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ABSTRACT

Convolutional Networks (ConvNets) are biologically-

inspired hierarchical architectures that can be trained to per-

form a variety of detection, recognition and segmentation

tasks. ConvNets have a feed-forward architecture consisting

of multiple linear convolution filters interspersed with point-

wise non-linear squashing functions. This paper presents an

efficient implementation of ConvNets on a low-end DSP-

oriented Field Programmable Gate Array (FPGA). The im-

plementation exploits the inherent parallelism of ConvNets

and takes full advantage of multiple hardware multiply-

accumulate units on the FPGA. The entire system uses a

single FPGA with an external memory module, and no ex-

tra parts. A network compiler software was implemented,

which takes a description of a trained ConvNet and com-

piles it into a sequence of instructions for the ConvNet Pro-

cessor (CNP). A ConvNet face detection system was imple-

mented and tested. Face detection on a 512 × 384 frame

takes 100ms (10 frames per second), which corresponds to

an average performance of 3.4×109 connections per second

for this 340 million connection network. The design can be

used for low-power, lightweight embedded vision systems

for micro-UAVs and other small robots.

1. INTRODUCTION

Over the next decades, embedded vision systems will be-

come part of an increasing number of applications that in-

clude autonomous or semi-autonomous vehicles, consumer

electronics (cameras and mobile phones), and toys. Because

of their limited payload capacity and energy capacity, toys,

micro-UAVs, and small domestic robots cannot use active

imaging sensors and must rely on passive cameras and vi-

sion for navigation, obstacle avoidance, and object/target

recognition. The present work is a step in the direction of

low power, lightweight, and low cost vision systems that are

required for such applications. We describe an implemen-

tation of a complete vision/recognition system on a single

low-end Field-Programmable Gate Array (FPGA). The de-

sign requires no external hardware, other than a few memory

chips, and has been integrated onto a small 7× 8 cm printed

circuit board, that consumes less than 15W. The system is

programmable, and can implement any vision system in

which the bulk of the computation is spent on convolutions

with small-size kernels. The design is specifically geared

towards Convolutional Networks [1, 2], but can be used for

many similar architectures based on local filter banks and

classifiers, such as HMAX [3, 4], and HoG methods [5].

Convolutional Networks (ConvNets) are feed-forward ar-

chitectures composed of multiple layers of convolutional fil-

ters, interspersed with point-wise non-linear functions [1, 2].

ConvNets are used in several commercial and experimen-

tal applications, including video surveillance, OCR [2],

face/person detection [6, 7], object recognition [8], and

robot navigation [9, 10]. Because they can easily be trained

for a wide variety of tasks, ConvNets have many potential

applications in micro-robots and other embedded vision sys-

tems that require low cost and high-speed implementations.

Pre-trained ConvNets are algorithmically simple, with

low requirements for memory bandwidth and arithmetic pre-

cision. Hence, several hardware implementations have been

proposed in the past. The first one was the ANNA chip,

a mixed high-end, analog-digital processor that could com-

pute 64 simultaneous 8 × 8 convolutions at a peak rate of

4.109 multiply-accumulate operations per second [11, 12].

Subsequently, Cloutier et al. proposed an FPGA imple-

mentation of ConvNets [13], but fitting it into the limited-

capacity FPGAs of the time required the use of extremely

low-accuracy arithmetic. Modern DSP-oriented FPGAs

include large numbers of hard-wired multiply-accumulate

units that can greatly speed up compute-intensive opera-

tions, such as convolutions. The system presented in this

paper takes full advantage of the highly parallel nature of

ConvNet operations, and the high-degree of parallelism pro-

vided by modern DSP-oriented FPGAs.

In usual hardware designs, flexibility is left aside to max-

imize the efficiency of the system. Such designs need to be

recompiled for any small change. Instead, the system de-

scribed here is a programmable ConvNet Processor, which

can be thought of as a RISC (Reduced Instruction Set Com-

puter) processor, with a vector instruction set that matches

the elementary operations of a ConvNet. While these el-

ementary operations are highly optimized at the hardware

level, implementing a particular ConvNet simply consists in
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reprogramming the software layer of our processor, and does

not require to reconfigure the logic circuits in the FPGA.

Section 2 describes the architecture for the CNP. Section 3

describes a particular application, based on a standard Conv-

Net. Finally section 4 gives results on the performance of the

system.

2. ARCHITECTURE

Figure 1 shows the functional architecture of the system.

The whole system fits in a single FPGA, and requires an ex-

ternal memory module. This design has been implemented

with two different platforms: a low-end Xilinx Spartan-3A

DSP 3400 FPGA coupled to a DDR-SDRAM module (de-

velopment kit from Xilinx), and a high-end Xilinx Virtex-4

SX35, coupled to a pair of QDR-SRAM chips (custom de-

sign). Both FPGAs have roughly the same density (53,000

logic cells for the Spartan, and 34,000 for the Virtex), the

main difference sits in the number of built-in hardware mul-

tipliers (126 for the former and 192 for the latter), and the

speed at which they can operate (250MHz for the former,

and 450MHz for the latter). The other major difference is

the bandwidth from/to the external memory: 1GB/s for the

development kit, and 7.2GB/s for our custom design. The

built-in fixed-point multipliers use 18 bit inputs and accu-

mulate on 48 bits.
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Fig. 1. CNP: architecture.

2.1. Hardware

The CNP contains a Control Unit (CU), a Parallel/Pipelined

Vector Arithmetic and Logic Unit (VALU), an I/O control

unit, and a memory interface. The CU is actually a full-

fledged 32-bit soft CPU, based on the PowerPC architecture,

which is used to sequence the operations of the VALU. The

VALU implements ConvNet-specific operations including

2D convolutions, spatial pooling/subsampling, point-wise

non-linear functions, and other more general vector opera-

tors (square root, division, . . . ). It has direct memory access,

unlike traditional Von Neuman architectures, to avoid long

computations from hanging the CPU. The I/O unit com-

prises two hardware modules: one to acquire video data

from a standard DVI1 port (camera, or other video source),

and the other to generate a video signal for display on a stan-

dard DVI monitor.

The memory interface is a key part of the system. Its main

purpose is to enable parallelization by allowing multiple si-

multaneous access of the same memory location transpar-

ently. A dedicated hardware arbiter has been designed to

multiplex/demultiplex access to the external memory chip,

by providing 8 ports that can read/write from/to the memory

at the same time. Its heuristic is quite simple: it connects a

certain port to the external memory and estimates its band-

width to allocate a certain time slice, then switches to the

next port when this computed time slice is reached. This

way, different parts of the system can access the external

memory simultaneously (e.g. data flows from/to the VALU,

camera, display, . . . ). To ensure the continuity of data flows

on each port, FIFOs are used in both directions. The depth of

these FIFOs determine the maximum time slice that can be

attributed per port. The output of the memory controller is

about 99% when writing, and 90% when reading, and does

not depend on the number of ports writing/reading simulta-

neously.

The second key component is the CNP’s VALU. All the

basic operations of a ConvNet have been implemented at the

hardware level, and provided as macro-instructions. These

macro-instructions can be executed in any order. Their se-

quencing is managed at the software level by the soft CPU.

This architecture combines the efficiency of hardware with

the flexibility of software.

The main hard-wired macro-instructions of this system

are: (1) 2D convolution with accumulation of the result, (2)

2D spatial pooling and subsampling, using a max or aver-

age filter, (3) dot product between values at identical loca-

tions in multiple 2D planes and a vector, and (4) point-wise

non-linear mapping (currently an approximation of the hy-

perbolic tangent sigmoid function). These are higher-level

instructions than those of most traditional processors, but

provide an optimal framework for running ConvNets. This

VALU contains other instructions (division, square root,

1Digital Visual Interface
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product), that are needed to pre-process images. The entire

instruction set is vectorial, and properly pipelined to com-

pute any of these instructions in a linear time to the input

size. Other operations required in a complete vision system

can be performed on the general purpose soft CPU. We will

not go into the details of implementation here, but simply

describe the two crucial instructions of the system: the 2D

convolution and the sigmoid.

When running a ConvNet, most of the effort goes into 2D

convolutions. Therefore the efficiency of the system largely

relies on the efficiency of the convolution hardware. Our

2D convolver, shown in Fig. 2, is inspired by Shoup [14],

and includes a post accumulation to allow the combination

of multiple convolutions. It performs the following basic

operation in a single clock cycle:

zij = yij +
K−1∑

m=0

K−1∑

n=0

xi+m,j+nwmn, (1)

where xij is a value in the input plane, wmn is a value in a

K × K convolution kernel, yij is a value in a plane to be

combined with the result, and zij is the output plane.
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Fig. 2. 2D Convolution for K = 3, K = kernel width =

kernel height, W = image width.

Values from the input plane are put into K on-chip FIFOs

whose size is the width of the image minus the width of

the kernel. Shifting values in these FIFOs corresponds to

shifting the convolution window over the input plane. At

each clock cycle, values are shifted by one, and the dot

product between the input plane window and the kernel is

computed in parallel. In other words, the convolver per-

forms K2 multiply-accumulate operations simultaneously

(plus the accumulation of the temporary plane Y ), at each

clock cycle. Consequently, the number of clock cycles for

a complete convolution is equal to the number of values in

the output plane, plus the latency necessary to fill up the

FIFOs (roughly equal to the width of the input plane times

the height of the kernel). All arithmetic operations are per-

formed with 16-bit fixed-point precision for the kernel co-

efficient, and 8-bit for the states. The intermediate accumu-

lated values are stored on 48 bits in the FIFOs.

The low-end FPGA used for this implementation has 126

multiply-accumulate units, hence the maximum square ker-

nel size is 11×11, or two simultaneous kernels of size 7×7,

corresponding to a theoretical maximum rate of 24.5 × 109

operations per second at 250MHz. However, our experi-

ments use a single 7 × 7 convolver because our current ap-

plication does not require a larger kernel, which corresponds

to a theoretical maximum of 12 × 109op/s. A second 7 × 7
convolver will be added in future designs.

The point-wise non-linearity is implemented as a piece-

wise approximation of the hyperbolic tangent function

g(x) = A.tanh(B.x). Since the hard-wired multipliers are

used by the convolver, the implementation was designed to

avoid the use of multiplications, relying exclusively on ad-

ditions and shifts. The function is approximated by a collec-

tion of linear segments for which the binary representation

of the slopes ai has few ones. This allows use to implement

the multiplication using a small number of shifts and adds:

g(x) = aix + bi for x ∈ [li, li+1] (2)

ai =
1

2m
+

1

2n
m, n ∈ [0, 5]. (3)

With this constraint, the sigmoid can be computed with two

shifts and three adds.

The different instructions of the system have concurrent

access to the external memory, allowing them to work asyn-

chronously, given that the available bandwidth is sufficient.

2.2. Software

The soft CPU adds a layer of abstraction to the system: a

program on the soft CPU acts as a micro-program for the

VALU, allowing a high degree of flexibility. As shown in

Fig. 1, different functions run on this processor:

• Memory I/O: a driver to interface the memory con-

troller. It provides access to the external memory: im-

ages from the camera and feature maps produced by the

ConvNet;

• Post processing operations for object detection appli-

cations include non-maximum suppression, calculation

of centroids of activities, and other functions that can-

not be conveniently implemented in hardware, such as

formatting the results of the computation and plotting

positions of objects detected on the DVI output;
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• Convolution Kernel Manager: stores/retrieves convolu-

tion kernels from/to an external memory (flash, or SD

Card);

• Serial Interface: provides a means of transferring data

from/to an external system (e.g. a host computer);

• Terminal Interface: it provides a set of commands that a

user can send from a remote machine to execute, debug

or simply obtain results;

• Control Unit & Hardware I/O: the control unit of the

CNP is implemented here at the software level. It is

used to sequence the instruction flow, and therefore the

structure of the ConvNet we want to compute. Having

the CU at the software level provides the most flexi-

ble environment possible: the whole behaviour of the

system can be described by a simple program (in C).

The embedded software also controls external peripher-

als, such as the camera (e.g. dynamic exposure adjustment),

and the video monitor (resolution, color).

Prior to being run on the CNP, a ConvNet must be defined

and trained on a conventional machine. Currently available

software implementations of ConvNets are available in the

Lush language (a dialect of Lisp), or as C++ libraries, such

as Torch and EBLearn. Our system is built around the Conv-

Net training environment distributed as part of the Lush

system. We wrote a Lush compiler that takes the Lush

description of a trained ConvNet, and automatically com-

piles it into the proper sequence of calls for the CNP. The

result is a compact representation of the network describing

the content of each layer—type of operation, matrix of con-

nections, kernels. This representation can then be stored on

a flash drive (e.g. SD Card) connected to the CNP. This way,

the CNP can run different recognition tasks at the same time.

The lowest layers of abstraction—instruction set, as-

sembly code and programming language—are provided

by the FPGA. The highest layers—algorithms and data

structures—already exist in classical software implementa-

tions. Our Lush-to-CNP compiler unifies these two entities.

The description of a ConvNet in Lush is rather high-level,

a direct translation of the layers and connections shown in

Fig. 3 in a Lisp syntax. Kernel coefficients are automat-

ically extracted from the trained network. This insulates

users from the intricacies of the CNP architecture. Natu-

rally, users can also program the 32-bit soft CPU directly if

necessary.

3. APPLICATION TO FACE DETECTION

To demonstrate the system and to test its performance, a

ConvNet face detection system was built and run on the

CNP. Face detection systems based on ConvNets have been

shown to outperform the popular boosted cascades of Haar

wavelets method [15], both in speed and accuracy [6, 7].

3.1. Network Architecture

The ConvNet was built and trained on a conventional com-

puter using the Lush language, and compiled to the CNP

using the automatic ConvNet compiler mentioned in the pre-

vious section. The architecture of the network is quite sim-

ilar to those described in [6, 7]. The training architecture

of the network is given in table 1. The training images are

greyscale images of size 42 × 42 that have been high-pass

filtered by subtracting a Gaussian-filtered version of the im-

age from the image itself. The first layer, called C1, per-

forms 6 convolutions with 7 × 7 kernels on the input im-

age, producing 6 feature maps of size 36 × 36. The second

layer, S2 performs 2 × 2 spatial pooling and subsampling

of each feature map using a box filter (local averaging with-

out overlap). The third layer, C3, computes high-level fea-

tures by performing 7×7 convolutions on several S2 feature

maps and adding the results. Each of the sixteen C3 feature

maps combines different random subsets of S2 feature maps.

Layer S4 performs 2× 2 pooling and subsampling similarly

to S2. The C5 layer performs 6×6 convolutions, combining

random subsets of S4 feature maps into 80 different C5 fea-

ture maps. Finally, F6 multiplies all feature map values at a

single location by a 2 × 80 matrix. Each feature map in F6

represents a map of activation peaks for each category (face

or background). Layer F7 is a fixed, dummy layer that sim-

ply combines the face and background outputs into a single

score.

Layer kernels layer size

Input image 1@42 × 42
C1 (Conv) [6@7 × 7] 6@36 × 36
S2 (Pool) [6@2 × 2] 6@18 × 18
C3 (Conv) [61@7 × 7] 16@12 × 12
S4 (Pool) [16@2 × 2] 16@6 × 6
C5 (Conv) [305@6 × 6] 80@1 × 1
F6 (Dotp) [160@1 × 1] 2@1 × 1

Table 1. Architecture of the face detector ConvNet.

3.2. Training and Running the ConvNet

The network was trained on a dataset of faces and non-faces

according to the method described in [2]. The dataset con-

tained 45,000 images from various sources, of which 30,000

were used for training, and 15,000 for testing. Each set con-

tains 50% faces, and 50% random images (non faces). The

face examples include a wide variety of angles, and slight

variations of size and position within the window to improve

the robustness of the detector. With a fixed detection thresh-

old, the system reaches a roughly 3% equal error rate on this

dataset after only 5 training epochs through the training set.

After training, the Lush-to-CNP compiler normalizes and
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Fig. 3. Architecture of LeNet-5, an example of Convolutional Network.

quantizes the kernel coefficients to 16-bit fixed point repre-

sentation for transfer to the CNP. The weight quantization

did not adversely affect the accuracy of the system in any

significant way.

A key advantage of ConvNets is that they can be applied

to sliding windows on a large image at very low cost by

simply computing convolutions at each layer over the entire

image. The output layer is replicated accordingly, producing

a detection score for every 42 × 42 window on the input,

spaced every 4 pixels. The overall network is depicted in

Fig. 3 for a 320 × 240 input image.

4. RESULTS

With the Spartan-3A DSP 3400, the design uses about 70%

of the general logic (slices), and only 44% of the hardware

multipliers. With the Virtex-4 SX35 it uses 90% of the logic,

but only 28% of the multipliers. The multipliers are mainly

used by the 2D convolver, which requires 7 × 7 = 49 hard-

ware multipliers. The size of the kernel could be increased to

14 × 14 with the Virtex, without affecting the performance.

The system was connected to a simple greyscale camera,

and the output was displayed on a monitor using the DVI

interface (as shown on Figs. 4).

4.1. Speed

The current design can be run at up to 200MHz in both FP-

GAs. At this frequency, the peak performance is 9.8 bil-

lion connections per second, and approximately 4 billion

connections per second on average, when running a real-

istic network. The difference between these two values

is due to the time spent on pre/post processing and data

fetching. With these computing resources, processing a full

512× 384 greyscale image—using a standard convolutional

network containing 530 million connections (as shown in

Fig. 3)—takes 100ms, or 10 frames per second. This is for a

scale-invariant detection system that pre-computes a multi-

resolution image pyramid as input to the ConvNet. Com-

puting the same ConvNet on a monoscale input reduces this

Fig. 4. up: output of the system without non maximum sup-

pression; down: with NMS; bottom corner: output maps for

three different scales.

time by a factor of 1.5.

In the current implementation on the Xilinx development

board, the bandwidth of the external memory bus is limited

(1GB/s). Because of this limitation, this system could only

run at 125MHz, which yields a rate of 6 frames per second.

Using our custom printed circuit board, the bandwidth is not

an issue anymore (7.2GB/s), which allows the design to eas-

ily reach 200MHz. In fact, with further optimization, the

system will soon use two simultaneous 7 × 7 convolvers,

increasing the frame rate by 2.

5. CONCLUSIONS, FUTURE WORK

This paper presents a self-contained, high performance im-

plementation of Convolutional Networks on a single FPGA.

An application of the system to real-time face detection was
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demonstrated. The system opens the door to intelligent vi-

sion capabilities for low-cost robots. Given the compact-

ness, small form factor (see Fig. 5), and low power require-

ment of the design (15W in peak), a particularly interesting

potential application is vision-based navigation for micro-

UAVs. While the present system was demonstrated for face

detection, ConvNets can be trained to perform a large vari-

ety of tasks, including vision-based obstacle avoidance for

mobile robots [9, 10].

Fig. 5. A custom platform, embedding the FPGA and two

QDR memory chips.

It has been demonstrated that our system can be imple-

mented in a low-end FPGA (Xilinx Spartan-3A DSP), and

could reach a very interesting performance if set up with a

proper bandwidth to an external memory. Our custom board

(Fig 5) allows this same design to run at full speed, thanks to

the available bandwidth. The FPGA on this custom platform

is a higher-end product, and the next step of this work will

aim at improving the design to make use of its features: (1)

by implementing a second convolver to allow two simulta-

neous convolutions, (2) by re-organizing the CPU interface

to the VALU, to achieve a fully asynchronous system, (3)

by allowing the operations in the VALU to be cascaded. All

these improvements should increase the overall speed of the

system by a factor of 6.

The flexibility of our system will also allow us to integrate

new instructions to the VALU, to extend the CNP’s capabil-

ities.
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