which uses an LSTM-RNN

with an additional parameter that controls the shape of the
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squashing functions in the gating units.

The RIMES dataset [5] is composed of images of hand-

written French words. The current state of the art on RIMES

is a system by Menasri et al. [34] that uses a single RNN.

To further improve their state of the art results, they also

present a system that uses an optimized combination of

seven recognizers, including one grapheme based MLP-

HMM, two variants of sliding window based GMM-HMMs,

and four variants of their proposed RNNs.

IFN/ENIT [41] is a dataset of Arabic handwritten word

images. This dataset has four different test scenarios, named

“abc-d”, “abcd-e”, “abcde-f” and “abcde-s”. The current

state of the art method depends on the test scenario. In sce-

nario “abcde-f”, the current state of the art is a system by

Graves and Schmidhuber [13], which uses a hierarchy of

multidimensional LSTM-RNNs. In all other IFN/ENIT sce-

narios, the leading method is the one by Stahlberg and Vo-

gel [49], which uses fully connected deep neural networks

for optical modeling with features extracted from raw pixel

gray-scale intensity values of foreground segments. A com-

parable method, with regards to overall performance, is an

HMM system by Azeem and Ahmed [6].

The work by Almazán et al. [3] is closely related to our

work. Their method encodes the input word image as Fisher

Vectors (FV) [43], i.e., as an aggregation of the gradients

of a Gaussian Mixture Model (GMM) over some low-level

descriptors, SIFT in this case. It then trains a set of linear

SVM classifiers, one per each binary attribute contained in

a set of word properties. Canonical Correlation Analysis

(CCA) is used to link the vector of predicted attributes and

the binary attributes vector generated from the actual word.

The CCA method finds a common vector subspace where

the predicted attributes vector and binary attributes vector

are naturally comparable. To find the transcription, a simple

nearest neighbor search is made in the transformed lexicon

space, which was projected to the common subspace.

Almazán et al.’s method is currently not among the state

of the art methods in handwriting recognition, on any of

the datasets. In our work, using almost the same binary at-

tributes as in [3], we replace the FV based classifiers with

a specific type of CNN. Unlike [3], we train over raw pixel

values and, in addition, we benefit from using a single clas-

sifier that predicts all the binary attributes, instead of us-

ing one classifier per attribute. Instead of relying on the

predictions, we apply CCA to the representation vector ob-

tained from one layer below the prediction layers. Using

our method, we obtain a sizable improvement over all com-

monly used handwriting recognition benchmarks, halving,

in almost all cases, the best reported error rate.

Attributes based methods are now commonplace

throughout computer vision. As an example, Movshovitz-

Attias et al. [38] predict a category from a given hierarchical

set of categories. Instead of learning to predict the category

directly, they have flattened the hierarchy and learned to

predict all the categories to which the object belongs. This

conversion from single label to multiple binary attributes

enables them to better exploit the data since every low level

category is also an example of its ancestors categories. This

is similar in spirit to the attributes based model we employ.

Another recent use of attributes prediction using CNNs

is the work by Zhang et al. [57]. In their work they pro-

pose a method for inferring human attributes such as gen-

der, hair style, cloth style, and more from images of peo-

ple under large variation of viewpoint, pose, appearance,

articulation and occlusion. They propose a method which

combines part-based models and deep learning by train-

ing a pose-normalized CNNs. They use a network which

shares the layers including the first fully connected layer,

and only then they branch out to a fully connected layer per

attribute. In our network we only share the conventional

layers, and use a three layers deep fully connected layers

per each group of attributes.

Another related work is the work by Jaderberg et al. [25],

which uses CNNs trained on synthetic data for Scene Text

Recognition. Although they get state of the art results on the

SVT [54] dataset, their method is not evaluated on hand-

writing recognition since, unlike for scene text, synthetic

fonts lack the full variability which handwritten text poses.

In their work, three different CNNs are presented, one of

which is trained on words encoded as bag-of-n-grams. That

n-gram based CNN achieves inferior results, compared to

their other CNNs, on both SVT and SVT-50. Our n-gram

based method, when applied outside our main scope of

handwriting recognition, achieves results better than their

best network on SVT. This is done, when training on the

same synthetic dataset used for training the system of [25].

We identify four differences that we believe make our

method work better than Jaderberg at al.’s. The first is our

use of CCA to factor out dependencies between attributes.

The second difference is that we take into consideration the

spatial location of the n-gram inside the word. The third dif-

ference is our network structure, which is deeper and uses

multiple parallel fully connected layers, each handling a dif-

ferent set of attributes. Lastly, our method uses considerably

less n-grams than the list of 10,000 n-grams they have used.

The architecture we propose employs multiple fully con-

nected “arms” diverging from the CNN body. This is done

in order to create spatial and type of n-gram specialization.

Spanning multiple branches from a neural network in order

to support more effective learning is done in [50], where

intermediate networks were added in order to support the

training of a very deep network. Unlike our usage, these

sub-networks were not used during test time.

The success of the training process relies on gradual

training of the network, adding one such arm at each train-

ing phase. Other forms of gradual learning have been pro-
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posed in the literature. For example, the work of [25] men-

tioned above, learns the lexicon gradually.

3. Method

In offline handwriting recognition, we are given two dis-

joint sets, which we name train and test. Each of the sets

contains pairs (I, t) such that I is an image and t is its tex-

tual transcription. The goal is to build a system which, given

an image, produces a prediction of the image transcription.

The construction of the system is done using information

from the train set only.

In order to evaluate the method’s performance, we ap-

ply it to the test images and for each image compare the

predicted transcription with the actual image transcription.

The result of such an evaluation can be reported by one

of several related measures. These include Word Error

Rate (WER), Character Error Rate (CER), and Accuracy

(1-WER). WER is the ratio of the reading mistakes, at the

word level, among all test words. CER measures the Lev-

enshtein distance normalized by the length of the true word.

3.1. From a text word to attributes vector

Our method leverages the inherent structure of a tex-

tual label by considering common attributes that are shared

between different words. The attributes that we use were

named Pyramidal Histogram of Characters (PHOC) in [3].

The simplest attributes are based on unigrams and per-

tain to the entire word. An example of a binary attribute in

English is “does the word contain the unigram ‘A’?” There

are as many such attributes as the size of the character set of

the benchmark that we tackle. The character set may con-

tain lower and upper case Latin alphabet, digits, accented

letters (e.g. é, è, ê, ë), Arabic alphabet, etc. We call the

attributes that check whether a word contains a specific un-

igram, Level-1 unigram attributes.

We define Level-2 unigram attributes as attributes that

observe whether a word contains a specific unigram in the

first or second half of the word, e.g., - “does the word con-

tain the unigram ‘A’ in the first half of the word?”. For ex-

ample, the word “BABY” contains the letter ‘A’ in the first

half of the word (“BA”), but doesn’t contain the letter ‘A’ in

the second half of the word (“BY”).

To address words with an odd number of characters and

other fractional cases, we need to properly define the de-

cision rule used to determine whether a letter appears in a

specific section of the word. The decision is made purely

using the word text, without any image involved. The pro-

cess does not require any information about the location of

the letters in the image.

The decision rule is that a word’s letter is part of a spe-

cific section of the word if that section contains at least 50%

of the letter location. For example, in the word “KID”, the

Figure 1. An example of the attributes which are set for the word

“optimization”. Since we use only common bigrams and trigrams,

not every bigram and trigram is an attribute.

first half of the word contains 1.5 letters, including the let-

ter ‘K’ and 50% of the letter ‘I’. Therefore, according to

our definition, the first half of the word “KID” contains the

letters ‘K’ and ‘I’. Similarly, The second half of the word

“KID” contains the letter ‘D’ in full, and exactly 50% of

the letter ‘I’. Therefore, the second half of the word “KID”

contains both ‘D’ and ‘I’. While it may seem as if we are

assuming that every letter has an equal width, we do not ex-

plicitly cut the images. As long as we are consistent with

our definition of the attributes, the supervision given to the

network is consistent.

Similarly, Level-3 unigram attributes are also defined,

breaking the word into three equal parts. In addition, Level-

2 bigram attributes are defined as binary attributes that indi-

cate whether the word contains a specific bigram. We also

include extensions to trigrams. Fig. 1 demonstrates the at-

tributes associated with a word.

Other attributes are possible, but we did not find these to

be helpful. For example, we tried attributes pertaining to the

first letters or to the end of the word, e.g., “does the word

end with an ‘ing’?”

Ideally, enough binary features would be defined such

that every word in our lexicon has a unique attributes vec-
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tor. We will later use this bijective mapping to map a given

attributes vector to its respective generating word.

The set of attributes used throughout our experiments,

unless otherwise noted, contains the unigram attributes

based on the entire list of each benchmark’s character set,

inspected in levels 1 to 5; the 50 most common bigrams

in level 2, and the 20 most common trigrams in level 2.

Given that the character set of a given benchmark contains

k symbols, the total number of binary attributes would be:

k(1 + 2 + 3 + 4 + 5) + 50× 2 + 20× 2 = 15k + 140.

3.2. Learning attributes vectors for images

While the transformation from words to attributes is

technical, the transformation from an image to an estimated

vector of attributes is learned, from examples, using a CNN.

One of the strengths of CNNs, compared to the per-attribute

classifiers used by Almazán et al. [3], is the sharing of in-

termediate computations. Many of the attributes are similar

in nature. For example, “does the word contain the unigram

‘A’ in its first half?” and “does the word contain the unigram

‘A’ in the second half of the word?” are similar classifica-

tion problems; “does the word contain the bigram ‘AB’?” is

also related to both. A shared set of filters can tackle these

problems successfully, and the CNN benefits from solving

multiple classification problems at once.

Compared to the approach of [25], which enjoyed a prac-

tically unlimited training set, handwriting recognition is

based on smaller datasets. The advantage of attributes in

such cases is that the training set is utilized much more ef-

ficiently. For example, consider the case of a training set of

size 1,000. The word “SLEEP” may appear only twice, but

attributes such as “does the word contain the unigram ‘S’ in

the first half of the word?” will probably have many more

instances. Therefore, learning to detect the attribute will

be easier to train than learning to detect the word. Since

CNNs benefit substantially from a larger training set, the

advantage of the attributes based method for handwriting

recognition is significant.

Another advantage of learning attributes rather than the

words themselves, is that similar words may confuse the

network. For example, consider the words “KIDS” and

“BIDS”. A “KIDS” word image is a negative sample for the

“BIDS” category, although a large part of their appearance

is shared. This similarity between some categories makes

a category based classifier harder to learn, whereas an at-

tributes based classifier uses this for its advantage.

3.3. Network architecture

The basic layout of our CNN is a VGG [47] style net-

work consisting of small (3×3) convolution filters. Starting

with a small 100×32 input image, a relatively deep network

structure of 12 layers is being used.

The employed CNN has nine convolutional layers and

three fully connected layers. In forward order, the convolu-

tional layers have 64, 64, 64, 128, 128, 256, 256, 512 and

512 filters of size 3× 3. Convolutions are performed with a

stride of 1 and there is input feature map padding by 1 pixel

to preserve the spatial dimension. The layout of the fully

connected layers is not conventional, and is detailed below.

We use maxout [18] activation for each layer, including,

what seems to be less conventional, the convolutional lay-

ers. We apply batch normalization [23] after each convo-

lution, and before each maxout. The network also contains

2 × 2 max-pooling layers, with a stride of 2, following the

3rd, 5th and 7th convolutional layers.

An important design novelty that we introduce is the us-

age of multiple separate and parallel fully connected layers.

Each layer leads to a separate group of attributes predic-

tions. We divide the attributes to groups of unigrams, bi-

grams, or trigrams, and for levels and spatial locations. For

example, one group of attributes contains only level 2, 2nd

word-half, bigram attributes.

Thus, instead of using a single fully connected layer, as

is customary, to generate the entire attributes vector, we em-

ploy one fully connected layer per each group of attributes.

In our configuration, we have a total of 19 groups of at-

tributes, 1 + 2 + 3 + 4 + 5 for unigram based attributes at

levels one to five, 2 for bigram based attributes at level two,

and 2 for trigram based attributes at the same level.

The layers leading up to this set of fully connected lay-

ers are all convolutional and are shared. The motivation for

this network structure is that the convolutional layers learn

to recognize the letters’ appearance, regardless of their po-

sition in the word, and the fully connected layers learn the

spatial information, i.e., the approximate position of the n-

gram in the word. Hence, splitting the one fully connected

layer into several parts, one per spatial section, allows the

fully connected layers to specialize, leading to an improve-

ment in accuracy. This is verified in Sec. 5, where we

demonstrate that there is a clear advantage for using mul-

tiple, separated, fully connected layers.

Fig. 2 illustrates the structure of the network. The output

of the last convolutional layer is fed into 19 branches. Each

such branch contains three fully connected layers. These

layers have 128 units, 2048 units, and as many units as the

relevant group of binary attributes. In our configuration,

for unigram based groups that number is equal to the size

of the character set: 52 for IAM, 78 for RIMES, 44 for

IFN/ENIT, and 36 for SVT and IIIT5K. For bigram based

groups the size is 50, and for trigram based groups the size

is 20. The activations of the last layer are transformed into

probabilities using a sigmoid function.

3.4. Training and implementation details

The network is trained using the aggregated sigmoid

cross-entropy (logistic) loss. Stochastic Gradient Descent
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Figure 2. The network architecture used. Nine shared convolu-

tional layers, with intermediate batch normalization layers, max-

out activations, and max pooling layers are employed, in sequence,

to an input of size 100 × 32 pixels. The network then splits into

19 parallel branches. In each branch, there are two hidden layers

and an output layer that is converted to probabilities.

(SGD) is employed as the optimization method, with a mo-

mentum set to 0.9, and dropout [48] after the two fully con-

nected hidden layers with a parameter set to 0.5.

An initial learning rate of 0.01 is used, and is lowered, as

is customary, when the validation set performance stops im-

proving. Each time the learning rate is divided by 10 with

this process repeated three times. The batch size is set in

the range of 10 to 100, depending on the dataset that we

train on and the memory load. When enlarging the network

and adding more FC layers, the GPU memory becomes con-

gested and the batch size is lowered. The network is initial-

ized using Glurot and Bengio’s [16] initialization scheme.

Training is done in stages, by gradually adding more at-

tributes groups as training progresses. We start by training

on a single group of attributes, the Level-1-Unigrams, us-

ing a single fully connected arm. When the loss stabilizes,

another group of attributes is added and the training contin-

ues. Groups of attributes are being added in the following

order: Level-1-Unigrams, Level-2-Unigrams, ..., Level-5-

Unigrams, Level-2-Bigrams, and Level-2-Trigrams. When

adding groups, the initial learning rate is used. Only when

all 19 groups have been added, do we begin to lower the

learning rate. We have found this gradual way of training to

generate considerably superior results over the alternative

of directly training on all the attributes groups at once.

In the SVT and IIIT5K experiments, when training the

network on the huge synthetic dataset of [25], training was

initialized on a partial subset of the training set. In detail,

we train the network using 10k images out of the 7M images

until partial convergence, after which we continue training

using 100k images until partial convergence. We repeat this

process with 200k and 1M, and finally we train on the entire

train set. When trying to train directly on the entire train set

the network did not converge. Our solution is similar to the

incremental training used by [25] where a multiclass classi-

fier was trained on 90k different words. They first train on

5k words, and once converged, increased the training set to

10k words. This was repeated until all classes were covered.

We used a custom version of Caffe framework [27] to

implement our network.

3.5. Regularization and training data augmentation

In order to avoid overfitting, dropout, as mentioned, is

applied after the first and second fully connected layers of

each branch. In addition, a weight decay of 0.0025 is ap-

plied to learned weights.

The inputs to the network are grayscale 100 × 32 im-

ages. Where needed, we stretch the input image to this size,

without preserving the aspect ratio. Since the handwriting

datasets are rather small and we are training a deep neural

network with tens of millions of parameters, data augmen-

tation is warranted.

The data augmentation is performed as follows. For

each input image, we apply rotation around the im-

ages center with each of the following angles (degrees):

{−5,−3,−1,+1,+3,+5}. In addition, we apply shear us-

ing the following angles {−0.5,−0.3,−0.1, 0.1, 0.3, 0.5}.

This way, 36 additional images are generated per each input
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Figure 3. The data augmentation process. Each input image is

transformed using both rotation and shear to generate additional

similar, but different, samples for a given label.

image, dramatically increasing the amount of training data.

This image augmentation process is described in Fig. 3.

This data augmentation technique employed is rather ba-

sic. We conjecture that the system can benefit from an even

more sophisticated data augmentation technique. For exam-

ple, elastic distortion [46] can be used.

Note that our method augments the test data as well. This

is described below in Sec. 4.

4. Recognition

Each word in our lexicon is represented by its ground

truth attributes vector. This is an efficient process that is

only done once.

Given an image, it is run through the network. One can

then directly compare the set of predicted attributes to the

attributes of the lexicon words. However, this is subopti-

mal for several related reasons. First, the network was not

trained for the purpose of matching lexical words. Rather, it

was trained for per feature success. Second, such a method

ignores the correlations that exist between the various co-

ordinates due to the nature of the attributes. For example,

a word which contains the letter ‘A’ in the first third of the

word will always contain the letter ‘A’ in the first half of

the word. Third, the relative importance and discriminative

power of attributes or subsets of attributes is not taken into

account in a direct comparison. In addition to these reasons,

a direct comparison also requires a careful calibration of the

network’s output probabilities.

To solve these issues, we use Canonical Correlation

Analysis (CCA) in order to learn a common linear subspace

to which both the binary attributes of the lexicon words

and the network representations are projected. This shared

subspace is learned such that images and matching words

would be projected as close as possible.

For added accuracy, the regularized CCA method [52] is

used. The regularization parameter is fixed to be the largest

eigenvalue of the cross correlation matrix between the im-

age representations and the matching attributes vectors.

Since CCA does not require that the matching input vec-

tors of the two domains are of the same type or the same

size, we are able to use “neural codes” in lieu of the at-

tributes probability estimations provided by the network.

The neural codes are the activations of the network in the

layer just below the classification, i.e., in our case, the con-

catenation of the second fully connected layers from all

branches of the network.

When doing so, we obtain a rather long representation.

There are 19 groups of classifiers and each of them has

2, 048 units in the second locally connected layer (post max-

out). The total representation size is, therefore, 38, 912. In

order to avoid memory explosions, we subsample 12, 000
vector elements out of the 38, 912 and use the subsam-

pled vectors as input to the CCA. We observe a very small

change when resampling the subset: the change is less than

0.1 percent in all experiments we performed.

Similar to Almazán et al. [3] work, and other applica-

tions of CCA, we L2-normalize the input of the CCA algo-

rithm, and use the cosine distance in order to efficiently find

the nearest neighbor in the shared space.

Test side data augmentation In order to further improve

results, test-side data augmentation is being employed.

Given a test image, we generate 36 additional variants using

the same method described in Sec. 3.5. The 37 images are

all encoded using the network. The final representation is

taken to be the mean vector of all 37 representations.

5. Experiments and results

We present results on the commonly used handwriting

recognition benchmarks. The datasets used are: IAM,

RIMES and IFN/ENIT, which contain images of handwrit-

ten English, French and Arabic, respectively. The same

network was run in all cases, using the same parameters.

Hence, no language specific information was needed except

for the character set of the benchmark. In addition, while

the network was not developed with printed text in mind,

we report results on two scene text recognition benchmarks:

SVT and IIIT5K.

The IAM Handwriting Database [33] is a known offline

handwriting recognition database of mostly cursive English

word images. The database contains 115,320 words written

by 500 authors. The database comes with a standard split

into train, validation and test sets, such that every author

contributes to only one set. In other words, it is not possible

that the same author would contribute handwriting samples

to both the train set and the test set.

RIMES [5] contains more than 60,000 words written in

French by over 1000 authors. The RIMES database has sev-

eral versions with each one a super-set of the previous one.

In our experiments, we employ the latest version presented

in an ICDAR 2011 contest.

IFN/ENIT [41] is a cursive Arabic handwriting bench-

mark which contains several sets and has several scenar-

ios that can be tested and compared to other works. The
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Database IAM RIMES

Model WER CER WER CER

Bertolami and Bunke [7] 32.83 - - -

Dreuw et al. [12] 28.80 10.10 - -

Boquera et al. [14] 15.50 6.90 - -

Telecom ParisTech [21] - - 24.88 -

IRISA [21] - - 21.41 -

Jouve [21] - - 12.53 -

Kozielski et al. [28] 13.30 5.10 13.70 4.60

Almazan et al. [3] 20.01 11.27 - -

Messina and Kermorvant [36] 19.40 - 13.30 -

Pham et al. [44] 13.60 5.10 12.30 3.30

Bluche et al. [9] 20.50 - 9.2 -

Doetsch et al. [11] 12.20 4.70 12.90 4.30

Bluche et al. [10] 11.90 4.90 11.80 3.70

Menasri et al. (single) [34] - - 8.90 -

Menasri et al. (7 combined) [34] - - 4.75 -

This work 6.45 3.44 3.90 1.90

Table 1. Comparison to previous methods on IAM and RIMES

(ICDAR2011) datasets. Our results are based on the full CNN-n-

gram system. Slightly better results appear in table 4. all numbers

in percent.

Database IFN/ENIT

Scenario abc-d abcd-e abcde-f abcde-s

Pechwitz & Maergner [42] 89.74 - - -

Alabodi & Li [2] 93.30 - - -

Lawgali et al. [29] - 90.73 - -

SIEMENS [40] - - 82.22 73.94

Dreuw et al. [12] 96.50 92.70 90.90 81.10

Graves&Schmidhuber [20] - - 91.43 78.83

UPV PRHLT [32] - - 92.20 84.62

Graves&Schmidhuber [13] - - 93.37 81.06

RWTH-OCR [31] - - 92.20 84.55

Azeem & Ahmed [6] 97.70 93.44 93.10 84.80

Ahmad et al. [1] 97.22 93.52 92.15 85.12

Stahlberg & Vogel [49] 97.60 93.90 93.20 88.50

This work 99.29 97.07 96.76 94.09

Table 2. Comparison to previous methods on IFN/ENIT dataset.

Shown is accuracy in percent. Our results are based on the full

CNN-n-gram system. Slightly better results appear in table 4.

most common scenarios are: “abcde-f”, “abcde-s”, “abcd-

e” (older) and “abc-d” (oldest). The naming convention

specifies the train and the test sets. For example, the “abcde-

f” scenario refers to a train set comprised of the sets a, b, c,

d, and e; testing in this scenario is done on set f.

In addition, while the network was not developed with

printed text in mind, we also report results on SVT [54] and

IIIT5K [37] datasets. Two benchmarks exist for SVT: using

a general lexicon and using the SVT-50 subset, in which

the task is to recognize among 50 words. Similarly, IIIT5K

contains two benchmarks: IIIT5K-50 and IIIT5K-1000.

Protocol In Offline Handwriting Recognition, the goal is

to find the transcription given a test image. The transcrip-

tion is limited to a lexicon associated with the tested dataset.

On IAM and RIMES, we use the lexicon of all the dataset

Database SVT IIIT5K

Scenario 50 Full 50 1000

ABBYY [35] [53] 35.0 - 24.30 -

Wang et al. [53] 57.0 - - -

Mishra et al. [37] 73.57 - 64.10 57.50

Novikova et al. [39] 72.9 - - -

Wang et al. [55] 70.0 - - -

Goel et al. [17] 77.28 - - -

PhotoOCR [8] 90.39 77.98 - -

Alsharif and Pineau [4] 74.3 - - -

Almazán et al. [3] 89.18 - 91.20 82.10

Yao et al. [56] 75.89 - 80.20 69.30

Jaderberg et al. [26] 86.1 - - -

Gordo [19] 91.81 - 93.30 86.60

Jaderberg et al. [24] 95.4 80.7 97.1 92.7

Baoguang et al. [45] 96.40 80.8 97.6 94.4

This work 96.60 83.62 97.93 94.15

unigrams, probs CCA, no test 95.67 81.76 96.38 91.82

unigrams, probs CCA, with test 96.60 81.61 97.04 93.10

unigrams, FC CCA, no test 95.05 83.62 97.23 93.41

unigrams, FC CCA, with test 95.36 81.92 97.62 94.15

trigrams, probs CCA, no test 94.59 81.76 96.41 92.24

trigrams, probs CCA, with test 95.83 81.92 97.16 93.26

trigrams, FC CCA, no test 94.28 81.61 97.43 93.30

trigrams, FC CCA, with test 94.90 80.99 97.93 93.80

Table 3. Comparison to previous work on SVT and IIIT5K

datasets. Shown is accuracy in percents. The term “unigrams”

refers to training on unigrams only, without bigrams and trigrams.

The term “trigrams” refers to training on unigrams, bigrams and

trigrams. The term “probs CCA” means the input to CCA was the

final probabilities layer, whereas the term “FC CCA” means the in-

put is the last fully connected layer. The term “no/with test” refers

to whether test-side data augmentation was employed.

words, both train and test sets, as done in all the lexi-

con based methods in the literature, e.g. [3, 9, 14]. On

IFN/ENIT, we use the official lexicon attached to the bench-

mark. On SVT, we use the general purpose, 90k words

lexicon used in [25, 24], whereas for SVT-50 we use the

50 words lexicon associated with this reduced benchmark.

On IIIT5K-50 and IIIT5K-1000 we use the 50 words lex-

icon and 1000 words lexicon respectively associated with

the benchmarks.

The method’s prediction is compared with the actual im-

age transcription. The different benchmarks use several dif-

ferent measures as detailed in Sec. 3. To ease comparison

to other methods, we report using the same measure com-

monly used in the respected benchmarks. Specifically, on

IAM and RIMES, we show our results using WER and CER

measures, whereas on IFN/ENIT, SVT and IIIT5K, the re-

sults are shown using the accuracy measure.

Since the benchmarks are in different languages, differ-

ent character sets were used. Specifically, for IAM, the

character set contains the lower and upper case Latin al-

phabet. Digits were not included since they are rarely used

in this dataset. However, when they appear we did not ig-
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Database IAM RIMES abcde-s

Model WER CER WER CER WER

Full CNN-n-gram system 6.45 3.44 3.90 1.90 5.91

v1: CCA on probabilities 6.56 3.46 3.85 1.73 6.42

v2: no trigrams during test 6.33 3.34 3.95 1.86 6.10

v3: no bi- and tri-grams during test 6.29 3.37 3.78 1.89 6.10

v4: no trigrams during train 6.32 3.33 4.15 1.91 5.91

v5: no bi- and tri-grams during train 6.36 3.36 3.85 1.82 5.85

v6: 7 FCs instead of 19 FCs 7.16 3.95 4.93 2.34 6.48

v7: 1 FC instead of 19 FCs 7.81 4.33 4.93 2.31 7.63

v8: no test-side augmentation 6.94 3.71 4.27 2.02 6.42

v9: without using CCA 8.83 5.93 5.17 3.43 6.68

Table 4. Comparison to different variants of the CCN-n-gram sys-

tem. The full system contains 19 FCs, with bigrams and trigrams,

with test-side data augmentation, CCA gets the FC layer as input.

For reasons of table consistency, IFN/ENIT (abcde-s) results are

given in terms of WER instead of Accuracy (1-WER).

nore them. Therefore, if a prediction is different from the

ground truth label only by a digit, it is still considered a mis-

take. In RIMES, the character set used contains the lower

and upper case Latin alphabet, digits and accented letters.

In IFN/ENIT, the character set was built out of the set of all

unigrams in the dataset. This includes the Arabic alphabet,

digits and symbols. In SVT the character set used contains

the Latin alphabet, disregarding case, and digits.

The network used for SVT and IIIT5K was slightly dif-

ferent from the networks used for handwriting recognition.

Since the synthetic dataset used to train for the SVT and

IIIT5K benchmarks has many training images, we doubled

the number of neurons in the first fully connected layer.

Comparison with previous work We compare to the state

of the art on IAM and RIMES in Table 1 and on IFN/ENIT

in Table 2. Our method achieves state of the art results

on all benchmarks, including all versions of the IFN/ENIT

benchmark. The improvement over the state of the art, in

these competitive datasets, is such that the error rates are

cut in half throughout the datasets: IAM (6.45% vs. 11.9%),

RIMES (3.9% vs. 8.9% for a single recognizer), IFN/ENIT

set-f (3.24% vs. 6.63%) and set-s (5.91% vs. 11.5%),

In Table 3, our results are compared to other state of the

art methods on the popular SVT and IIIT5K datasets. As

can be seen, we achieve state of the art results when using

the same global 90k dictionary used in [25]. State of the art

results are also achieved on the more common SVT-50 vari-

ant. In addition, we get state of the art results on IIIT5K-50

and results comparable to state of the art on IIIT5K-1000.

Interestingly, we have also compared the accuracy on the

test set of the synthetic data: we obtain 96.88% compared

to 95.2% obtained by the best network of [25].

In order to study the influence of each of the method’s

elements to its success, we have included several variants

in Table 4. Somewhat reassuringly, the method is robust

to various design choices. For example, using CCA on the

aggregated probability vectors provide a compatible level of

performance. Similarly, bigrams and trigrams do not seem

to consistently affect performance. We tried removing these

only from the test stage, or from both train and test stages,

without any clear indications.

What does seem to matter is the separation of the fully

connected layers into multiple branches. Reducing the

number of branches from 19 to 7 by merging related at-

tributes groups (e.g., using a single branch for all level 5 un-

igram attributes instead of 5 branches), or to one branch of

fully connected hidden layers, hurts performance. Increas-

ing the number of hidden units in order to make the total

number of hidden units the same (not shown in the table),

hinders convergence during training. Lastly, test-side data

augmentation seems to consistently improve performance.

For completeness we also present the results of using the

full system without CCA. There are several ways to ob-

tain results without CCA. Out of a few such alternatives,

the best results seem to be obtained by thresholding the at-

tribute scores and then using the Jaccard similarity between

the binary prediction and binary ground truth. As expected,

removing CCA hurts performance.

6. Discussion

Handwriting recognition is the birthplace of deep learn-

ing. CNNs were created in order to read handwritten postal

codes, and RNNs success in multiple handwriting bench-

marks preceded, by a few years, the success of CNNs on

imagenet. It is therefore somewhat disappointing that the

recent wave of leaps in performance achieved using deep

learning throughout computer vision has so far skipped

handwriting recognition.

We believe that there is nothing inherently challeng-

ing in handwriting recognition that prevents machines from

achieving a human level of performance in the same way

that such performance is achieved in face recognition [51]

and even in some object recognition metrics [22].

The success of our method suggests that a successful

handwriting recognition system can be built without invest-

ing much effort in atomic tasks such as image binarization

and letter segmentation. This follows the end-to-end trend

of deep learning. It could be the case that future systems

would benefit from multiple sub-systems. Similarly, we em-

ploy only one network and do not use ensembles or voting

schemes in order to obtain a slight improvement in perfor-

mance. However, future systems might benefit from em-

ploying multiple systems in order to utilize multiple tactics

depending on the nature of the script.

Looking forward, the ultimate goal of handwriting

recognition is the construction of a universal reading sys-

tem, which is adaptable not only for different scribes (as is

done here) but also for different script types. In such a sys-

tem, learning to read the next script would be easier than

training from scratch.
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