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Introduction

Glaucoma is an irreversible neuro-degenerative eye disease that is considered one of 

the main reasons of visual disability in the world [1]. According to the World Health 

Organization (WHO), glaucoma affects more than 65 million people around the globe 

[2]. As it may be asymptomatic, early detection and treatment are important to prevent 

vision loss. �is silent eye disease is mainly characterized by optic nerve fibre loss and 

that is given by the increased intraocular pressure (IOP) and/or loss of blood flow to 

the optic nerve. However, IOP measurement is found to be neither specific nor sensitive 
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enough to be an effective glaucoma indicator since visual damage can be present without 

increased IOP.

�e optic nerve head is where ganglion cell axons leave the eye forming the optic 

disc. In a fundus image, the optic disc can be visually separated into two zones, a bright 

and central zone called optic cup and a peripheral part called neuro-retinal rim [3]. See 

Fig. 1a.

While the optic disc (OD) and cup are present in all individuals, an abnormal size of 

the cup with respect to the optic disc is a characteristic of a glaucomatous eye, as it is 

shown in Fig.  1b. For that reason, different approaches have been developed towards 

optic cup and optic disc segmentation for glaucoma detection in colour fundus images. 

Some works in the literature are only focused on the optic cup and/or optic disc segmen-

tation [4, 5] and others focus on the Cup/Disc ratio (CDR) calculation. �is measure-

ment is commonly used as a glaucoma indicator, which expresses the vertical diameter 

proportion of the optic disc and the cup. However, CDR measurement implies a great 

effort to obtain a proper optic disc and optic cup segmentation.

In this paper, five different CNN architectures are presented for glaucoma assessment. 

Contrary to most of the established detection techniques, this approach does not need 

any feature selection or accurate measurements of geometric optic nerve head struc-

tures such as CDR.

Background

�e glaucoma disease is mainly characterized by the loss of the optic nerve fibres and 

astrocytes. �is loss can be examined by measuring the thickness of the neuro-retinal 

rim and the size of the optic cup with respect to the optic disc. Generally, the qualitative 

assessment of the optic nerve head, when using fundus images, has been the main focus 

of several works in the literature.

For instance, Wong et al. [6] presented a method to calculate the CDR after obtaining 

the optic cup and optic disc masks using level-set techniques. �ey tested their method 

Optic Cup

Optic Disc

Neuro-retinal rim

a b

Fig. 1 Digital fundus images cropped around optic disc. a Main structures of a healthy optic disc and b 

glaucomatous optic disc
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on 104 images and found that their method produced results with a variation of up to 0.2 

CDR units from the ground truth.

A method proposed by Joshi et al. [7] is based on anatomical evidence such as vessel 

bends at the cup boundary to segment the optic cup. �ey localised the optic cup using 

the vessel geometry and circular Hough transform obtaining a CDR error of 0.12 ± 0.10 . 

In the study made by Yin et al. [8], they also used the knowledge-based Circular Hough 

Transform for segmentation of the optic disc and the optic cup. �eir method was tested 

on 325 images obtaining an average Dice coefficient of 0.92 and 0.81, respectively.

Another approach for optic disc and optic cup segmentation is presented by Cheng 

et al. [9], who developed a technique to measure the CDR based on superpixel classifi-

cation. �ey evaluated their method on 650 images achieving areas under the curve of 

0.800 and 0.822 in two databases.

In the work made by Diaz-Pinto et al. [10], the authors presented an automatic algo-

rithm to segment the optic cup and then obtain handcrafted features such as the CDR, 

area Cup/Disc ratio (ACDR) and the inferior–superior-nasal–temporal (ISNT) rule that 

checks the disc rim thickness from the fundus images. �ey evaluated their method on 

53 images obtaining a specificity and sensitivity of 0.81 and 0.87 using the Luv colour 

space for optic disc and optic cup segmentation.

A work that uses other information such as the patient personal data and patient’s 

genome information is presented by Liu et  al. [11]. �ey combined that information 

with the fundus images obtaining an area under the curve (AUC) of 0.866 for glaucoma 

screening, which is better than the AUC obtained when using individual personal data.

Important limitations of the methods that are based on handcrafted characteristics 

(CDR, Area Cup/Disc ratio (ACDR), vessel kinks and ISNT rule) is the significant disa-

greement in estimating them even between expert human graders. For that reason, new 

algorithms have been focused on automatic feature extraction such as the data-driven 

methods [3] and convolutional neural networks (CNNs).

In the paper published by Bock et al. [3], they proposed a data-driven method. �is 

method is not based on accurate measurements of geometric optic nerve head struc-

tures such as the CDR. Instead, they used the idea of “Eigenimages” to extract features 

that are later classified by a support vector machine (SVM). �ey evaluated their algo-

rithm on 575 images randomly selected from the Erlangen Glaucoma Registry (EGR), 

obtaining a competitive AUC of 0.88. However, the images used in their work are private 

and their method cannot be compared with the presented in this paper.

Convolutional neural networks (CNNs) were first introduced by Yann LeCun [12] and 

are biological-inspired variants of multilayer perceptrons. Since then, they have been 

used in computer vision and artificial intelligence. However, their relevance had not 

been discovered until the ImageNet competition in 2012, in which the main goal is to 

estimate the content of natural images for the purpose of automatic annotation using a 

subset of the ImageNet dataset [13]. �eir success came through the use of GPUs, rec-

tifiers such as ReLU, data augmentation techniques and new regularization techniques 

such as Dropout [14]. �e main power of the CNN architectures relies on their ability to 

extract highly discriminating features at multiple levels of abstraction [15].

�e first layers in a CNN extract edges at particular orientations and locations in the 

image. �e middle layers detect structures composed of particular arrangements of 
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edges and the last layers detect more complex structures that correspond to parts of 

familiar objects, or objects that are combinations of these parts.

Training a CNN from scratch is not an easy task. �ey require a huge amount of 

labelled data—a requirement that is difficult to meet in the glaucoma assessment task- 

and computational resources.

However, there are two alternatives to train a CNN from scratch that have been previ-

ously applied to several medical image classification tasks. �e first alternative consists 

of fine-tuning a CNN that has been trained using a large labelled dataset from a different 

application (e.g., ImageNet). An example of this alternative is the work of Carneiro et al. 

[16], where they showed that CNN models pre-trained on natural images, such as the 

ImageNet, are useful in medical image applications, despite the significant differences 

in image appearance. �e study made by Chen et al. [17] demonstrated that the use of 

a fine-tuned pre-trained CNN for localizing standard planes in ultrasound images out-

performed the state-of-the-art for the fetal abdominal standard plane (FASP). Another 

example is the study made by Tajbakhsh et  al. [18], in which they conducted a set of 

experiments for four medical imaging applications showing the use of pre-trained CNN 

performed as well as a CNN trained from scratch.

�e second alternative consists of using an ImageNet-trained CNN as a feature extrac-

tor, where the CNN is applied to an input image and then features are extracted from a 

certain hidden layer of the network. �en, the extracted features are used to train a new 

classifier such as support vector machines (SVM), Decision Trees, K-nearest-neighbor 

or Naive Bayes classifier. For example, Bar et al. [19] pre-trained CNNs that were used as 

a feature extractor for chest pathology identification. Another study made by Razavian 

et al. [20] showed that using features extracted from the OverFeat network and feeding 

an SVM classifier, it is possible to obtain superior results compared to the highly tuned 

state-of-the-art systems.

For glaucoma assessment, there are also several works in the literature that employ 

CNNs. For instance, Chen et al. [21] proposed and trained from scratch a CNN archi-

tecture that contains six layers: four convolutional layers and two fully-connected layers; 

to automatically classify glaucomatous fundus images. �ey performed the experiments 

on two private databases: ORIGA-(light) which contains 650 images and SCES which 

contains 1676 images, achieving an AUC of 0.831 and 0.887 respectively. For ORIGA 

database, they trained their CNN architecture by randomly selecting 99 images, and 

using the remaining 551 images for test. For SCES database, they used the 650 images 

from ORIGA database for training, and all the 1676 images of SCES database for test. 

�e main disadvantage is the unbalanced data. �e ORIGA database is comprised of 168 

glaucomatous and 482 normal fundus images and the SCES database contains 1676 fun-

dus images of which only 46 are glaucomatous images. Another limitation of this work is 

that the obtained results are difficult to reproduce because the ORIGA and SCES data-

bases are not publicly available.

A study conducted by Alghamdi et  al. [22] made use of eight databases (four pub-

lic and four private databases) to detect optic disc abnormality. �ey developed a new 

approach using two CNNs: one CNN was trained to first classify the optic disc region 

and the other CNN to classify the optic disc region into normal, suspicious and abnor-

mal classes. However, the four public databases (DRIVE, STARE, DIARETDB1 and 
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MESSIDOR) used in the work of Alghamdi et al. cannot be used for glaucoma classifi-

cation because they were taken for different purposes. �is means those images do not 

have any glaucoma sign or do not have glaucoma annotations. �e glaucoma labelled 

databases they used are private and, for that reason, it is difficult to reproduce the results 

presented in their work.

In the study made by Abbas [23], he developed and implemented a system known as 

Glaucoma-Deep. �is system consists of an unsupervised CNN architecture that auto-

matically extracts features from the fundus images. Afterwards, it uses a deep-belief 

network (DBN) model to select the most discriminative features. In his work, Qaisar 

Abbas uses four databases to test his method, three of them are public and one private. 

Although his work shows good results (specificity: 0.9801 and sensitivity: 0.8450), details 

of the CNN and architecture were not given.

It is worthy to mention the work made by Orlando et al. [24], where they showed how 

two different CNNs, OverFeat and VGG-S, could be used as feature extractors. �ey 

also investigated how the performance of these networks behave when Contrast-limited 

adaptive histogram equalization (CLAHE) and vessels deletion are applied to the fundus 

images. In their work, they used Drishti-GS1 database to test the performance of the 

fine-tuned CNNs. �ey observed that OverFeat CNN performed better than VGG-S, 

obtaining an AUC of 0.7626 and 0.7180, respectively. �e main limitation of this work 

is the small number of images (101 images) used to test the performance of the CNNs. 

However, their method achieved a competitive AUC score with respect to other existing 

strategies.

In this paper, an analysis of five different ImageNet-trained CNN architectures used 

as glaucoma classifier is presented. �ey were fine-tuned and tested using exclusively 

public databases, which differ to most of the presented works in the literature that use 

private databases. �e high accuracy, specificity and sensitivity obtained from this anal-

ysis suggest that ImageNet-trained CNN architectures are a robust alternative for an 

automatic glaucoma detection algorithm. �ese CNNs work properly in colour fundus 

images belonging to five different public databases (1707 images) with high variability 

grade. Furthermore, we introduce of a new public database, ACRIMA, composed of 705 

labelled images (396 glaucomatous and 309 normal images), that could be used as a test-

bed for further comparisons between methods developed for glaucoma classification.

Material and methods

ACRIMA: a new public database

�ere are few publicly available databases with glaucoma-labelled images that can be 

used for the evaluation of glaucoma classification methods. For that reason, the authors 

are pleased to introduce a new public available glaucoma-labelled database called 

ACRIMA.1 �e images of this database come from the ACRIMA project (TIN2013-

46751-R) founded by the Ministerio de Economía y Competitividad of Spain, which aims 

to the development of automatic algorithms for retinal disease assessment.

1 
Link to ACRIMA database. It will be publicly available after the paper is accepted.

https://figshare.com/s/c2d31f850af14c5b5232
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Database description

ACRIMA database is composed of 705 fundus images (396 glaucomatous and 309 nor-

mal images). �ey are part of the ACRIMA project and were obtained from glaucoma-

tous and normal patients with their previous consent and in accordance with the ethical 

standards laid down in the 1964 Declaration of Helsinki. All patients were selected by 

experts based on their criteria and clinical findings during the examination. Most of 

the fundus images from this database were taken from the left and right eye previously 

dilated and centred in the optic disc. Some of them were discarded because of artefacts, 

noise and poor contrast. �ey were captured using the Topcon TRC retinal camera and 

 IMAGEnet® capture System. Images were taken with a field of view of 35°.

All images from ACRIMA database were annotated by two glaucoma experts with 8 

years of experience. No other clinical information was taken into account while provid-

ing labels for the images. �is first version of ACRIMA database could only be used for 

classification tasks. Optic disc and optic cup segmentation are not provided. Examples 

of images from the ACRIMA database are shown in Fig. 2.

Other databases

Apart from the ACRIMA database, other four public databases were used in this work: 

HRF database [25], which contains 45 images; Drishti-GS1 database [4], which consists 

of 101 images; RIM-ONE database [26], which is composed of 455 images; and sjchoi86-

HRF [27] database which is composed of 401 images. All these databases are shown in 

detail in Table 1.

Normal

Images

Glaucoma

Images

Fig. 2 Examples of new publicly available database. Normal and Glaucoma fundus images from the new 

publicly available database (ACRIMA)

Table 1 List of all the public available databases with glaucoma labels

Italic represents the new publicly available database

Database Glaucoma Normal Total

HRF [25] 27 18 45

Drishti-GS1 [4] 70 31 101

RIM-ONE [26] 194 261 455

sjchoi86-HRF [23, 27] 101 300 401

ACRIMA 396 309 705

788 919 1707
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For all the experiments executed in this work, the open source Deep Learning library 

Keras [28] and NVIDIA Titan V GPU were used. Keras library is a simple way to use, 

implement and fine-tune CNNs architectures built on top of �eano, TensorFlow or 

CNTK.

Preprocessing

�e fundus images used for the fine-tuning process were automatically cropped around 

the optic disc using a bounding box of 1.5 times the optic disc radius. Except the RIM-

ONE database which came originally cropped around the optic disc. To do this crop-

ping, we employed the method proposed in [29]. In their method, Xu et al. used a basic 

CNN to find the most probable pixels in the optic disc region. �en, they sort out those 

candidate pixels via using a threshold.

Cropping the images around the optic disc has a clinical reason, glaucoma disease 

affects mainly the optic disc and its surroundings. Moreover, it was shown by Orlando 

et al. [24] that cropping the images around the optic disc turned out to be a more effi-

cient way than using the whole images when using CNN for glaucoma assessment. 

Examples of the images used for fine-tuning the CNNs are shown in Fig. 3.

ImageNet-trained CNN architectures

In this work, the VGG16 [15], VGG19 [15], InceptionV3 [30, 31], ResNet50 [32] and the 

Xception [33] architectures were fine-tuned to the glaucoma assessment task using their 

ImageNet-trained versions available in the Keras core. To use these networks to this 

task, the last fully connected layer of each CNN was changed for a global average pool-

ing layer (GlobalAveragePooling2D) followed by a fully connected layer of two nodes 

representing two classes (glaucoma and healthy) and a softmax classifier. �erefore, 

counting the new top layers on each CNN, the total number of Keras layer in the VGG16 

and VGG19 network architectures were 20 and 23, respectively. �e InceptionV3 archi-

tecture is composed by 312 Keras layers and the ResNet50 and Xception architecture are 

composed by 176 and 133 Keras layers, respectively. Note that to fine-tune the models, 

images were automatically cropped around the optic disc as it was previously mentioned.

Normal

Images

Glaucoma

Images

Fig. 3 Examples of the cropped fundus images. Cropped fundus images used for fine-tuning and testing the 

CNNs
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In order to obtain the best performance of each model, we carried out several experi-

ments varying the number of fine-tuned layers and the number of epochs. First, for the 

number of fine-tuned layers, we started by fine-tuning the last weighted layer of the 

CNN architectures, keeping the other layers in a “not-trainable” mode. Afterwards, the 

number of fine-tuned layers was increased until updating all the layers in the CNN.

�e second experiment consisted in analysing the impact of the number of epochs 

that present the best performance of each architecture. Other hyper-parameters such 

as batch size, learning rate, etc were fixed while varying the number of fine-tuned layers 

and number of epochs. For instance, we set the number of epochs in 100, for the first 

experiment, and the number of layers in “not-trainable” mode was set in 0 for the second 

experiment. For both experiments, the Stochastic Gradient Descent (SGD) was used as 

the optimizer, the batch size was set to 8, the learning rate to 1e−4 and the momentum 

to 0.9. All these hyper-parameters were optimally chosen to get the best performance in 

our set of experiments.

Additionally to these experiments, we also evaluated the performance of the CNNs 

(VGG16, VGG19, Inceptionv3, ResNet50 and Xception) using the k-fold Cross-Valida-

tion technique with k = 10 , following the procedure described in [34]. In order to avoid 

overfitting and increase the robustness of the models, available images were augmented 

by using random rotations, zooming by a range between 0 and 0.2 and horizontal and 

vertical flipping. �e images were also resized to the default input size of each CNN 

architecture ( 224 × 224 for VGG16, VGG19 and ResNet50 and 299 × 299 for Incep-

tionv3 and Xception).

A particular performance evaluation of the CNNs, using datasets that were not used 

during the training stage, was also carried out. Different to most of the works in the 

literature, this experiment checks the performance of the CNNs on complete databases 

that the system have not seen during the training stage.

�e final experiment is the comparison between the best of the five previously men-

tioned CNNs with a state-of-the-art algorithm that also uses public databases.

Experimental results and discussion

As mentioned in the previous section, two initial experiments to see the effect of fine-

tuning different number of layers and the number of epochs were carried out. In Fig. 4, 

it is possible to see the trend in improvement from shallow tuning to deep tuning for 

the glaucoma assessment task of each CNN. �e x-axis represents the number of layers 

in “not-trainable” mode of each CNN. �e experiment starts from fine-tuning all layers 

(x-axis = 0) until fine-tuning only the last trainable layer in the model.

From this experiment, we can see that fine-tuning all the trainable layers in the CNN, 

or doing deep tuning, is the best option when trying to obtain the best performance, as it 

was also demonstrated by Tajbakhsh et al. [18] in their paper.

For the other initial experiment, we put in trainable mode all layers and see the perfor-

mance of the CNN when fine-tuning from 1 to 250 epochs. It is important to highlight 

that the performance evaluation for this experiment was carried out on the validation 

set. �e result of this experiment can be seen in Fig. 5. From this experiment, we could 

see that around 200 is the optimum number of epochs to get the best performance for 

the fine-tuning process in our set of experiments.
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For model evaluation, 10-fold cross-validation was performed. �erefore, 10 val-

ues of area under the curve (AUC), accuracy, specificity, sensitivity and F-score were 

obtained. Afterwards, the average and standard deviation of these values were calcu-

lated for each CNN architecture. Results for each fine-tuned model are presented in 

Table 2. Additional to the area under the curve (AUC), accuracy, specificity, sensitiv-

ity and F-score, we also calculated for each fold the P-value by using the Mann–Whit-

ney U test [35, 36] and used the bootstrapping technique to calculate the confidence 

interval for the AUC values. �e P-value was calculated by comparing the ground-

truth distribution and labels distribution obtained from each model. �e label distri-

bution of each model was obtained by thresholding the obtained probabilities from 

each CNN (glaucoma if score > 0.5, normal otherwise). �e idea of providing confi-

dence intervals for each CNN is to provide a likelihood that the AUC of each model 

will fall between the range when making predictions on new data. To calculate these 

ranges, we used the trained models in each fold to predict random selected images 
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Fig. 4 Plot showing the effect of fine-tuning different number of layers. a VGG16, b VGG19, c InceptionV3, d 

ResNet50 and e Xception architecture
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from the test set. Ten bootstrap repetitions for each fold were performed, meaning 

100 repetitions for each model.

Additionally to the measurements reported in Table 2, the ROC curves for the aver-

age specificity and sensitivity, obtained by performing 10-folds cross-validation, were 

plotted in Fig. 6. It is possible to see that all the proposed fine-tuned models have a 

really good performance for the glaucoma assessment task. As the performance of the 

models is comparable, characteristics of the CNN such as the number of parameters 

can be used to determine what model is better than the others.

In order to compare the obtained results with other works in the literature, we 

implemented, trained and tested on the same images the neural networks proposed 

Fig. 5 Plot showing the effect of number of epochs. a VGG16, b VGG19, c InceptionV3, d ResNet50 and e 

Xception architecture
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by Chen et  al. [21] and Alghamdi et  al. [22]. �e obtained results from these mod-

els are presented in Fig. 6. Although they obtained a high area under the ROC curve 

using their methods, the systems proposed in this paper clearly outperform them.

In Table 3, the number of parameters and the obtained AUC of each CNN architecture 

are shown. It is possible to see that, although VGG16 and VGG19 present higher AUC 

than the Xception architecture, they have much more parameters to fine-tune, which 

requires more computation power and resources. �erefore, the Xception architecture 

presents a better trade-off between the number of parameters and obtained AUC than 

the other architectures.

In Figs. 7 and 8, samples of the classification results obtained from the Xception archi-

tecture are presented, including correct and incorrect classification examples. Low score 

values (close to 0) mean miss-classification and score values close to 1 mean correct 

classification.

We believe a possible reason the CNN miss-classified glaucomatous images is 

because they do not have the big bright area inside the optic disc. As previously men-

tioned, the optic nerve loss is, most of the times, visible from the fundus image. �e 

brighter area (or optic cup) inside the optic disc is usually bigger in a glaucomatous 

image. It seems the CNN learned to recognise glaucomatous images based on this 

Fig. 6 Average ROC curves for each CNN. Average ROC curves for each fine-tuned CNN architecture (VGG16 

[15], VGG19 [15], InceptionV3 [31], ResNet50 [32] and Xception [33]), the Alghamdi [22] and Chen method 

[21]

Table 3 Number of parameters and obtained AUC for each architecture

The best architecture in terms of AUC and number of parameters (in italic)

Model name # parameters (in millions) AUC 

VGG16 138 0.9632 (0.0149)

VGG19 144 0.9686 (0.0158)

InceptionV3 23 0.9653 (0.0135)

ResNet50 25 0.9614 (0.0171)

Xception 22 0.9605 (0.0170)
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criteria. Images with no big bright area are classified as normal (see lower row images 

in Fig. 8). Other possible factors for the miss-classification are the low quality of the 

images (see upper row Fig. 8a, h).

Given the changes of illumination, the glaucoma assessment using fundus images 

is not an easy task. A developed method that properly classifies images from a cer-

tain database/s does not necessarily perform well when it is applied to images from 

a different database. A critical experiment that evaluates the performance of a glau-

coma classifier consists of using images that come from a different sensor or data-

base. For that reason, five different experiments using the Xception architecture and 

all public glaucoma-labelled databases (HRF, Drishti-GS1, RIM, sjchoi86-HRF and 

ACRIMA) were done. First, the Xception architecture was fine-tuned using all the 

databases except the images that belong to the database to be tested. Secondly, the 

trained model is tested on the desired database. �is approach is repeated to test 

HRF, Drishti-GS1, RIM, sjchoi86-HRF and ACRIMA database. �e results obtained 

from these experiments are presented in Fig. 9 and Table 4, in which is possible to see 

that although the Xception architecture was fine-tuned without using images from 

these databases, its performance is promising.

�e AUCs confidence intervals presented in Table 4 were calculated from 1000 boot-

strap replications. We used the trained model of each experiment and randomly selected 

Xception score: 0.9929 0.8048 0.9837 0.9977 0.9925 0.9983 0.9905 0.9624

0.9881 0.9534 0.9991 0.8964 0.9285 0.9105 0.9971 0.9975Xception score:

a b c d e f g h

   Ground-truth: Normal Normal Normal Normal Normal Normal Normal Normal

   Ground-truth: Glaucoma Glaucoma Glaucoma Glaucoma Glaucoma Glaucoma Glaucoma Glaucoma

Fig. 7 Examples of correct normal and glaucoma classification. Samples of well-classified normal and 

glaucoma images by the Xception architecture

Xception score: 0.0126 0.0799 0.3412 0.1306 0.1822 0.4173 0.2834 0.3487

0.1252 0.2853 0.1273 0.0769 0.0858 0.3459 0.1270 0.3703Xception score:

   Ground-truth: Normal Normal Normal Normal Normal Normal Normal Normal

   Ground-truth: Glaucoma Glaucoma Glaucoma Glaucoma Glaucoma Glaucoma Glaucoma Glaucoma

a b c d e f g h

Fig. 8 Examples of miss-classified normal and glaucoma images. Samples of normal and glaucoma images 

miss-classified by the Xception architecture
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images from the test set to obtain an AUC value for each bootstrap replication. In Fig. 10 

is possible to see the distribution of the 1000 AUC values.

It can be seen from Table 4 how the CNN accuracy drops (about 15%) when predict-

ing on images from different databases than what were used for training. �is drop in 

accuracy shows the CNN does not generalize well when classifying images from dif-

ferent databases. �is is because images from different databases are labeled in two 

different ways: the first is when experts rely on the patient’s medical history and the 

fundus image itself to assign a label and the other way is when experts rely only on the 

visual information in the fundus image. �e last way of labelling the images increase 

the noise in labels and makes even more difficult the generalization of an automatic 

glaucoma classification system. Taking into account that the CNN is only based on 

the raw pixel information to classify the images, it is expected that the accuracy is 

dramatically affected when testing the system on images from different databases. 

Different databases mean different labelling systems.

Fig. 9 ROC curves for the Xception architecture in different experiments. ROC curves for the Xception 

architecture in different experiments. When using HRF, Drishti-GS1, RIM, sjchoi86-HRF and ACRIMA database 

only as test set and using all the databases

Table 4 Obtained results for  HRF, Drishti-GS1, RIM, sjchoi86-HRF and  the  new public 

database ACRIMA, using Xception architecture represented in  AUC, AUC’s con�dence 

interval, Accuracy, sensitivity and speci�city

Database AUC AUC’s 95% 
con�dence 
interval

Accuracy Sensitivity Speci�city # images

HRF 0.8354 50.00–100.00% 0.8000 0.8333 0.7778 45

Drishti-GS1 0.8041 50.49–92.55% 0.7525 0.7419 0.7143 101

RIM-ONE 0.8575 77.53–91.12% 0.7121 0.7931 0.7990 455

sjchoi86-HRF 0.7739 66.44–86.85% 0.7082 0.7033 0.7030 401

ACRIMA 0.7678 68.41–81.81% 0.7021 0.6893 0.7020 705
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Analysing in depth the results from Table 4, two main results can be stood out. �e 

first relies on checking the real performance of the CNNs when the model is tested on 

images from databases that were not used during the training stage. It is not only unseen 

data but whole databases with different expert labelers and image characteristics. In con-

trast to most of the works in the literature, in which they test their systems on unseen 

data but using images from the same database with a similar appearance.

�e second result is to show the difficulty of this problem. �e scarcity of labelled 

images, and the fact that the available images come from different databases, makes the 

development of a robust glaucoma classifier that works for every database a complex 

problem.

A possible solution to increase the performance of the CNNs is by using part of the 

data for training and part for test. In this way, we could test the CNNs on unseen data 

HRF Drishti-GS1

RIM-ONE sjchoi86-HRF

ACRIMA

e

a b

c d

Fig. 10 Distribution of the AUC values per database. Histogram of the 1000 AUC values when evaluating the 

Xception architecture using the bootstrapping technique. It shows the results of the bootstrap repetitions 

when using a HRF, b Drishti-GS1, c RIM-ONE, d sjchoi86-HRF and e ACRIMA as test only



Page 16 of 19Diaz‑Pinto et al. BioMed Eng OnLine           (2019) 18:29 

but using images from databases used during the training stage. Another solution could 

be to retrain the CNNs when trying to classify images from databases different to the 

ones used for training.

We proved this drop in accuracy does not occur when training the CNN on 70% of the 

data (1195 images) and testing on 30% of the data (512 images) from the same databases. 

From this experiment, we obtained an AUC of 0.9464, an accuracy of 0.8908, a sensitiv-

ity of 0.9175 and a specificity of 0.8571. It shows that the CNN performs well when clas-

sifying unseen images from the same databases that were used for training.

�anks to the public availability of the Drishti-GS1 database, a comparison with other 

state-of-the-art algorithms that used this database is also possible. For instance, in the 

work developed by Chakravarty et al. [37], they obtained an AUC of 0.78 when tested 

their method on this database. Another example is the work presented by Orlando 

et al. [24], in which they obtained an AUC of 0.76 using pre-trained CNNs applied to 

the Drishti-GS1 database. It can be seen in Table  4 that the method proposed in this 

paper outperforms (AUC  =  0.8041) the existing works. Moreover, it must be taken 

into account that Chakravarty et al. [37] and Orlando et al. [24] evaluated their meth-

ods using the same database for training and test unlike the experiments performed in 

this work where Drishti-GS1 database is only used for test. �is could be the reason for 

the low gain of our method with respect to the others. �is gain significantly increases 

(AUC = 0.9605 for Xception. See Table 3) when Drishti-GS1 database is used for both 

stages, training and test.

An additional experiment was performed using the Xception architecture and only the 

Drishti-GS1 database. In order to do a fair comparison with the method published in [24], 

the images in this database were randomly divided into training, validation and test as it 

was done in their work: 70% for training, 30% for test and 30% of the training images were 

selected for the validation set. For this experiment, the batch size was decreased to 1 and 

the learning rate to 1e−3 because of the small number of images in the Drishti-GS1 data-

base (101 images in total). With this configuration, an AUC of 0.8261 with a 95% confidence 

interval of 59.71–95.20% was obtained. Additionally, we used the bootstrapping technique 

and the trained model to obtain 1000 AUC values and check its distribution (see Fig. 11).

�e previous experiments, the analysis of those CNNs and the obtained results prove 

to be an important advance to the glaucoma classification task using fundus images.

Computation time

We used the Keras library and a Titan Xp GPU for this work. We measured the time 

consumed for each model with the configuration previously described (regularization 

technique, number of fine-tuned layers, number of images for training, batch size, 

etc). �e average time to fine-tune is 1 h and 40 min for the VGG16, 1 h and 55 min 

for the VGG19, 1 h and 45 min for the InceptionV3, 1 h and 15 min for the ResNet50 

and 2 h and 40 min for the Xception architecture. �e time for each architecture was 

obtained by averaging the time consumed for each fold during the fine-tuning stage. 

Once the models were fine-tuned, 46 ms are needed to assign a glaucoma probability 

for each retinal image.
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Conclusion

In this work, five different ImageNet-trained CNN architectures (VGG16, VGG19, 

InceptionV3, ResNet50 and Xception) were analysed and used as glaucoma classifiers. 

Using only publicly available databases, the Xception architecture shows the best per-

formance for glaucoma classification, which was evaluated as the trade-off between 

the AUC and the number of parameters of the CNN. Based on the 1707 images and 

data augmentation technique, an average AUC of 0.9605 with a 95% confidence inter-

val of 95.92–97.07%, an average specificity of 0.8580 and an average sensitivity of 

0.9346 were obtained after fine-tuned the Xception architecture, significantly improv-

ing other state-of-the-art works.

Moreover, an additional analysis shows that the fine-tuned model has competitive 

performance when it is tested on images that come from a completely different data-

base. �is experiment differs to the common approach in which a subset of a data-

base is used for training and the other subset is used for testing. Using the ACRIMA 

database as test set only, an AUC of 0.7678 with a 95% confidence interval of 68.41–

81.81% was obtained. �e same experiment was done for the other four public data-

bases: HRF, Drishti-GS1, RIM-ONE, sjchoi86-HRF, obtaining an AUC of 0.8354, 

0.8041, 0.8575 and 0.7739, respectively.

ACRIMA2 database is composed of 396 glaucomatous images and 309 normal images 

and could be easily used as a testbed for further comparisons and/or analysis. �e 

authors encourage the scientist community to test their models using the new publicly 

available database and compare their results with the method proposed in this paper.

As a further work, the use of synthetic images for training the CNNs could be of great 

interest to increase the number of training images. In this way, we could train even more 

robust glaucoma classifiers.

Drishti-GS1

Fig. 11 Distribution of the AUC values for the Drishti-GS1 database. Histogram of the 1000 AUC values 

obtained from the bootstrapping technique evaluating the Xception architecture trained and tested on the 

Drishti-GS1 database

2 
Link to the ACRIMA database during review process.

https://figshare.com/s/c2d31f850af14c5b5232
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Limitations of the study

Although we used a rather big database and used data augmentation to fine-tune the 

CNNs, there is still a limitation when trying to generalise. As it was shown in Table 4, the 

performance decreased when testing the CNN on databases different from those used 

for training. Additionally to this problem, we found that the different labelling criteria is 

another issue we faced when developing automatic glaucoma assessment systems. Most 

of the publicly available databases differ in the way they are labelled, the information 

clinical experts used to assess images and the quality of the fundus images.
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