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Abstract Objects are often organized in a semantic hierarchy of categories, where fine-

level categories are grouped into coarse-level categories according to their semantic

relations. While previous works usually only classify objects into the leaf categories, we

argue that generating hierarchical labels can actually describe how the leaf categories

evolved from higher level coarse-grained categories, thus can provide a better understand-

ing of the objects. In this paper, we propose to utilize the CNN-RNN framework to address

the hierarchical image classification task. CNN allows us to obtain discriminative features

for the input images, and RNN enables us to jointly optimize the classification of coarse and

fine labels. This framework can not only generate hierarchical labels for images, but also

improve the traditional leaf-level classification performance due to incorporating the hierar-

chical information. Moreover, this framework can be built on top of any CNN architecture

which is primarily designed for leaf-level classification. Accordingly, we build a high per-

formance network based on the CNN-RNN paradigm which outperforms the original CNN

(wider-ResNet) and also the current state-of-the-art. In addition, we investigate how to uti-

lize the CNN-RNN framework to improve the fine category classification when a fraction

of the training data is only annotated with coarse labels. Experimental results demonstrate

that CNN-RNN can use the coarse-labeled training data to improve the classification of fine
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categories, and in some cases it even surpasses the performance achieved by fully annotated

training data. This reveals that, CNN-RNN can alleviate the challenge of specialized and

expensive annotation of fine labels.

Keywords Convolutional neural network · Recurrent neural network · Hierarchical image

classification · Wider-Resnet

1 Introduction

Image classification has long been an active area of research, which aims to classify images

into pre-defined categories, and helps people to know what kind of objects the images con-

tain. Traditionally, image classification is mainly performed on small datasets, by encoding

local hand-crafted features and using them as input for classifiers [20, 47, 51].

In recent years, two fundamental changes occurred for this task: first, the number

of digital images has been increasing exponentially. This brings people more alterna-

tives, and more difficulties, in finding relevant images from this large volume of data.

To help people access data, in an effortless and meaningful way, we need a good seman-

tic organization of the categories. Second, deep learning methods have proven to be

successful for image classification. In recent years, researchers have built various deep

structures [12, 35, 41], and have achieved quite accurate predictions on small datasets

[4, 10].

As a consequence, the current research focus has moved to larger and more challeng-

ing datasets [3, 34], such as ImageNet [6]. Such datasets often organize the large number

of categories in a hierarchy, according to their semantic belongings. The deeper one goes

in the hierarchy, the more specific the category is. In contrast to current approaches, which

only focus on the leaf categories, we argue that generating hierarchical labels in a coarse-

to-fine pattern can present how the semantic categories evolve, and thus can better describe

what the objects are. For example, for Fig. 1c, the predicted leaf-category label is ‘Tricer-

atops’. Without specialized knowledge, we cannot learn that this category label belongs to

the higher level category label ‘Horned Dinosaur’.

The first contribution of this paper is a framework capable of generating hierarchical

labels, by integrating the powerful Convolutional Neural Networks (CNN) and Recurrent

Neural Networks (RNN). CNN is used to generate discriminative features, and RNN is used

to generate sequential labels.

There are several notable advantages for the CNN-RNN framework:

(1) Learning things in a hierarchical way is consistent with human perception and con-

cept organization. By predicting the labels in a coarse-to-fine pattern, we can better

understand what the objects are, such as depicted in Fig. 1c.

(2) It can exploit the relationship between the coarse and fine categories, which, in turn,

helps the traditional image classification task. For example, when we build the CNN-

RNN framework with wrn-28-10 [53], we can increase the accuracy of coarse and

fine categories by 2.8% and 1.68%, respectively. To the best of our knowledge, this

is the first work trying to employ RNN to improve the classification performance by

exploiting the relationship between hierarchical labels.

(3) It is transferrable. In principle, the framework can be built on top of any CNN

architecture which is primarily intended for single-level classification, and boost the

performance for each hierarchical level. To verify this, we have conducted extensive
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(a) (b) (c)

Fig. 1 The example images with the ‘coarse → fine’ label

experiments with three high-performance networks, i.e. CNN-7 [25], wrn-28-10 [53]

and our proposed wider-Resnet.

(4) The structure can be trained end-to-end. In contrast to other methods which can only

model the category relationship with pre-computed image features [7, 30], the CNN-

RNN framework can jointly learn the features and relationship in an end-to-end way,

which can improve the final predictions considerably. For a subset of ImageNet 2010,

we compared employing pre-computed CNN features to train the RNN with end-to-

end training the CNN and RNN and demonstrated a significant improvement of the

subcategory accuracy from 77.27% to 82%.

(5) The number of the hierarchical labels can be variable. The flexibility of RNN allows us

to generate hierarchical labels of different lengths, i.e. more specific categories would

have more hierarchical labels. We have demonstrated this property on the widely used

ImageNet 2012 dataset [32].

As the framework is transferrable, we intend to build a high performance CNN model,

and utilize its CNN-RNN variant to further boost the accuracy. Therefore, the second con-

tribution of this paper is, we build a high performance network, i.e. wider-ResNet. In recent

years, deep residual networks (ResNet) [12] have attracted great attention because of its

leading performance in several image classification tasks and Zagoruyko et al. [53] pre-

sented a thorough experimental study about several important aspects of ResNet, such as

the width and depth, and proposed a wide Resnet that obtained better performance than

the original ResNet. We intend to further enhance the performance and build a wider

ResNet compared to [53]. Our implementation shows that, the wider-Resnet performs better

than [53] on CIFAR-100, and also outperforms the original ResNet with thousands layers.

In addition, by utilizing the CNN-RNN framework, we obtain considerably better results

than the state-of-the-art.

The performance of deep models has benefited from the accurate and large-scale anno-

tations, such as ImageNet [6]. However, manual labeling is an excessively tedious and

expensive task, especially for the fine-grained classes, which often require expert knowl-

edge (e.g. breeds of dogs, flower species, etc.). For example, for Fig. 1a and b, it is easy

to annotate the images with the coarse label ‘dog’, but it requires specialized knowledge to

divide them into subcategories ‘Bsenji’ and ‘Leonberg’. One optional thought is, if a part of

the training data is only annotated with coarse category labels, whether we could utilize the

coarse-labeled training data to improve the classification performance of fine categories?

The third contribution of this paper is, we investigate how to utilize the CNN-RNN

framework to improve the subcategory classification when a fraction of the training data

only has coarse labels. By training the CNN-RNN framework on the fully annotated data
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in the training set, we can exploit the relationship between the coarse and fine categories.

Thereby, we can predict the fine labels of the coarse-labeled training data, and then re-train

the CNN-RNN model. Experimental results demonstrate that the coarse-labeled training

data can normally help the subcategory classification. In some cases, it can even surpass

the performance of fully annotated training data. This alleviates the expensive process of

fine-grained labeling.

2 Related work

2.1 Usage of CNN-RNN framework

In recent years, deep learning methods have attracted significant attention [11] and have

achieved revolutionary successes in various applications [12, 24]. Two important structures

for deep learning are CNN and RNN. CNN has proven to be successful in processing image-

like data, while RNN is more appropriate in modeling sequential data. Recently, several

works [8, 23, 44, 48, 52, 54] have attempted to combine them together, and have built

various CNN-RNN frameworks. Generally, the combination can be divided in two types:

the unified combination and the cascaded combination.

The unified combination often attempts to introduce a recurrent property into the tra-

ditional CNN structure in order to increase the classification performance. For example,

Zuo et al. [54] converted each image into 1D spatial sequences by concatenating the CNN

features of different regions, and utilized RNN to learn the spatial dependencies of image

regions. Similar work appeared in [46]. The proposed ReNet replaced the ubiquitous con-

volutional+pooling layer with four recurrent neural networks that sweep horizontally and

vertically in both directions across the image. In order to improve the multi-label classifica-

tion, Wang et al. [48] presented the CNN-RNN framework to learn a joint embedding space

in modeling semantic label dependency as well as the image-label relevance.

On the other hand, the cascaded combination would process the CNN and RNN sepa-

rately, where the RNN takes the output of CNN as input, and returns sequential predictions

of different timesteps. The cascaded CNN-RNN frameworks are often intended for differ-

ent tasks, rather than image classification. For example, [8, 45, 52] employed CNN-RNN

to address the image captioning task, and [50] utilized CNN-RNN to rank the tag list based

on the visual importance.

In this paper, we propose to utilize the cascaded CNN-RNN framework to address a new

task, i.e. hierarchical image classification, where we utilize CNN to generate discriminative

image features, and utilize RNN to model the sequential relationship of hierarchical labels.

2.2 Hierarchical models for image classification

Hierarchical models have been used extensively for image classification. For example,

Salakhutdinov et al. [33] presented a hierarchical classification model to share features

between categories, and boosted the classification performance for objects with few train-

ing examples. Yan et al. [49] presented a hierarchical deep CNN (HD-CNN) that consists

of a coarse component trained over all classes as well as several fine components trained

over subsets of classes. Instead of utilizing a fixed architecture for classification, Mur-

dock et al. [29] proposed a regularization method, i.e. Blockout, to automatically learn the

hierarchical structure.
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Another pipeline to employ hierarchical models tends to improve the classification per-

formance by exploiting the relationship of the categories in the hierarchy. For instance,

Deng et al. [7] introduced HEX graphs to capture the hierarchical and exclusive relationship

between categories. Ristin et al. [30] utilized Random Forests and proposed a regular-

ized objective function to model the relationship between the categories and subcategories.

This type of hierarchical models can not only improve the traditional image classifica-

tion performance, but also provide an alternative way to utilize the coarse-labeled training

data.

In contrast to previous works, our paper utilizes RNN to exploit the hierarchi-

cal relationship between coarse and fine categories, and aims to adapt the model to

address the hierarchical image classification task, in which we simultaneously gener-

ate hierarchical labels for the images. Compared with [7, 30] that can only process

the pre-computed image features, our proposed CNN-RNN framework can be trained

end-to-end.

3 Our proposed scheme

The goal of our approach is to simultaneously generate hierarchical labels of the images. To

this end, we can employ two types of generators: a CNN-based generator and a CNN-RNN

generator. Both of them keep the preceding layers of the basic CNN structure except for the

last layer.

3.1 CNN-based generator

A CNN-based generator aims to generate coarse and fine labels by utilizing the conven-

tional CNN structure. It acts as a common practice to fulfill this specific task. In this paper,

we replace the last layer of conventional CNN with two layers, through which to provide

separate supervisory signals for both the coarse categories and fine categories. The two lay-

ers can be arranged either in a serial pattern (Fig. 2: Strategy 1 & 2), or in a parallel pattern

(Fig. 2: Strategy 3).

During the training phase, we utilize the softmax loss function to jointly optimize the

coarse and fine label predictions, as defined in (1).

Loss = −
1

N

N
∑

i=1

⎛

⎝

C
∑

j=1

1
{

xi = j
}

log pj +

F
∑

k=1

1
{

yi = k
}

log pk

⎞

⎠ (1)

Where 1 {·} is the indicator function. N,C, F denote the number of the images, coarse

categories, and fine categories, respectively. pj and pk are the softmax probabilities of the

coarse and fine categories, respectively.

During the inference phase, we can utilize the trained network to determine the coarse

and fine labels at the same time.

There are two potential drawbacks for the CNN-based generator: first, it treats the two

supervisory signals individually, and does not exploit the relationship between them. Sec-

ond, when the hierarchy is of variable length, we cannot define a universal CNN-based

generator to simultaneously determine the hierarchical labels.
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Fig. 2 The illustration of the four strategies which can jointly train and generate the coarse and fine labels

3.2 CNN-RNN generator

A CNN-RNN generator determines hierarchical predictions using an architecture where the

last layer of a CNN is replaced by an RNN (Fig. 2: Strategy 4).

RNN [9] is a class of artificial neural networks where connections between units form

a directed cycle, as shown in Fig. 3. It can effectively model the dynamic temporal behav-

ior of sequences with arbitrary lengths. However, RNN suffers from the vanishing and

exploding gradient problem since the gradients need to propagate down through many lay-

ers of the recurrent network. Therefore, it is difficult to model the long-term dynamics.

In contrast, Long-Short Term Memory (LSTM) [14] provides a solution by incorporating

a memory cell to encode knowledge at each time step. Specifically, the behavior of the

cell is controlled by three gates: an input gate, a forget gate and an output gate. These

gates are used to control how much it should read its input (input gate i), whether to for-

get the current cell value (forget gate f ) and whether to output the new cell value (output

gate o). These gates help the input signal to prorogate through the recurrent hidden states

without affecting the output, therefore, LSTM can deal well with exploding and vanishing

gradients, and effectively model long-term temporal dynamics that RNN is not capable of

learning.
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Fig. 3 The pipeline of RNN(left) and LSTM(right)

In this paper, we use LSTM neurons as our recurrent neurons. The definition of the gates

and the update of LSTM at the timestep t are as follows:

it = σ(Wxixt + Whiht−1 + Wviv + bi) (2)

ft = σ(Wxf xt + Whf ht−1 + Wvf v + bf ) (3)

ot = σ(Wxoxt + Whoht−1 + Wvov + bo) (4)

gt = ϕ(Wxcxt + Whcht−1 + Wvcv + bc) (5)

ct = ft ⊙ ct−1 + it ⊙ gt (6)

ht = ot ⊙ ϕ(ct ) (7)

Where ⊙ represents the product operation, σ is the sigmoid function (σ(x) = (1 +

e−x)−1), and ϕ is the hyperbolic tangent function (ϕ(x) = ex−e−x

ex+e−x ). The definition for

other symbols are: it , ft , ot , gt denote the input gate, forget gate, output gate, and input

modulation gate, respectively. x, h, v and c represent the input vector, hidden state, image

visual feature, and memory cell, respectively. We propose to impose the image visual feature

v at each timestep when updating the LSTM. W and b are the weights and bias that need to

be learned.

The goal of our approach is to generate hierarchical labels for images. The labels are

ordered in a coarse-to-fine pattern, i.e. coarser labels appear at the front of the list. To

this end, we merge the C coarse categories and F fine categories as C + F super cate-

gories. For different timesteps, the CNN-RNN generator takes the labels of different levels

as input, where the coarser-level labels appear at the preceding timesteps. In this way, the

coarser-level labels can provide insightful information for the prediction of finer labels. The

procedure is shown in Fig. 4.

During the training phase, the CNN-RNN generator utilizes the groundtruth coarser-level

labels as input, and jointly optimizes the coarse and fine predictions, as denoted in (8).

Loss = −
1

N

N
∑

i=1

⎛

⎝

T
∑

t=1

C+F
∑

j=1

1
{

xi
t = j

}

log pj

⎞

⎠ (8)

During the inference phase, when the groundtruth coarser-level labels are not available,

the CNN-RNN generator first predicts the maximum likelihood label for current timestep,
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Fig. 4 The pipeline of the CNN-RNN framework

i.e. Wt = argmaxWt−1
p(Wt−1|I ), and then utilize the predicted label as the input for the

next timestep.

Furthermore, we visualize the LSTM activations of different timesteps using the t-SNE

technique [43] on CIFAR-100 [18], as shown in Fig. 5. The two activations are intended for

the coarse and fine predictions, respectively. We can see that, the activation of the second

timestep is more discriminative than that of the first timestep.

As the CNN-RNN generator defines the super categories, and it equally trains and pre-

dicts the super categories, we do not need to design specific networks for the categories

of different levels. Therefore, the CNN-RNN generator is robust, and can be employed to

generate hierarchical labels of different lengths.

4 Experiments

We perform our experiments on three well-known datasets: CIFAR-100 [18], ImageNet

2012 [32] and a subset of ImageNet 2010 [30]. These three datasets have provided hier-

archical image labels. The characteristics of the three datasets are summarized in Table 1.

Fig. 5 The visualization of the LSTM activations of different timesteps. The left one is the feature intended

for the coarse label classification, while the right one is used for the fine label classification
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Table 1 The characteristics of

the datasets, including the depth

of the hierarchy, the number of

the coarse categories and fine

categories

Dataset Depth Coarse No. Fine No.

CIFAR-100 2 20 100

ImageNet 2012 1-9 860 1000

Subset of ImageNet 2010 2 143 387

The performance is measured based on the top-1 accuracy. All the experiments are

conducted using the Caffe [16] library with a NVIDIA TITAN X card.

The experiments can be divided into two parts. In the first part, we evaluate the perfor-

mance of hierarchical predictions. In the second part, we investigate the performance of

subcategory classification when only a part of the training data is labeled with fine labels

while the rest only has coarse labels.

4.1 Hierarchical predictions

We evaluate the hierarchical predictions on two widely-used datasets: CIFAR-100 [18] and

ImageNet 2012 [32].

4.1.1 CIFAR-100

CIFAR-100 contains 100 classes, and each class has 500 training images and 100 test

images. These classes are further grouped into 20 superclasses. Therefore, each image

comes with two level labels: a fine label (the class to which it belongs) and a coarse label

(the superclass to which it belongs). For data preprocessing, we normalize the data using

the channel means and standard deviations. The symbol ‘+’ means a standard data augmen-

tation, i.e. first zero-padded with 4 pixels on each side, and randomly crop 32 × 32 images

from the padded images, or their horizontal reflections.

Evaluation of the hierarchical image classification task The CNN-based generator

and CNN-RNN generator are considered as two alternative structures to fulfill the hierarchi-

cal image classification task. In contrast to CNN-based generator, the CNN-RNN generator

can effectively exploit the dependency of the hierarchical labels, and thereby achieving a

better classification performance for both the coarse and fine categories. We compare their

performance in Table 2.

All of the evaluations in this part are conducted based on the CNN model proposed

in [25], because of its high training efficiency and decent performance on CIFAR-100. The

Table 2 The comparison of the accuracy for the coarse categories and fine categories. Best results are in

bold face

C100 C100+

Coarse Fine Coarse Fine

Coarse-to-fine 73.88% 58.41% 78.1% 64.16%

Fine-to-coarse 75.02% 61.75% 78.16% 65.56%

Fine-and-coarse 74.72% 61.8% 77.56% 64.87%

CNN-RNN 80.81% 69.69% 83.21% 72.26%

‘+’ indicates a standard data augmentation (translation/mirroring)
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Fig. 6 The CNN baseline proposed in [25]

CNN structure is shown in Fig. 6. We employ exactly the same experimental configuration

as used in [25].

As can be seen, the CNN-RNN generator can significantly outperform the CNN-based

generator, both for the coarse/fine predictions with/without data augmentation. Specifically,

for the coarse predictions, the CNN-RNN generator outperforms the CNN-based genera-

tor by at least 5.05%, while for the fine predictions, the CNN-RNN generator is even more

advantageous, with an improvement of more than 6.7%. This demonstrates that, by exploit-

ing the latent relationship between the coarse and fine categories, RNN can properly address

the hierarchical-based task.

Evaluation of the traditional image classification task The traditional image classifi-

cation task consists of classifying images into one pre-defined category, rather than multiple

hierarchical categories.

As the CNN-RNN generator can simultaneously generate the coarse and fine labels,

in this part, we further compare its performance with ‘coarse-specific’ and ‘fine-specific’

networks. The ‘fine-specific’ network uses the common CNN structure which is specifically

employed for the fine category classification. The ‘coarse-specific’ network shares the same

preceding layers with the ‘fine-specific’ network, where the last layer is adapted to equal

the coarse category number, e.g. 20 for CIFAR-100.

The coarse-specific, fine-specific and CNN-RNN framework can be constructed based on any

CNN architecture. To make the comparison more general and convincing, we evaluate the per-

formance on three networks: CNN-7 [25], wrn-28-10 [53] and our proposed wider-Resnet.

For wrn-28-10, we adopt the version with dropout [39], and train the network with larger

mini-batch size (i.e. 200), and more iterations (a total of 7 × 104 iterations, and the learning

rate dropped at 2 × 104, 4 × 104, 6 × 104 iterations). Other experimental configuration

follows [53].

The structure of our proposed wider-Resnet is shown in Table 3. We adopt the pre-

activation residual block as in [13], and train the models for a total of 7×104 iterations, with

a mini-batch size of 200, a weight decay of 0.0005 and a momentum of 0.9. The learning

rate is initialized with 0.1, and is dropped by 0.1 at 4 × 104 and 6 × 104 iterations.

The results on these three datasets are shown in Table 4. We can see that, CNN-RNN can

simultaneously generate the coarse and fine labels without developing two separate models,

and the accuracy for both categories outperforms the specific networks. Take our proposed

wider-Resnet as an example, the CNN-RNN structure increases the coarse and fine accuracy

by 2.85% and 1.17% respectively, over the coarse-specific and fine-specific networks. This

advantage demonstrates that, by exploiting the latent relationship of the coarse and fine

categories, CNN-RNN can help the traditional image classification task.

Our implementation of wrn-28-10 [53] cannot reproduce the original published results,

possibly as a result of the differences in the platforms (Torch v.s. Caffe), or the differences
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Table 3 The framework of our

proposed wider-Resnet Group name Output size wider-Resnet

conv1 32×32 3×3, 64

conv2 32×32

⎡

⎢

⎣

1 × 1, 256

3 × 3, 256

1 × 1, 256

⎤

⎥

⎦
×3

conv3 16×16

⎡

⎢

⎣

1 × 1, 512

3 × 3, 512

1 × 1, 512

⎤

⎥

⎦
×3

conv4 8×8

⎡

⎢

⎣

1 × 1, 1024

3 × 3, 1024

1 × 1, 1024

⎤

⎥

⎦
×3

pool5 1×1 global average pooling

in the preprocessing step (pad with reflections of original image v.s. pad with zero). Never-

theless, we can still improve the coarse and fine accuracy by 2.8% and 1.68% respectively,

through utilizing the CNN-RNN structure.

Comparison with the state-of-the-art We compare our wider-Resnet network, as well

as its CNN-RNN variant, with the state-of-the-art, as is shown in Table 5.

Through the comparison, we further demonstrate the superiority of the wider networks

on CIFAR-100 dataset, as our not-very-deep wider-Resnet network (29 layers) surpasses the

performance of the ResNet with super deep layers (1001 layers). In comparison with another

wide ResNet [53] with similar depth, wider-Resnet also demonstrates great improvements

and remarkably reduces the classification error from 25.45% to 22.03%, under the same

platform and pre-processing step.

Overall, our proposed wider-Resnet achieves the best performance over previous works,

and wider-Resnet-RNN further increases the state-of-the-art to 20.86%. Nevertheless, we

Table 4 The comparison of the accuracy for the coarse categories and fine categories. For each network,

CNN-RNN could get better results and their results are bolded

C100+

Coarse Fine

coarse-specific 82.09% –

CNN-7 [25] fine-specific – 72.03%

CNN-RNN 83.21% 72.26%

coarse-specific 82.59% –

wrn-28-10 [53] fine-specific – 74.55%

CNN-RNN 85.39% 76.23%

coarse-specific 85.38% –

wider-Resnet fine-specific – 77.97%

CNN-RNN 88.23% 79.14%

‘+’ indicates standard data augmentation (translation/mirroring)
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Table 5 The test error of

different methods on the

CIFAR-100 dataset with standard

data augmentation

(translation/mirroring). Best

results are in bold face

Method C100+

FitNet [31] 35.04%

DSN [21] 34.57%

All-CNN [38] 33.71%

Highway Network [40] 32.39%

APL [1] 30.83%

SReLU [17] 29.91%

BayesNet [37] 27.4%

Fitnet4-LSUV [28] 27.66%

ELU [5] 24.28%

MBA [22] 24.1%

ResNet-110 [12] (according to [15]) 27.22%

ResNet-110 (Stochastic Depth) [15] 24.58%

ResNet-164 (Pre-activation) [13] 24.33%

ResNet-1001 (Pre-activation) [13] 22.71%

18-layer + wide RiR [42] 22.90%

FractalNet-20 [19] 23.30%

FractalNet-40 [19] 22.49%

SwapOut V2 [36] (width×4) 22.72%

wrn-28-10 [53] (our reproduced) 25.45%

wrn-28-10-RNN 23.77%

wider-Resnet 22.03%

wider-Resnet-RNN 20.86%

are still seeking to build the CNN-RNN framework on top of future state-of-the-art

architectures to boost the classification performance.

4.1.2 ImageNet 2012

One notable advantage of RNN is that it can generate sequences with variable lengths. To

demonstrate this, we investigate the CNN-RNN framework on the widely used ImageNet

2012 dataset [32].

ImageNet is an image dataset organized according to the WordNet hierarchy [27]. It is

larger in scale and diversity than other image classification datasets. ImageNet 2012 uses a

subset of ImageNet with roughly 1300 images in each of 1000 categories. The images are

annotated with hierarchical labels of different lengths. In total, there are about 1.2 million

training images and 50000 validation images. For all the experiments, we train our model

on the training images, and test on the validation images of the ImageNet 2012 dataset.

We utilize the ResNet-152 [12] as our CNN model. For simplicity, pre-trained model

weights are kept fixed without fine-tuning. For the RNN model, we use 1000 dimensions for

the embedding and the size of the LSTM memory. During the experiments, we first resize

all the images to 224×224 pixels and extract the last pooling features utilizing ResNet-152,

and then send the features into LSTM for modeling the category dependency.

Figure 7 demonstrates the hierarchical predictions for some example images, from which

we can observe that: first, RNN is able to generate predictions with different lengths, and
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(a) (b)

(c) (d)

Fig. 7 The hierarchical predictions of some example images. a and c show some positive examples. b shows

the examples with partly wrong predictions, e.g. correct coarse labels & wrong fine labels. d shows examples

in the same category as (c), but which have totally wrong predictions

more specific categories would have more hierarchical labels. Second, the hierarchical

labels can describe how the fine categories are evolved from higher level coarse categories,

and thus can provide us a better understanding of the objects. Consider for example the

upper image in Fig. 7a, we may get confused with the leaf-level label: ‘Granny Smith’.

But when the coarse-level labels are provided, we observe that ‘Granny Smith’ is a breed

of apple. Third, it may be more difficult to classify images into leaf-level categories than

branch-level categories. When we get faulty leaf-level predictions for the given image, we

might still learn what the image depicts from the coarse predictions, as shown in Fig. 7b.

4.2 From coarse categories to fine categories

In the previous section, we have investigated the hierarchical classification performance of

CNN-RNN when all of the coarse and fine labels are available for the training data. How-

ever, annotating fine labels for large amounts of training data is quite expensive, especially

when it requires expert knowledge. In this subsection, we focus on a scenario in which a

part of the training data is annotated with fine labels, while the rest only has coarse labels.

This can be viewed as a special case of weakly supervised learning, and has ever been

investigated in [30].

We follow the experiment setup of [30], and conduct our experiment on a subset of

ImageNet 2010. This dataset particularly selected the classes from ImageNet 2010 that have



10264 Multimed Tools Appl (2018) 77:10251–10271

Table 6 Accuracy for classifying fine labels using the ImageNet 2010 subset described in [30]

Training Set Accuracy

NCM [26] S 66.02%

Multiclass SVM [2] S 71.67%

RNCMF [30] S 74.18%

RNN 0.2S 75.09%

0.4S 76.17%

S 77.27%

CNN S 76.01%

CNN-RNN S 82%

CNN-RNN∗ S 90.69%

RNN: train the RNN with extracted image features from VGG-Net [35]; CNN: finetune the VGG-Net [35]

on the ImageNet 2010 subset; CNN-RNN: jointly train the VGG-Net [35] and RNN in an end-to-end pattern;

We use the superscript ‘∗’ to denote that the coarse labels are provided when predicting the fine labels in the

test phase

a unique parent class, and obtained 143 coarse classes and 387 fine ones accordingly. The

reduced training set contains 487K images where each coarse class has between 1.4K and

9.8K images, and each fine class has between 668 and 2.4K images. The test set contains

21450 images, and each coarse class has 150 images. More details about the dataset can be

found in (http://www.vision.ee.ethz.ch/datasets extra/mristin/ristin et al cvpr15 data.zip).

All of the image features are extracted from the VGG-Net [35], as was done for the

preliminary experiments in [30].

Evaluation of the classification performance when all of the training fine labels

are available When all of the coarse and fine labels are available, we can directly train

the RNN on the full training set, and evaluate the classification performance on the test

set. To better demonstrate the advantage of RNN, we further conduct the training process

on a fraction of the training set. In addition, we investigate how much the performance

may improve when the coarse labels are provided for the test data, and when we train the

CNN-RNN in an end-to-end way, rather than with the off-the-shelf image features. As a

comparison with CNN-RNN framework, we also finetune the VGG-Net on the ImageNet

2010 subset. The results are shown in Table 6.

We can notice that, training on more data results in a more powerful RNN model, and

thus can achieve better performance. Compared with the models trained on parts of the

training set, i.e. 0.2S and 0.4S, utilizing the full training set S shows an improvement of

2.18% and 1.1%, respectively. It reveals that, a large training dataset is essential in training

the deep models.

In contrast to other methods listed in [30], RNN achieves superior classification per-

formance by inherently exploiting the relationship between the coarse and fine categories.

Notably, RNN can deliver better performance even utilizing only 20 percent of the training data.

One additional advantage of the CNN-RNN framework is that it can be trained end-

to-end. Compared with the predictions generated with off-the-shelf CNN features, jointly

training the CNN and RNN results in a significant improvement, from 77.27% to 82%. It is

also much better than directly finetuning the VGG-Net on the ImageNet 2010 subset (82%

v.s. 76.01%). When provided the coarse labels for the test images, CNN-RNN achieves an

accuracy of 90.69%.

http://www.vision.ee.ethz.ch/datasets_extra/mristin/ristin_et_al_cvpr15_data.zip
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(a)

(b) (c)

Fig. 8 The classification performance with different training/test set

Evaluation of the classification performance when part of the fine labels for train-

ing are missing The training set S in this part are randomly divided into two disjoint

sets: Scoarse and Sf ine. Scoarse has only the coarse labels, while Sf ine has both coarse and

fine labels. We vary |Sf ine| ∈ {0.1|S|, 0.2|S|, 0.5|S|}, and for each Sf ine, we further vary

|Scoarse| ∈ {0.1|S|, 0.2|S|, 0.5|S|}.

For each training/test configuration, we conduct three evaluations:

1) Sf ine: We train the RNN on Sf ine, and evaluate on the test set;

2) Sf ine + S−
coarse: We first train the RNN on Sf ine, and use it to predict the fine labels of

Scoarse. In this way, we obtain a new training set S−
coarse, which contains both coarse

and (predicted) fine labels. Next, we utilize the Sf ine and S−
coarse to re-train the RNN,

and evaluate on the test set.

3) Sf ine + S+
coarse: We train the RNN on Sf ine and S+

coarse, and evaluate on the test set.

S+
coarse means we utilize the groundtruth fine labels of Scoarse.

The results are shown in Fig. 8.

In general, Sf ine + S−
coarse performs better than Sf ine, indicating that even some of the

fine labels for the training data are missing, the fine category classification can benefit from

the CNN-RNN structure.

Since the fine labels of Scoarse are predicted by the RNN trained on Sf ine, their accuracy

cannot be guaranteed. As a consequence, the second training of RNN may be conducted on

a partly wrong labeled dataset. This is particularly severe when |Sf ine| is small. As we can

see in Fig. 8a, when |Sf ine| = 0.1|S|, the classification hardly benefited from using Scoarse

when compared to the RNN trained solely on Sf ine.
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Table 7 Accuracy in classifying fine categories for the test set. We set the amount of coarse-labeled data to

|Scoarse| = 0.5|S|. Best results are in bold face

|Sf ine|

0.1|S| 0.2|S| 0.5|S|

RNCMF [30] 68.49% 70.49% 73.07%

NN-H-RNCMF [30] 69.95% 71.41% 73.43%

RNN 74.26% 75.64% 77.12%

On the contrary, when |Sf ine| is large, e.g. |Sf ine| = 0.5|S|, we can achieve a consid-

erable improvement by incorporating Scoarse. Notably, when |Sf ine| = 0.5|S|, |Scoarse| =

0.1|S|, Sf ine + S−
coarse even performs slightly better than Sf ine + S+

coarse, demonstrating its

great potential in weakly supervised classification.

We further compare our method with the NN-H-RNCMF [30], which also attempted to

improve the classification by exploiting the hierarchy. We set the amount of coarse-labeled

data to |Scoarse| = 0.5|S|, and vary |Sf ine| ∈ {0.1|S|, 0.2|S|, 0.5|S|}, and the results are

shown in Table 7. It can be seen that, RNN performs much better than NN-H-RNCMF in all

configurations, demonstrating its great potential in exploiting the hierarchical relationship.

5 Conclusion

In this paper, we proposed to integrate CNN and RNN to accomplish hierarchical classifi-

cation task. The CNN-RNN framework can be trained end-to-end, and can be built on top

of any CNN structures that are primarily intended for leaf-level classification, and further

boost the prediction of the fine categories. In addition, we also investigated how the classi-

fication would benefit from coarse-labeled training data, which alleviates the professional

and expensive manual process of fine-grained annotation.

Currently, it is necessary to have hierarchical labels in the training set, in order to train

the RNN. However, this is not available for many small datasets. In the future, we will exam-

ine taking advantage of traditional clustering methods towards automatically constructing

a hierarchy for the objects, and use CNN-RNN to boost the classification performance for

general datasets.
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