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Abstract 

Amyotrophic lateral sclerosis (ALS) is a fatal progressive neurodegenerative disorder primarily characterized by selec-

tive degeneration of both the upper motor neurons in the brain and lower motor neurons in the brain stem and the 

spinal cord. The exact mechanism for the selective death of neurons is unknown. A growing body of evidence dem-

onstrates abnormalities in energy metabolism at the cellular and whole-body level in animal models and in people 

living with ALS. Many patients with ALS exhibit metabolic changes such as hypermetabolism and body weight loss. 

Despite these whole-body metabolic changes being observed in patients with ALS, the origin of metabolic dysregu-

lation remains to be fully elucidated. A number of pre-clinical studies indicate that underlying bioenergetic impair-

ments at the cellular level may contribute to metabolic dysfunctions in ALS. In particular, defects in CNS glucose 

transport and metabolism appear to lead to reduced mitochondrial energy generation and increased oxidative stress, 

which seem to contribute to disease progression in ALS. Here, we review the current knowledge and understanding 

regarding dysfunctions in CNS glucose metabolism in ALS focusing on metabolic impairments in glucose transport, 

glycolysis, pentose phosphate pathway, TCA cycle and oxidative phosphorylation. We also summarize disturbances 

found in glycogen metabolism and neuroglial metabolic interactions. Finally, we discuss options for future investiga-

tions into how metabolic impairments can be modified to slow disease progression in ALS. These investigations are 

imperative for understanding the underlying causes of metabolic dysfunction and subsequent neurodegeneration, 

and to also reveal new therapeutic strategies in ALS.
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Background
Amyotrophic Lateral Sclerosis (ALS) is a fatal progressive 

neurodegenerative disorder primarily characterized by 

selective degeneration of both the upper motor neurons 

in the brain and lower motor neurons in the brain stem 

and the spinal cord [1]. �e death of these motor neurons 

leads to muscle weakness, paralysis and finally death pri-

marily due to the loss of respiratory function [2]. Most 

forms of ALS start between 50 to 60  years of age and 

average life expectancy is 3 to 5 years after the onset of 

symptoms [1, 3]. However, in a small number of patients 

the disease progresses slowly [3]. Currently there are no 

effective treatments that can slow disease progression or 

cure ALS.

�e majority (90%) of ALS cases do not have a single 

genetic origin (sporadic ALS), while 10% are familial [4]. 

More than 50 causative genes have been identified in 

ALS [5]. Among those, key mutations in genes such as 

superoxide dismutase 1 (SOD1) [6], TAR DNA-Binding 

Protein (TDP-43) [7], fused in sarcoma (FUS) [8] and 

chromosome 9 open reading frame 72 (C9ORF72) [9, 

10] have been identified. Mutations in C9ORF72 are 

representative in 40% of familial ALS cases [2]. Twenty 
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percent of familial ALS cases are linked to mutations in 

the SOD1 gene and this accounts for 1 to 2% of all forms 

of ALS, while FUS and TDP-43 mutations constitute 5% 

of familial ALS cases [4, 11]. Although the cause of the 

majority of sporadic ALS is unknown, recent studies have 

also reported familial ALS associated gene mutations 

in patients with sporadic ALS (without family history). 

Notably, mutations in C9OR72 gene constitute about 5% 

of sporadic ALS cases with European ancestry [12]. �e 

number of genes identified to be associated with ALS is 

increasing. With the advancements in genetic analysis 

technologies, it is expected that other new genes will be 

discovered in the future [13].

�e exact mechanisms underlying the selective death 

of motor neurons in ALS are not yet completely known. 

However, it is believed that the pathogenic processes in 

this disease are multifactorial and may not be mutually 

exclusive [14]. Major hypothesized mechanisms include 

glutamate excitotoxicity [15], abnormal protein aggrega-

tion [6, 16], impaired axonal transport [17], inflammation 

[18], oxidative stress [19], and abnormalities in energy 

metabolism [20, 21]. ALS is a complex disease where 

several pathological mechanisms contribute to neuronal 

loss. �ere is growing evidence that demonstrates a key 

role of dysfunctional energy metabolism in driving the 

onset and progression of ALS, which we and others have 

previously reviewed [22–24]. It is not yet clear whether 

metabolic abnormalities are the underlying cause of neu-

ronal death or a consequence of disease. While some 

studies indicate that metabolic disruptions may occur 

before the loss of motor neurons, and long before the 

onset of motor symptoms [25–29], others have suggested 

the opposite [30]. However, it is likely that a combina-

tion of proposed ALS disease mechanisms, together with 

abnormal energy metabolism, could be involved in ini-

tiating and driving the selective death of motor neurons 

and denervation of muscle in ALS.

In this review, we summarize central metabolic abnor-

malities in ALS, particularly in the context of changes 

in glucose transport and metabolism in the CNS, which 

could contribute to the onset and progression of dis-

ease. First, we briefly discuss glucose metabolism in the 

CNS. �en, we focus on whole body metabolic changes 

in patients with ALS, and metabolic defects described 

in CNS glucose metabolism (glucose transport, glycoly-

sis, pentose phosphate pathway (PPP), tricarboxylic acid 

(TCA) cycle, mitochondrial oxidative phosphorylation) 

in mouse and cellular models of ALS, as well as patients 

with ALS. We will also briefly highlight efforts to cor-

rect metabolic abnormalities with the aim of delaying the 

onset and progression of disease and improving survival. 

Finally, we briefly describe areas of metabolism research 

that needs further investigation.

A brief overview of CNS glucose metabolism
Substantial amounts of energy are required to maintain 

basic physiological functions in the CNS [31]. �e adult 

human brain constitutes approximately 2% of the total 

body weight, however, it consumes about 20% of the 

body’s energy. Most of the energy is used for maintain-

ing action potentials and postsynaptic signaling [32, 33]. 

Neurons require a significant amount of energy and typi-

cally need a continuous availability of glucose from the 

blood, as stored energy in the brain is low [34]. �is high 

energy demand is mostly met by oxidation of glucose via 

mitochondrial oxidative phosphorylation (OXPHOS). 

Under normal physiological conditions, glucose is the 

main obligatory energy substrate in the brain. However, 

when glucose availability is low such as during exces-

sive physical activity, development, or prolonged starva-

tion, it can be supplemented with other substrates, such 

as lactate, ketone bodies, and medium chain fatty acids 

[35–39].

�e carbons derived from glucose are also used for 

the synthesis of lipids, amino acids and neurotransmit-

ters in the brain, such as glutamate, γ-aminobutyric 

acid (GABA), glutamine and aspartate. Glucose is also 

important in the defense against oxidative stress as it is 

metabolized via the pentose phosphate pathway (PPP) 

to produce nicotinamide adenine dinucleotide phos-

phate (NADPH), which is needed to keep glutathione in 

its antioxidant reduced state [40]. Glucose moves across 

the endothelial membrane into the extracellular fluid via 

facilitated transport by glucose transporter 1 (GLUT1) 

[41]. GLUT1 also transports glucose from the extra-

cellular fluid into astrocytes. In neurons, GLUT3 is the 

main glucose transporter and has a higher rate of glucose 

uptake than GLUT1 [35, 42]. Recently, GLUT4 has been 

shown to have a regulatory role during activity depend-

ent increases in energy demand [43].

Cellular energy is produced through glycolysis (glu-

cose to pyruvate) and oxidative metabolism (pyruvate 

to  CO2) via the tricarboxylic acid (TCA) cycle and the 

electron transport chain. Glycolysis converts glucose 

to pyruvate in the cytosol in a series of enzymatic reac-

tions generating adenosine triphosphate (ATP) and nico-

tinamide adenine dinucleotide (NADH). Briefly, glucose 

is converted into glucose 6-phosphate by hexokinase, a 

regulatory enzyme in glycolysis. Following the conver-

sion of glucose to glucose 6-phosphate, glucose 6-phos-

phate continues through the glycolytic pathway or enters 

into the PPP. �e PPP has two phases: oxidative and non-

oxidative. �e oxidative phase converts glucose-6-phos-

phate into ribulose-5-phosphate,  CO2 and NADPH; the 

latter is important for maintaining redox balance. On the 

other hand, the non-oxidative phase gives rise to fruc-

tose 6-phosphate and glyceraldehyde 3-phosphate, as 
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well as ribose 5-phosphate and xylulose-5-phosphate. 

�e latter are important for the nucleotide biosynthe-

sis of nucleic acids and sugar phosphate precursors for 

amino acid synthesis (reviewed in [44]). Glucose 6-phos-

phate can also be converted to glucose 1-phosphate to 

produce glycogen, an energy reserve mainly stored in 

astrocytes. Via glycolysis, glucose 6-phosphate forms 

fructose 6-phosphate catalyzed by phosphoglucomutase 

and later fructose 1,6-bisphosphate by another regulatory 

enzyme phosphofructokinase [45]. Fructose 1,6-bispho-

sphate gets converted into dihydroxyacetone phosphate, 

glyceraldehyde 3-phosphate, 2- and 3-phosphoglycerate, 

phosphoenol pyruvate and pyruvate by several enzy-

matic reactions producing NADH and ATP. Pyruvate 

can be converted into lactate by lactate dehydrogenase 

or into alanine by alanine aminotransferase. However, 

pyruvate largely enters the mitochondria and is con-

verted to acetyl-CoA catalyzed by pyruvate dehydroge-

nase (PDH). In astrocytes, pyruvate can be carboxylated 

by pyruvate carboxylase to generate the TCA cycle inter-

mediate oxaloacetate [46]. Within the TCA cycle a series 

of reactions oxidize acetyl-CoA and generate reducing 

equivalents, which then transfer electrons to oxygen via 

the enzyme complexes of the electron transport chain, 

ultimately resulting in the generation of ATP by ATP 

synthase also called complex V [47]. �e TCA cycle is 

important not only in producing reduction equivalents 

for ATP generation, but it is also essential for providing 

intermediates to synthesize lipids, neurotransmitters and 

amino acids [34].

Energy generating processes and carbon metabolism 

are partially compartmentalized. In the CNS, there is 

cellular heterogeneity and different cells have differ-

ent metabolic roles. �e majority of cells in the CNS are 

neurons and astrocytes. �eir metabolic cooperation in 

energy metabolism has been extensively studied. Each 

cell has different enzymes and transporters giving them 

unique metabolic characteristics. Astrocytes express 

pyruvate carboxylase [46] which converts pyruvate into 

oxaloacetate to replenish lost TCA cycle intermedi-

ates used to synthesize lipids, amino acids and neuro-

transmitters, including glutamate and glutamine. �e 

majority of synapses in the CNS are glutamatergic [48]. 

During neurotransmission, neurons release glutamate, 

mostly synthetized from glucose, into the synaptic cleft. 

Glutamate is then taken up by astrocytes via glutamate 

transporters [49] and an astrocyte specific glutamine 

synthetase converts glutamate into glutamine [50]. Glu-

tamine can be transferred to neurons and converted back 

to glutamate by phosphate activated glutaminase to com-

plete the glutamate-glutamine cycle [51]. �is cycle is 

important to protect neurons from excitotoxicity.

Glutamate can also be used as a substrate for oxidative 

metabolism. Seventy percent of glutamate in astrocytes is 

oxidatively metabolized by the TCA cycle, while 30% is 

converted into glutamine [52]. Similarly, GABA released 

from the synaptic cleft during neurotransmission can 

be taken up by astrocytes and enter the astrocytic TCA 

cycle as succinate via GABA transaminase and succinate 

semialdehyde dehydrogenase. Succinate can be further 

metabolized in the TCA cycle to form α-ketoglutarate, 

glutamate and subsequently glutamine. Astrocytes 

release glutamine where it is taken up by neurons to 

synthesize glutamate or GABA. In GABAergic cells, glu-

tamate produced via phosphate activated glutaminase 

is decarboxylated to GABA. �is glutamate/GABA-glu-

tamine cycle is important to maintain the neurotransmit-

ter pool in the CNS [53, 54].

Abnormalities in any step of these glucose metabolism 

pathways can result in reduced generation of ATP, which 

may affect basic cellular functions. Also, a decline in ATP 

levels can lead to a compensatory activation of other 

energy generating pathways, which may increase pro-

duction of reactive oxygen species (ROS) and oxidative 

stress. In addition, since glucose metabolism is linked 

with amino acid neurotransmitter metabolism, abnor-

malities in glucose metabolism pathways may contribute 

to glutamate excitotoxicity and neurodegeneration.

Disturbed energy homeostasis in patients with ALS
Energy homeostasis is the balance between energy intake 

and expenditure. �is balance is maintained when uptake 

of nutrients is matched with energy expenditure, includ-

ing thermoregulation, basal and physical activity. In 

patients with ALS, energy homeostasis has been shown 

to be disturbed [21, 55]. �is is linked with increased 

resting energy expenditure (hypermetabolism) and/or 

decreased food intake [56, 57].

Hypermetabolism is a hallmark of many patients with 

ALS. Several reports have demonstrated that about 

25–68% patients with ALS have increased resting energy 

expenditures [56–62]. In a study by Desport et  al. [61], 

the resting energy expenditure of patients with ALS was 

on average 10% higher than healthy controls. Recently, 

hypermetabolism has been associated with significant 

reduction in function and reduced survival in patients 

[62]. Although various studies have suggested that hyper-

metabolism could lead to loss of body weight in patients 

with ALS, a recent study by Steyn et al. [62] reported no 

significant differences in body weight between hypermet-

abolic and normometabolic ALS patients, suggesting that 

other mechanisms such as loss of appetite and malnu-

trition may contribute to body weight loss. Indeed, loss 

of appetite has been shown in a subset of patients with 

ALS, which contributes to reduced food intake [63–65]. 



Page 4 of 17Tefera et al. Cell Biosci           (2021) 11:14 

�is is in agreement with studies that show malnutri-

tion in patients with ALS. A study by Kasarskis et al. [59] 

showed that patients with ALS consumed 84% of recom-

mended daily calories and are profoundly malnourished. 

Malnutrition is usually associated with dysphagia as a 

result of a weakness in bulbar muscles [66]. Moreover, 

malnourished patients with ALS have an average eight-

fold increased risk of death [67] and malnutrition overall 

is associated with poor survival [58].

Maintaining body weight in ALS is very important as 

it has been shown to affect ALS risk and survival [58, 

68–70]. Compared to people with normal body weight, 

obese people were found to have 30–40% reduced risk of 

ALS [69]. In addition, reduced body mass index (BMI) is 

linked to poor survival outcome in patients with ALS [58, 

68, 71]. For each 5% loss in body weight, Marin et al. [58] 

found a 30% increased risk of death. According to Paga-

noni et al. [68], the association between BMI and mortal-

ity is “U”-shaped, where patients with BMI 30–35 kg/m2 

have the highest survival. On the other hand, BMIs < 18 

and > 35 are associated with increased mortality. A recent 

study in large number of patients with ALS (n = 2420) 

demonstrated that more than two-thirds of patients 

exhibited weight loss at diagnosis. �is was observed in 

71.8% of bulbar-onset and 64.2% of spinal-onset patients 

with ALS. In addition, they found that for every 10% loss 

in body weight, there was a 23% increase in risk of death 

[72]. Interestingly, about 35.1% of patients with ALS lose 

body weight in spite of lack of symptoms of dysphagia 

indicating that the causes of body weight loss are multi-

factorial [72, 73]. �erefore, in order to reduce or prevent 

body weight loss, individually tailored therapeutic inter-

ventions for each underlying factor are needed [72].

Overall, maintaining body weight or promoting body 

weight gain may be of significant benefit in patients with 

ALS who lose weight. �erefore, various studies have 

investigated nutritional interventions with the aim of 

delaying disease progression in ALS. In a randomized 

clinical trial in 24 patients with ALS, high caloric diets 

with either high carbohydrate or high fat contents were 

shown to delay disease and prevent body weight loss 

compared to an isocaloric control diet [74]. For these rea-

sons, dietary interventions which improve energy balance 

and maintain body mass index have been recommended 

in ALS [58, 71]. On the other hand, a recent randomized 

clinical trial investigating the efficacy and tolerability 

of a high calorie fatty diet in 208 patients with ALS did 

not find significant differences on survival between ALS 

and control patients [75]. Interestingly, posthoc analysis 

showed that high calorie diets prolonged life and stabi-

lized body weight in patients with fast progressing dis-

ease [75]. Overall, it appears that there is impaired energy 

homeostasis in patients with ALS, and disease modifying 

properties of metabolic treatments in ALS confirm the 

key role of energy metabolism in the pathogenesis of the 

disease. Despite these whole-body metabolic changes 

being observed in patients with ALS, the origin of met-

abolic dysregulation remains to be fully elucidated. 

However, a number of pre-clinical studies indicate that 

underlying bioenergetic impairments at the cellular level 

may contribute to metabolic dysfunctions in ALS.

Defects in CNS glucose metabolism in ALS
Various studies have shown changes in glucose utilization 

in certain brain and spinal cord regions of ALS patients as 

well as animal models of the disease. In addition, defects 

in specific energy generating metabolic pathways have 

been reported, which we discuss in the next sections. A 

simplified summary of CNS glucose metabolism, and 

commonly observed defects in ALS are shown in Fig. 1.

Alterations in glucose transport or utilization

�e most common technique used to quantify local cer-

ebral glucose utilization  (CMRGLC) is positron emission 

tomography (PET) with the radioactive glucose analogue 
18fluoro-2-deoxyglucose (FDG). Like glucose, FDG is 

taken up by the brain via facilitative glucose transporters 

and is phosphorylated by hexokinase. �en FDG-6-phos-

phate is trapped as it cannot further be metabolized by 

glycolysis. �e amount of radiation measured in the CNS 

during PET is thought to be indicative of the rate of gly-

colysis, because glucose transport through facilitative 

glucose transporters is unlimited and hexokinase is the 

rate limiting enzyme for glycolysis [76]. �erefore, low 

signals in FDG-PET (or low signals obtained with related 

methods using 14C 2-deoxy glucose autoradiography) are 

interpreted as low glucose utilization and/or hypometab-

olism. Here, it is important to note that although many 

studies use the terms ‘glucose metabolism’ and ‘glucose 

uptake’ interchangeably, imaging studies with 18F-FDG 

PET and 14C autoradiography can only indicate changes 

in glucose transport from the blood into brain, or in the 

first step in the glycolytic pathway, that is the rate of con-

version of glucose into glucose 6 phosphate by hexoki-

nase [77, 78].

Various PET and autoradiography studies with 18F and 
14C 2-deoxy glucose have indicated widespread glucose 

hypometabolism in several brain regions in the motor 

cortex of patients with ALS [79–86]. �e reason for this 

glucose hypometabolism is not clear as it was observed 

independent of cerebral atrophy (neuronal death) and old 

age [79, 80]. By contrast, increased FDG-PET signals in 

other brain regions including the amygdala, midbrain, 

and cerebellum [83–85, 87–89] as well as in the spinal 

cord [90, 91] have been ascribed to local activation of 

astrocytes and microglia [87, 89, 91]. Most of the earlier 
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studies were done in small number of patients, and stud-

ies with larger numbers of patients with ALS have also 

shown similar glucose hypometabolism in frontal areas 

and hypermetabolism in the midbrain and cerebellum 

Fig. 1 A simplified summary of CNS glucose metabolism, and commonly observed defects in amyotrophic lateral sclerosis (ALS). Glucose 

enters into neurons via glucose transporter (GLUT3) and via GLUT1 into astrocytes. In this figure, the astrocyte foot process is shown wrapping 

around the capillary. Then, glucose is phosphorylated by hexokinase (HK) to glucose 6-phosphate (G6P). G6P can be converted by glucose 

6-phosphate dehydrogenase (G6PDH) to 6-phospho gluconolactone to enter the pentose phosphate pathway (PPP), where it is converted by a 

series of enzymatic reactions to subsequent PPP intermediates, such as R5P (ribose 5-phosphate) which later can enter the glycolytic pathway 

via glyceraldehyde 3-phosphate (G3P) or provide nucleotide backbones. G6P may also be converted to glucose 1-phosphate which is utilized 

for glycogen synthesis. If G6P continues through glycolysis, it is converted into F6P (fructose 6 phosphate) and later to fructose 1,6-bisphosphate 

(F16BP) by phosphofructokinase (PFK). F16BP is further metabolised to glyceraldehyde 3-phosphate (G3P), phosphoenol pyruvate (PEP) and 

pyruvate, by a series of enzymatic processes including pyruvate kinase (PK) which converts PEP into pyruvate. Pyruvate can be reduced to lactate 

by lactate dehydrogenase or enters mitochondria via mitochondrial pyruvate carrier (MPC) and gets converted into acetyl CoA by pyruvate 

dehydrogenase (PDH). Acetyl-CoA condenses with oxaloacetate to citrate and thereby enters the tricarboxylic acid (TCA) cycle. The TCA cycle 

generates different TCA cycle intermediates, including α-ketoglutarate (α-KG) from which glutamate can be synthesized. During neurotransmission, 

glutamate is released from the presynaptic vesicles into the synapse where it is taken up by glutamate transporters in astrocytes and then 

converted into glutamine (Gln) by glutamine synthetase (GS). Gln can also be transferred into neurons and gets converted into Glu by phosphate 

activated glutaminase (PAG), completing the Glu-Gln shuttle. In GABAergic neurons, Glu is converted into GABA by glutamate decarboxylase (GAD) 

enzyme. The TCA cycle also generates reducing equivalents such as nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide, 

which transfer electrons to oxygen via the enzyme complexes of the electron transport chain, ultimately resulting in the generation of ATP. In 

ALS, numerous metabolic defects (shown in red) at various steps in the glucose metabolism pathway that alter glucose metabolism and overall 

ATP generation have been described. This include impairments in glucose transport (changes in glucose transporter expression or HK activities), 

glycolysis (reduced activities of pyruvate kinase and phosphoglycerate kinase, reduced levels of lactate and reduced activities of PK), and PPP 

(reduced activities of G6PDH and reduced levels of R5P), increased glycogen accumulation, reduced entry of pyruvate into the TCA cycle (increased 

protein levels of PDH kinase 1, which downregulates PDH activity; reduced activities of oxoglutarate dehydrogenase (OGDH)), mitochondrial 

dysfunction, reduced mitochondrial ATP production, increased reactive oxygen species (ROS) production, as well as abnormal neuronal-glial 

interactions (reduced transfer of glutamate to glutamine, and glutamate excitotoxicity)
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[88, 89]. Notably, using FDG-PET as a biomarker to 

discriminate patients with ALS from healthy controls, 

Pagani et al. [89] compared 195 patients with ALS to 40 

healthy controls, and found glucose hypometabolism in 

the frontal and occipital cortex, and hypermetabolism 

in the midbrain of ALS patients. To consider the func-

tional differences between spinal and bulbar onset ALS, 

Cistaro et  al. [87] performed FDG-PET in 32 patients 

with ALS and 22 healthy subjects. �ey found relative 

decreases in signal in prefrontal, frontal and parietal 

brain regions in patients with bulbar onset disease when 

compared to healthy controls and ALS subjects with spi-

nal onset disease. Similar patterns of glucose hypometab-

olism have been observed in familial ALS patients with 

C9ORF72 mutations when compared to patients with-

out C9ORF72 mutations, where FDG-PET signals were 

reduced in the thalamus, basal ganglia and limbic cortex, 

while increased glucose utilization was observed in the 

midbrain [83, 92]. Interestingly, studies have linked glu-

cose hypometabolism with disease progression [79, 86, 

92–94]. Dalakas et  al. [95] found a correlation between 

a decline in FDG signal and progressive weakness and 

upper motor neuron dysfunction. Likewise, the extent of 

hypometabolic/hypermetabolic spread in the brain was 

associated with disease progression in patients with ALS 

[86]. Also, widespread prefrontal glucose hypometabo-

lism was linked with reduced ALS functional rating scale 

score (worsening of clinical symptoms) and shorter sur-

vival [92, 94].

Defective glucose metabolism has also been shown 

in the cortex and spinal cord of SOD1 mouse mod-

els of ALS [26, 96]. Reduced glucose utilization before 

the onset of symptoms (60 days of age) was observed in 

motor regions of the cerebral cortex of mutant  SOD1G93A 

mice and this hypometabolism extended to the spinal 

cord at 120 days of age [26]. In the spinal cord, glucose 

metabolism appeared to be reduced at early sympto-

matic and end stages of the disease in  SOD1G93A mice, 

but was increased before disease onset [96]. Recently, 

Weerasekera et  al. used simultaneous 18F-FDG PET-

magnetic resonance imaging and showed that glucose 

metabolism is decreased in the motor and somatosen-

sory cortices of TDP-43A315T mice while it was increased 

in midbrain region between 3 and 7  months of age, as 

compared to WT controls [97]. �is suggests that similar 

changes in glucose metabolism may be observed across 

ALS disease models.

Although altered CNS glucose metabolism is a persis-

tent feature in both human and animal models of ALS, 

the reasons why certain brain regions are hypometa-

bolic while others are hypermetabolic are not clearly 

understood. Possible mechanisms for these changes may 

include reduced cerebral blood flow, and/or defects in 

glucose transport mechanisms or hexokinase activities. 

Reductions in cerebral blood flow that may affect provi-

sion of energy substrates to the brain have been shown 

in some CNS regions in animal models and patients 

with ALS [96, 98, 99]. Moreover, reduced expression of 

GLUT1 in the endothelial cells of lumbar and cervi-

cal spinal cord in  SOD1G93A mice indicate that glucose 

uptake could be decreased as lowered GLUT1 expres-

sion may limit glucose transport [100]. Indeed, reduced 

glucose transport has been observed in synaptosomes 

obtained from the cortex of  SOD1G93A mice [101]. In 

mutant  SOD1G37R mice, misfolded mutant SOD1 binds 

directly to the voltage dependent anion channel located 

on the outer mitochondrial membrane, thereby reduc-

ing hexokinase binding to the channel [102]. �e conse-

quences for reduced hexokinase binding are unknown. 

We have previously found no changes in hexokinase 

activity in cytosolic homogenates from the cortex and 

spinal cord of  SOD1G93A mice at the onset of disease 

[103]. By contrast, elevated hexokinase activities have 

been shown in synaptosomes obtained from the spinal 

cord of presymptomatic and symptomatic  SOD1G93A 

mice, as well cerebral cortex of symptomatic  SOD1G93A 

mice [104]. �ese differences may suggest that local glu-

cose metabolism could be compartmentalized, and that 

different cellular compartments show different metabolic 

changes.

In general, most studies using glucose analogues in the 

CNS (particularly in the cortex) suggest that the ability of 

cells to take up glucose is impaired. Taken together, the 

mechanisms behind CNS hypometabolism and hyper-

metabolism are still unclear. Reduced neuronal cell den-

sity, reduced blood flow and reduced glucose transporter 

expression could in part explain glucose hypometabo-

lism, while activation of glial cells was associated with 

hypermetabolism [87, 89]. Future studies are needed to 

identify mechanisms that underlie hypo- and/or hyper-

metabolism in the CNS of patients with ALS as well as 

animal models.

Dysfunctions in glucose metabolism pathways in ALS

Glycolysis

Glucose partially metabolizes glucose to pyruvate, each 

lactate resulting in two molecules of ATP and NADH. 

Neurons uses glycolysis as a fast mechanism to generate 

ATP from glucose, particularly when there is an increase 

in energy demand nerve terminals rely heavily on glyco-

lysis for synaptic function [105]. Glycolysis is also impor-

tant for fast axonal transport [106]. In addition, during 

energy stress, a local increase in glycolytic enzyme clus-

tering in presynaptic nerve terminals has been observed, 

indicating the importance of glycolysis to meet local 

energy demand [107].
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In ALS, there is an increasing number of reports of 

defective glycolysis. We recently measured metabolite 

levels following injection of [1-13C]glucose in the CNS 

of wild type and  SOD1G93A mice at the onset and mid-

symptomatic stage of disease using high pressure liquid 

chromatography, 1H and 13C nuclear magnetic resonance 

spectroscopy. We found a reduction in the levels of the 

total and 13C-glucose derived glycolytic metabolites lac-

tate and alanine, but not glucose [108]. In a subsequent 

study where assessment was limited to the onset stage 

of disease, we found reductions in pyruvate levels and 

reduced activity of pyruvate kinase in cerebral cortex. 

However, no changes in hexokinase or pyruvate dehy-

drogenase activity, neither any changes in total amounts 

of other glycolytic and TCA cycle intermediates were 

observed [103]. Taken together, in CNS tissue of symp-

tomatic  SOD1G93A mice, impairments in pyruvate pro-

duction and conversion toward lactate and alanine were 

seen, which are indicative of defects in the glycolytic 

pathway. It is known that defective glycolysis can reduce 

entry of pyruvate into the TCA cycle and contribute to 

insufficient mitochondrial energy generation, thereby 

leading to a reduction in the ability to maintain basic 

cellular functions and capacity to counteract oxida-

tive stress. In the cortex and spinal cord of symptomatic 

 SOD1G93A mice, diminished levels of some glycolysis-

derived metabolites and less incorporation of 13C derived 

from 13C-glucose into TCA cycle derived neurotransmit-

ters indicate impaired glucose carbon handling. In line 

with this, we have previously observed that in the CNS 

of  SOD1G93A mice, the first turn TCA cycle metabolites 

derived from [1-13C]glucose, including [4-13C]glutamate, 

[4-13C]glutamine and [2-13C]GABA were significantly 

decreased at mid-symptomatic stages of disease. �is can 

be explained by reduced glucose entry into the TCA cycle 

as well as impairments in glutamate production from 

α-ketoglutarate [108]. In agreement with defective glyco-

lysis, decreased gene expression of the glycolytic enzyme 

phosphoglycerate kinase 1, in  SOD1G93A mouse spinal 

cord has been observed [109]. In contrast to observa-

tions of glucose hypometabolism, increased expression of 

the glycolytic enzymes hexokinase, pyruvate kinase, and 

PDH kinase 1 was found in the motor neuron NSC-34 

cell line [110]. Also, in a TDP-43 fly model, increased gly-

colytic activation has been reported [111]. In this regard, 

increased expression of glycolytic activities may signify 

an adaptive response for increased energy requirements 

in this disease.

Although little emphasis has been given to CNS gly-

colysis research in ALS, some studies indicate that 

activating the glycolytic pathway has the potential to 

modify ALS. Restoring  NAD+ levels with supplemen-

tation of nicotinamide, an electron acceptor required 

to sustain glycolysis, was shown to modestly improve 

survival in the  SOD1G93A mouse model of ALS and 

increase glycolytic ATP production [43, 112]. In addi-

tion, a combination of two compounds that elevate 

 NAD+ levels were found to improve ALS functional 

rating scale score, pulmonary function, and muscular 

strength in a small number of patients [113]. Likewise, 

activation of glycolysis via GLUT3 and phosphofruc-

tokinase overexpression in motor neurons has been 

found to be neuroprotective and improve locomotion 

in a TDP-43 Drosophila model, suggesting that glyco-

lysis activators could slow disease progression and pro-

long survival in ALS [111]. Whether targeting of the 

glycolytic pathway would exert similar benefits in other 

models or in human ALS is an area of research that 

requires more investigation in future.

Glycogen metabolism

Glycogen is mainly stored in astrocytes and is rapidly 

used as a fuel source during brain stimulation. Glyco-

gen breakdown directly yields glucose-6-phosphate; this 

can lead to the initiation of glycolysis with lower ATP 

requirement when compared to glucose, which requires 

one ATP molecule for phosphorylation by hexokinase 

to glucose-6-phosphate. Changes in the degradation of 

glycogen, or increased accumulation of glycogen could 

contribute towards changes in glycolytic pathways in 

ALS. Recently, Li et  al. [114] reported increased lev-

els of glycogen in the lumbar spinal cord of  SOD1G93A 

mice at the onset and end stage of disease, indicating 

that impairments in glycogen metabolism that occur 

upon the presentation of disease phenotype are main-

tained throughout the course of disease. In addition, in 

the spinal cord, the protein and mRNA levels of glycogen 

synthase (the enzyme that synthesizes glycogen) were 

unchanged, while those of phosphorylase B (the enzyme 

that degrades glycogen) were decreased. �is indicates 

that glycogen accumulation in the spinal cord is due to 

impairments in glycogenolysis rather than increased gly-

cogen synthesis (glycogenesis). Similarly, investigating 

metabolism in induced astrocytes from human famil-

ial ALS patients with C9ORF72 expansions, the mRNA 

and protein levels of glycogen mobilization enzymes 

glycogen phosphorylase and phosphoglucomutase were 

decreased [115], indicating reduced availability of energy 

from glycogen. In agreement with this, glycogen accu-

mulation has also been reported in human ALS. Dodge 

et al. [116] found reduced neutral α-glucosidase activity 

(which degrades glycogen) in the spinal cord of late stage 

 SOD1G93A animals and in spinal cord tissue from people 

with ALS, confirming that glycogen accumulation is also 

a feature of human disease. Taken together, an altered 
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ability to mobilise energy from glycogen stores is likely to 

affect energy metabolism in the spinal cord, but whether 

this contributes directly or indirectly to ALS pathology 

remains to be determined.

Pentose phosphate pathway (PPP)

�e PPP is an important metabolic pathway which is 

directly linked to glycolysis, as glucose-6-phosphate, a 

metabolite produced through phosphorylation of glu-

cose via hexokinase, is the substrate in both processes. 

�e PPP is crucially needed to generate key pentose pre-

cursors for the synthesis of nucleotides and amino acids 

as well as NADPH for cellular defence against oxidative 

stress [44]. Around 5–6% of glucose is metabolized via 

PPP in neurons [117]. In the spinal cord of  SOD1G93A 

mice, we found a 35% reduction in total levels of ribose 

5-phosphate together with threefold higher 13C enrich-

ment in glucose-6-phosphate and a 15% decrease in 

glucose 6-phosphate dehydrogenase activity at onset of 

disease [103]. �is indicates reduced PPP metabolism 

and reduced synthesis of ribose, rather than increased 

metabolism of ribose, which is also possible. Consistent 

with these findings in vivo, decreased mRNA expression 

and activities of the PPP enzymes glucose 6-phosphate 

dehydrogenase and 6-phosphogluconate dehydrogenase 

have been observed in mutant SOD1 transfected NSC-

34 cells [118]. �e PPP plays a major role in generating 

NADPH, which is required for glutathione maintenance 

in its reduced state and thereby protects neurons from 

oxidative stress. Glutathione is a major antioxidant mol-

ecule that detoxifies ROS in the brain. Reduced levels of 

NADPH [118], lower glutathione levels [119, 120] and 

increased oxidative stress are observed in ALS, corrobo-

rating that impairments in the PPP might further aggra-

vate oxidative stress in the disease. In conclusion, an 

impaired PPP in ALS CNS tissue could contribute to an 

overall reduction in glucose utilisation as well as ribose 

and NADPH synthesis, resulting in irregularities with 

nucleotide synthesis and increased oxidative stress. Fur-

ther research is needed to assess if impairments in PPP 

contribute to ALS pathology and if activation of the PPP 

could result in therapeutic benefit.

TCA cycle

Few changes in the TCA cycle have been reported in the 

CNS. In the motor cortex of patients with ALS, there was 

less mRNA expression of enzymes contributing to the 

TCA cycle, such as the cytosolic malate dehydrogenase 

1 (an enzyme involved in metabolic cooperation between 

cytosol with mitochondria) [121]. In motor neuronal cul-

tures obtained from SOD mice as well as in NSC-34 cells, 

protein levels of PDH kinase 1, which downregulates 

PDH activity, was increased, and this in turn is expected 

to reduce the entry of pyruvate into the TCA cycle [110, 

120]. In addition, alterations in expression of enzymes 

involved in TCA cycle metabolism such as decreased 

mRNA levels of isocitrate dehydrogenase 3α (involved 

in TCA cycle metabolism) in astrocytes [122] and oxo-

glutarate dehydrogenase (a key enzyme that controls 

metabolic flux through the TCA cycle) in  SOD1G93A mice 

spinal cord have been reported [123]. In our own work, 

we have found reduced activity of oxoglutarate dehydro-

genase in the cortex of  SOD1G93A mice [103]. Reduction 

in the activities of TCA cycle enzymes in CNS tissues 

in ALS could be partly explained by oxidative stress. As 

activities of TCA cycle enzymes are inhibited during 

increased cellular oxidative stress as a possible adaptive 

response against ROS and to provide antioxidant effects, 

inhibition of TCA cycle enzymes results in lower NADH 

generation, and diminished availability of electrons to 

enter the electron transport chain [124, 125].

Oxidative phosphorylation and mitochondrial dysfunctions

Mitochondria are the primary site of energy production. 

However, they are also the main sources of ROS. Uncon-

trolled production of ROS may damage lipids, proteins 

and/or nucleic acids and as a result, impair mitochondrial 

function [126]. In the spinal cord and brain of patients 

with ALS and in mouse models of ALS, several studies 

have shown functional and morphological impairments 

in mitochondria [127–129]. �ese defects may contrib-

ute to reduced energy production or increased oxidative 

stress. In addition, several defects in electron transport 

chain activities, reduced oxidative phosphorylation and 

subsequent generation of ATP have been reported [26, 

127, 130–133]. Particularly, subunits of ATP synthase, 

the last enzyme complex at the end of mitochondrial 

oxidative phosphorylation responsible for ATP produc-

tion from ADP, showed lower expression in spinal cord 

[134, 135] and motor cortex of patients with ALS [121], 

which may lead to reduced ATP generation. In con-

trast, in motor neurons isolated from pre-symptomatic 

 SOD1G93A mice, increased expression of genes involved 

in mitochondrial machinery including ATP synthase was 

found [122]. �is could be due to an early compensa-

tory activation of energy generating pathways to coun-

teract increased energy demand. Overall, mitochondrial 

dysfunction and its physiological consequences can lead 

to depletion of cellular energy and subsequent death of 

motor neurons. Several excellent reviews have been pub-

lished on mitochondrial abnormalities in ALS and we 

encourage the reader to access these resources for a more 

detailed overview [136–138].

Overall, the mechanisms underlying altered CNS glu-

cose metabolism in ALS are not clearly understood and 

remain to be determined. However, possible mechanisms 
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that can drive glucose metabolism abnormalities include 

mutant protein aggregation and oxidative stress. Stud-

ies have shown that mutant TDP-43 accumulates in 

the mitochondria in patients with ALS which leads to 

impairments in complex I activities causing defective 

cellular energetics [139]. In addition, Drosophila with 

mutant human FUS overexpression have been shown to 

have fragmented mitochondria because of pathological 

mitochondrial aggregation of FUS [140]. Both mutant 

TDP-43 and FUS have also been shown to impair mito-

chondrial- endoplasmic reticulum interactions leading 

to impaired protein homeostasis and reduced mitochon-

drial ATP production [141, 142]. Also, accumulation of 

mutant SOD1 protein has been found in brain mitochon-

dria that caused defective complex activities in the elec-

tron transport chain particularly complex I and IV [143, 

144]. �ese studies suggest that mitochondrial protein 

aggregation may cause structural and functional abnor-

malities in mitochondria leading to impaired glucose 

metabolism and generation of ATP.

Defective glucose metabolism in the CNS may also 

arise as a result of increased oxidative stress, an imbal-

ance between ROS and antioxidant defence mechanisms. 

Numerous studies have shown that oxidative stress is 

involved in the onset and progression of ALS (reviewed 

in [19]). As such, oxidative damage to the enzymes 

involved in the glucose metabolism pathways as well as 

to mitochondrial DNA may lead to defective energy pro-

duction. Indeed, studies have shown oxidative modifica-

tions of glycolytic, TCA cycle and mitochondrial proteins 

in the CNS in neurodegenerative disorders [145, 146]. 

�is ultimately may lead to disrupted neuronal energy 

metabolism and worsening of oxidative stress. In sum-

mary, further studies are required to identify specific 

mechanisms underlying defective glucose metabolism in 

ALS and also to better understand the disease and find 

therapeutic targets.

Defects in cellular energy metabolism: neurons, 
glia and their interactions
�e progressive loss of motor neurons is the hallmark 

of ALS, however, it is acknowledged that non-neuronal 

cells, including astrocytes [147, 148] and oligodendro-

cytes [149–151] affect motor neuron death and disease 

progression. �e metabolic interaction of neurons and 

astrocytes is crucial for limiting glutamate mediated exci-

totoxicity, providing metabolic substrates and in defend-

ing against oxidative stress (reviewed in [152]). In patients 

with ALS, abnormalities in neuronal and astrocytic inter-

actions with regard to glutamate metabolism have been 

observed [15, 153, 154]. Several early reports have shown 

the loss of expression of the main glutamate transporter 

protein—1/ excitatory amino acid transporter—2 in the 

spinal cord [155–159] and the motor cortex [157] of 

patients with ALS or animal models, which can result in 

a decrease in glutamate transport. Indeed, reduced glu-

tamate transport was shown in synaptosomes obtained 

from the brain and spinal cord tissues of patients with 

ALS and animal models [101, 154]. In  SOD1G93A mice 

spinal cord, we found reduced glutamate and glutamine 

production from glucose as well as reduced transfer 

of glutamate to glutamine [108]. Reduced glutamate 

uptake can contribute to excitotoxicity. Consistent with 

this, increasing EAAT2 expression to increase glutamate 

uptake into astrocytes has been shown to protect motor 

neurons from death and extend survival in mouse and 

cellular models of ALS [160, 161], while loss of its expres-

sion reduced survival of  SOD1G93A mice [162]. Riluzole, 

an approved drug in the treatment of ALS is believed to 

reduce glutamate neurotransmission by inhibiting gluta-

mate release [163, 164], enhancing astrocytic uptake of 

glutamate by activating glutamate transporters [165–167] 

and inhibition of a persistent sodium current, resulting 

in less repetitive firing [168]. Overall, dysregulation of 

astrocytic and neuronal interactions may contribute to 

excitotoxicity and neurodegeneration.

Astrocytes and oligodendrocytes provide metabolic 

support to neurons. �ere is emerging evidence to sug-

gest that during neurotransmission, glutamate uptake 

in astrocytes leads to activation of glycolysis and lac-

tate production [169]. Lactate can then be released into 

extracellular fluid via the monocarboxylate transport-

ers (MCT1 and MCT4) and can be transferred to neu-

rons (via MCT2), where it can be utilized as an energy 

substrate. Lactate can be converted into pyruvate by lac-

tate dehydrogenase and oxidized in the mitochondrial 

TCA cycle. In ALS, various studies have shown reduced 

expression of monocarboxylate transporters which may 

hinder glial metabolic support to neurons [109, 151, 170]. 

Decreased expressions of MCT1 and MCT4 in the motor 

cortex of patients with ALS, and reduced MCT1 expres-

sion in  SOD1G93A mouse spinal cord [151], may reduce 

lactate transport to neurons, and lactate transport from 

oligodendrocytes to neurons. In addition, when glucose 

availability is low, as is seen in cases of excess neuronal 

activity or diseases, astrocytes can use glycogen and 

thereby spare glucose for neurons [171]. Also, astrocytes 

are able to produce lactate from glycogen and may pro-

vide lactate or glutamine to neurons thereby preventing 

energy depletion [172, 173]. In ALS, however, the abil-

ity of astrocytes in providing metabolic support to neu-

rons seems to be impaired as abnormalities in glycogen 

metabolism have been observed in ALS, please see the 

discussion above [114–116].

A recent study used a phenotypic metabolic 

array to profile fibroblasts and induced neuronal 
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progenitor-derived human induced astrocytes from 

people with C9ORF72 ALS compared to normal con-

trols to measure the rates of production of NADH from 

91 potential energy substrates [115]. Distinct metabolic 

profiles were found in fibroblasts and reprogrammed 

induced astrocytes derived from C9ORF72 and sporadic 

patients with ALS when compared to control astrocytes. 

Mostly there was less metabolic flexibility in ALS astro-

cytes, which was apparent by impaired metabolism of 

pyruvate, galactose and succinate. In contrast, there were 

no changes in acetate metabolism in cortex and spinal 

cord of  SOD1G93A mice, indicating that the astrocyte 

TCA cycle is functional in ALS [108]. Also, there were 

impairments in adenosine, fructose and glycogen metab-

olism, as well as disruptions in the membrane transport 

of mitochondrial specific energy substrates [115]. �us, 

the induced human ALS astrocytes starved more quickly 

when energy supply was limited. In a related report, 

C9ORF72 and sporadic ALS human induced astrocytes 

and fibroblasts were shown to have an adenosine to ino-

sine deamination defect caused by reduction of adeno-

sine deaminase [174]. �is coincides with lower levels of 

inosine in the lumbar spinal cords of C57  SOD1G93A mice 

at onset of disease, however in 129 transgenic mice and at 

later stages no alterations in inosine amounts were seen 

[175]. Patient-derived induced astrocyte lines and neu-

rons in co-cultures were more susceptible to adenosine-

induced toxicity, which could be mimicked by inhibiting 

adenosine deaminase in control lines [174]. Interest-

ingly, adding inosine reduced toxicity and highlights 

that increasing inosine may be a potential therapeutic 

approach. Overall, given the defects in neuronal-glial 

interactions in ALS, improving glial cell metabolic sup-

port to neurons could be one potential therapeutic 

avenue in ALS, and further studies investigating this 

approach are needed.

Targeting glucose metabolism in ALS
Currently, there is no effective treatment for ALS. Rilu-

zole, and recently edaravone are the only approved 

drugs [176–178]. Riluzole improves life expectancy by 

2–3  months [176, 179], although a recently study indi-

cated that it may prolong survival by 6–19 months [180]. 

�e exact mechanisms by which riluzole exerts these 

beneficial effects are not clearly known, however it is 

believed that it is due to a reduction in glutamatergic 

neurotransmission and inhibition of a persistent sodium 

current [163–167, 181]. Interestingly, some studies have 

shown other mechanisms not directly related to its action 

on glutamate and sodium channels. Riluzole was able to 

increase the rate of glucose transport by upregulating 

GLUT1 and GLUT3 transporters in NSC-34 cells [182]. 

It was also shown to improve intracellular glucose uptake 

in cortical areas in patients with Huntington’s disease 

[183]. Additionally, chronic riluzole treatment was shown 

to increase [1-13C]glucose metabolism and the gluta-

mate-glutamine cycle in prefrontal cortex and hippocam-

pus of rats [184]. �ese studies suggest that riluzole may 

have a role in improving CNS glucose metabolism. Simi-

larly, edaravone, a free radical scavenger with antioxidant 

effects [185, 186] has been shown to improve brain glu-

cose uptake in rats after injury [187]. While it is possible 

that riluzole and edaravone could in part modify disease 

progression through their actions on glucose metabo-

lism, further studies are required to fully elucidate this 

potential mechanism of action in ALS.

Although little attention is given to metabolic therapies 

in ALS, targeting glucose metabolism has the potential 

to slow the onset and progression of ALS. Compounds 

that enhance glucose uptake and its metabolism via gly-

colysis and PPP could be beneficial by improving ATP 

generation and reducing oxidative stress. Interestingly, 

glycolysis activation has been shown to reduce disease 

progression in other neurodegenerative disorders such as 

Parkinson’s disease [188]. Recently, Manzo et al. showed 

that upregulation of glycolysis by increasing motor neu-

ron expression of GLUT3 and phosphofructokinase in 

TDP-43 ALS models is neuroprotective [111]. Improv-

ing glucose metabolism not only provides ATP, but it may 

also have additional benefits in reducing abnormal pro-

tein aggregation and reducing oxidative stress; two other 

mechanisms hypothesized to drive the onset and pro-

gression of ALS. ATP has been found to have a biological 

hydrotope property (an amphiphilic molecule that causes 

solubilization of hydrophobic compounds) [189]. �us, a 

higher concentration of ATP may prevent the formation 

of protein aggregates and also has the capacity to dissolve 

already formed protein aggregates [189]. �ese investi-

gations signify that metabolic therapy particularly those 

targeting glycolysis and PPP is a worthwhile approach to 

delay disease progression and improve survival in people 

with ALS as well as other neurodegenerative disorders.

Alternative and anaplerotic metabolic substrates that 

refill lost TCA cycle intermediates could also be used 

to improve energy supply in ALS. In bypassing the rate 

limiting steps that are linked with impaired neuronal 

glucose metabolism, such substrates can restore mito-

chondrial ATP production [190]. Metabolic treatments 

that either provide high amounts of energy, alternative 

substrates to glucose, or that can increase TCA cycling 

or mitochondrial function have been investigated in ALS. 

�ese include the ketogenic diet, caprylic triglyceride, 

the “Deanna protocol”, dichloroacetate, pyruvate, lactate, 

and triheptanoin (previously reviewed in [22, 24, 191]). 

Although the outcomes from in vitro and in vivo studies 

of metabolic treatments were positive to varying degrees, 
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further investigations in patients with ALS are needed 

to inform whether these outcomes can be translated in 

humans. Studies with energy substrates including different 

combinations are also worth investigating as a means to 

slow the disease process and improve quality of life. Also, 

it will be important to find treatments that decrease oxi-

dative stress, since metabolic abnormalities are strongly 

linked to oxidative stress. Particularly, treatment of ALS 

with antioxidants targeted against mitochondrial ROS 

together with metabolic energy substrates could result in 

better treatment outcomes. Previously, oxidative stress 

has been shown to be counteracted by supplying energy 

substrates, including pyruvate, acetoacetate, triheptanoin 

and β–hydroxybutyrate, which are all metabolized by the 

Fig. 2 Targeting of CNS glucose metabolism in amyotrophic lateral sclerosis (ALS). Targeting CNS glucose metabolism has the potential to reduce 

the onset and progression of ALS. Possible approaches or targets in the glucose metabolism pathway include activation of glucose transport, 

glycolysis, pentose phosphate pathway (PPP), and pyruvate entry into the TCA cycle, facilitation of glycogen degradation, provision of alternative 

energy substrates, improving oxidative phosphorylation (OXPHOS) and ATP generation, using antioxidants targeting mitochondrial reactive oxygen 

species (ROS) as well as improving overall mitochondrial function and neuroglial interactions
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TCA cycle [192–195]. Further research investigating the 

role of metabolic fuels in combination with antioxidants 

or other treatments in delaying disease progression is 

needed. A summary of how glucose metabolism can be 

targeted in ALS is shown in Fig. 2.

Conclusions
Whole body metabolic changes are consistently 

observed in animal models of ALS as well as patients 

with ALS. In CNS tissues, defects in energy producing 

pathways are common. Among the common perturba-

tions are a decrease in glucose uptake, and impairments 

in glycolysis and the PPP. In addition, abnormalities in 

mitochondrial function and ATP generation have been 

observed. Compounds that activate glucose metabo-

lism, particularly via glycolysis, and the PPP may have 

the potential to slow disease progression. Although var-

ious investigations targeting glucose metabolism have 

shown beneficial outcomes in animal models, to which 

extent this translates to effective therapies in humans 

remains to be confirmed. Given the heterogeneity of 

disease, metabolic changes in patients with ALS are 

also likely to be highly variable. �erefore, individually 

tailored treatments may be needed to achieve the best 

outcomes for people living with ALS. �is is an area of 

research that warrants further investigation.
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