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Background. In urban Australia, the burden of shigellosis is either in returning travelers from shigellosis-endemic regions or in 
men who have sex with men (MSM). Here, we combine genomic data with comprehensive epidemiological data on sexual exposure 
and travel to describe the spread of multidrug-resistant Shigella lineages.

Methods. A population-level study of all cultured Shigella isolates in the state of Victoria, Australia, was undertaken from 1 
January 2016 through 31 March 2018. Antimicrobial susceptibility testing, whole-genome sequencing, and bioinformatic analyses of 
545 Shigella isolates were performed at the Microbiological Diagnostic Unit Public Health Laboratory. Risk factor data on travel and 
sexual exposure were collected through enhanced surveillance forms or by interviews.

Results. Rates of antimicrobial resistance were high, with 17.6% (95/541) and 50.6% (274/541) resistance to ciprofloxacin 
and azithromycin, respectively. There were strong associations between antimicrobial resistance, phylogeny, and epidemiology. 
Specifically, 2 major MSM-associated lineages were identified: a Shigella sonnei lineage (n = 159) and a Shigella flexneri 2a lineage 
(n = 105). Of concern, 147/159 (92.4%) of isolates within the S. sonnei MSM-associated lineage harbored mutations associated with 
reduced susceptibility to recommended oral antimicrobials: namely, azithromycin, trimethoprim-sulfamethoxazole, and ciprofloxa-
cin. Long-read sequencing demonstrated global dissemination of multidrug-resistant plasmids across Shigella species and lineages, 
but predominantly associated with MSM isolates.

Conclusions. Our contemporary data highlight the ongoing public health threat posed by resistant Shigella, both in Australia 
and globally. Urgent multidisciplinary public health measures are required to interrupt transmission and prevent infection.
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Shigellosis is estimated to cause 190 million cases of diarrhea 
globally per year [1]. In low- and middle-income countries, 
the burden of shigellosis is concentrated in children, with in-
adequate sanitation and contaminated food and/or water the 
most common modes of acquisition. In contrast, shigellosis in 
high-income countries occurs predominantly in returning trav-
elers or in men who have sex with men (MSM) [2, 3]. In many 
high-income countries, there are increasing reports of locally 
acquired shigellosis in MSM, with endemic shigellosis in males 
in these countries often considered a sexually transmitted infec-
tion (STI) [2, 4–8].

As in other countries, treatment for shigellosis in Australia 
is recommended, to reduce both symptoms and asymptomatic 
bacterial shedding. The recommended first-line oral treatment 
is ciprofloxacin and, as second-line agents, azithromycin or 
trimethoprim-sulfamethoxazole (co-trimoxazole) are favored 
[1]. However, recent studies have highlighted increasing resist-
ance to these agents amongst Shigella spp., in low-, middle-, 
and high-income countries [9–13]. Indeed, the World Health 
Organization and Centers for Disease Control and Prevention 
have declared antimicrobial-resistant (AMR) Shigella spp. to 
be a major public health threat [14, 15]. Of further concern 
is a recent advisory from the Centers for Disease Control and 
Prevention suggesting that ciprofloxacin may not be suitable 
for treatment in Shigella isolates with minimum inhibitory con-
centrations (MICs) of 0.12–1.0 μg/mL [16]. Although current 
interpretive criteria categorize isolates with MICs ≤1.0 μg/mL 
as susceptible [17], this advisory suggested isolates with MICs 
of 0.12–1.0  μg/mL may harbor ≥1 mutations associated with 
fluoroquinolone resistance, which could lead to adverse clin-
ical outcomes and sustained shedding if fluoroquinolones are 
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used for treatment [16]. Further, there are increasing reports of 
azithromycin resistance in Shigella spp. (mainly amongst MSM 
in urban populations), where azithromycin resistance is largely 
mediated by the plasmid-encoded mph(A) gene [9, 10, 13].

Whole-genome sequencing (WGS) has been previously 
used to describe both the global and regional molecular epi-
demiology of shigellosis. To date, studies have predominantly 
assessed either the population structure of individual Shigella 
lineages [18, 19] or have focused on representative subsamples 
of epidemiologically suspected epidemics [9, 10, 20]. Unbiased 
WGS of all cultured Shigella isolates in a population could pro-
vide valuable insights into possible transmission networks of 
shigellosis, in addition to providing information on emerging 
genotypic AMR patterns. Accordingly, we performed WGS of 
all cultured Shigella isolates in the state of Victoria, Australia, 
over a 2-year period. We combined genomic data with com-
prehensive epidemiological data on sexual exposure and travel 
to demonstrate the spread of highly resistant Shigella lineages 
within MSM. Further, we contextualized our isolates with data 
from recent studies of shigellosis in MSM and travelers, and 
demonstrate the global dissemination of highly related, multi-
drug-resistant plasmids.

METHODS

Setting, Bacterial Isolates, and Microbiological Testing

In Australia, shigellosis is a notifiable disease under public 
health legislation, and diagnostic laboratories forward 
Shigella isolates to a reference laboratory. The Microbiological 
Diagnostic Unit Public Health Laboratory is the bacteriology 
reference laboratory for the state of Victoria, covering a resi-
dent population of approximately 6.24 million people. Here, 
we conducted a retrospective, observational study of all cases 
of shigellosis associated with a Shigella isolate in Victoria be-
tween 1 January 2016 and 31 March 2018. Susceptibility testing 
was performed as detailed in the Supplementary Methods. We 
classified isolates with a ciprofloxacin MIC of 0.12–1 μg/mL as 
high resistance potential (HRP) isolates [21].

Epidemiological Investigation

Where possible, all cases of shigellosis in Victoria are inter-
viewed by a public health officer; otherwise, notifying medical 
practitioners complete an enhanced surveillance questionnaire. 
Exposure information is collected for the 2 weeks prior to the 
illness’ onset. Primary risk factors are considered in 1 of 3 main 
categories: (1) male to male sexual contact within Australia; (2) 
international travel; or (3) other/unknown risk factor. Cases 
are classified as an unknown source only when no risk factors 
have been identified after the interview. Travel destinations 
are categorized using the Standard Australian Classification 
of Countries, 2nd edition [22]. Our information on shigello-
sis notifications in Victoria was obtained from the National 
Notifiable Diseases Surveillance System (http://www9.health.

gov.au/cda/source/cda-index.cfm). Data were collected in ac-
cordance with the Victorian Public Health and Wellbeing Act 
2008 [23], and formal ethical approval was not required, as this 
work was part of enhanced epidemiological surveillance.

Whole-genome Sequencing and Bioinformatic Analyses

DNA extraction and WGS of study isolates were performed at 
the Microbiological Diagnostic Unit Public Health Laboratory 
(Supplementary Methods). In brief, reads were aligned to a refer-
ence genome to identify single nucleotide polymorphisms (SNPs) 
using Snippy v4.3.5 (https://github.com/tseemann/snippy), with 
filtering of phage regions identified using PHASTER [24] and 
recombinant regions identified using Gubbins v2.3.4 [25]. The 
final core SNPs were extracted with SNP sites [26].

A maximum likelihood phylogeny was produced using 
IQ-tree (v1.6.5) [27] and the population structure was inves-
tigated using a hierarchical Bayesian Analysis of Population 
Structure (BAPS) [28]. For context, we included data from 
other WGS-based studies of Shigella [10, 19, 29, 30]. We spe-
cifically included these previous studies, as the epidemiolog-
ical context (MSM and/or travel) was similar to our study. De 
novo assembly was performed using Unicycler (v.0.4.6) [31], 
and AMR genes were detected using ABRicate (https://github.
com/tseemann/abricate). Point mutations in the quinolone re-
sistance determining region (QRDR) were detected by read 
mapping (Supplementary Methods). We selected 4 genomes 
for PacBio long-read sequencing (details in Supplementary 
Methods). Sequencing data are available at the National Center 
for Biotechnology Information Short Read Archive (BioProject 
PRJNA319594)  and long read assemblies available at ENA 
(BioProject PRJEB30677).

Statistical Analysis

Comparisons between isolates or clusters were made using a 
chi-squared test. The Mann-Whitney Rank sum test was used 
to compare non-normal distributions. All statistical analyses 
were performed using R (version 3.4.0).

RESULTS

Epidemiological Characteristics of Cases and Antimicrobial Susceptibility 
Patterns

In total, 545 Shigella isolates (364 Shigella sonnei and 181 
Shigella flexneri) isolates underwent WGS, representing 
42.9% (545/1269) of shigellosis notifications in Victoria over 
the study period. The median age was 35  years (interquartile 
range 27–48; range 0–83), with a male to female ratio of 2.4:1.0 
(Supplementary Figure 1). Over one-third of cases (36.0%; 
196/545) were associated with overseas travel as a primary risk 
factor, and 176 (32.3%) cases identified MSM as a primary risk 
factor. There were 541 isolates that underwent susceptibility 
testing (Supplementary Table 1). Decreased susceptibility to 
azithromycin was identified in 51.4% (93/181) of S. flexneri and 
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50.3% (181/360) of S. sonnei (P = .81) cases, and resistance to 
ciprofloxacin in 9.4% (17/181) of S. flexneri and 21.7% (78/360) 
of S. sonnei (P < .001) cases. S. sonnei isolates were significantly 
more likely to be resistant to either 2 or 3 oral antimicrobials 
than S. flexneri (62.2% vs 40.9%, [P <  .001] and 6.9% vs 0.6% 
[P < .001], respectively; Supplementary Table 1).

Correlation of Phylogeny With Epidemiological Risk Factors for Resistant 
Shigella spp.

Isolates were interrogated phylogenetically by species, and clus-
tering was assessed using BAPS. Amongst S.  sonnei, 4 major 
BAPS groups were identified (BP1–BP4; Table 1; Figure 1; 
Supplementary Figures 2–3). An additional cluster (BP5) rep-
resented grouping of the most divergent isolates, in a known 
limitation of this clustering approach [28]. As such, we did not 
consider this a biologically relevant grouping, and this group 
was excluded from further analyses.

Correlating the phylogeny with epidemiological characteris-
tics revealed clear links with risk factors. Specifically, cases in 
BP1, BP2, and BP4 were associated with overseas travel (Table 
1; Supplementary Figure 2), with strong associations between 
sub-lineages and regions of acquisition. For example, of the 32 
cases of S. sonnei reporting travel to Southern or Central Asia, 
32 cases (100%) were associated with BP1 (Supplementary 
Figure 4). In keeping with this observation, isolates from 
BP1 clustered with representative isolates from the Asian 

ciprofloxacin-resistant S. sonnei lineage III, previously described 
by Chung et al [19]. Further, in the BP1 lineage, isolates were 
significantly associated with ciprofloxacin resistance (Figure 1; 
Table 1); of the 75 ciprofloxacin-resistant isolates in BP1, 74 iso-
lates harbored triple mutations in the QRDR (Figure 1).

In contrast to the travel-associated lineages, S. sonnei cases in 
BP3 were significantly associated with MSM, with 61% (97/159) 
of males in this lineage reporting MSM as a primary risk factor 
(Figure 1; Table 1). Isolates in BP3 were highly related, with a 
median pairwise core SNP distance of 4 (interquartile range 2–6; 
Table 1; Supplementary Figure 3). Further, MSM cases in BP3 
were distributed across the study period and not limited to a 
temporally restricted outbreak (Supplementary Figure 2). Most 
isolates in BP3 (139/159; 87%) harbored highly related plasmids 
(see below) containing AMR determinants for azithromycin, tri-
methoprim, and sulfonamides (Figure 1). Although isolates in 
this lineage were not associated with ciprofloxacin resistance at 
the current Clinical and Laboratory Standards Institute break-
point of 1 μg/mL, reducing the breakpoint to 0.12 μg/mL resulted 
in 147/149 (99%) of tested isolates being re-classified as having 
HRP for ciprofloxacin. All 149 isolates harbored single muta-
tions in the QRDR (147 gyrA S83L and 2 gyrA D87Y; Figure 1).

Amongst S. flexneri, there were 4 major BAPS groups (BP1–
BP4; Table 2; Supplementary Figure 3). These groups broadly 
correlated with serotyping, with the largest group (BP2) cor-
responding to S. flexneri serotype 2a (Supplementary Dataset). 

Table 1. Characteristics of Shigella sonnei Isolates Included in This Study and Associations With Phylogenetic Groupings

Characteristic

BAPS Groupa

PbBP1 BP2 BP3 BP4

Median pairwise SNP difference (IQR) 50 (41–75) 168 (144–189) 4 (2–6) 106 (64–120)

Phenotypic resistance Number resistant / isolates tested (% resistant)  

Ampicillin 37/98 (37.8) 10/40 (25) 150/159 (94.3) 11/57 (19.3) <.001

Ciprofloxacin 75/98 (76.5) 0/40 2/159 (1.3) 1/57 (1.8) <.001

Azithromycin 27/98 (27.6) 0/40 148/159 (93.1) 6/57 (10.5) <.001

Ceftriaxone 19/98 (19.4) 0/40 11/159 (6.9) 5/57 (8.8) .002

Trimethoprim 97/98 (99.0) 26/40 (65.0) 159/159 (100) 57/57 (100) <.001

Sulfathiozole 86/98 (87.8) 27/40 (67.5) 157/159 (98.7) 44/57 (77.2) <.001

Gentamicin 3/97 (3.1) 0/40 (0) 0/159 (0) 1/57 (1.8) .13

Meropenem 0/98 (0) 0/40 (0) 0/159 (0) 0/57 NA

Resistant to 2 oral antimicrobials 71/98 (72.4) 0/40 (0) 147/159 (92.4) 6/57 (10.5) <.001

Resistant to 3 oral antimicrobials 22/98 (22.4) 0/40 (0) 2/159 (1.3) 1/57 (1.8) <.001

High resistance potential for ciprofloxacin 82/88 (93.2) 0/39 (0) 147/149 (98.6) 12/52 (23.1) <.001

Epidemiological characteristic      

 Males (% BAPS group) 54/102 (52.0) 17/40 (42.5) 144/159 (90.6) 25/57 (43.8) <.001

 Median age (IQR) 28.5 (10.5–43) 36.5 (25.25–44.75) 38 (30–48) 34 (24–55) <.001

  Overseas travel or contact with 
traveler (% BAPS group)

62/102 (60.7) 25/40 (62.5) 12/159 (7.6) 39/57 (68.4) <.001

  Male-to-male sexual contact (% BAPS 
group)

8/102 (7.8) 3/40 (7.6) 97/159 (61.0) 2/57 (3.5) <.001

 Other/unknown (% BAPS group) 32/102 (31.3) 12/40 (30.0) 50/159 (31.4) 16/57 (28.1) .49

Abbreviations: BAPS, Bayesian Analysis of Population Structure; BP, BAPS group; IQR, interquartile range; NA, not applicable; SNP, single-nucleotide polymorphism.
aThere were 4 isolates that belonged to a divergent group (BP5) that were excluded from this analysis (see text). Also, 2 Australian isolates initially identified as BP4 were excluded from 
the BP4 analysis.
bAs determined through a 2 x 4 χ2 test.
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An additional cluster (BP5), a grouping of divergent isolates, 
was excluded from further analyses. Similar to S. sonnei, there 
were distinct associations between phylogeny, AMR, and risk 
factors. Specifically, MSM status was associated with BP2 
(58.4% [52/89] of males in this lineage were MSM) and, to 
a lesser extent, BP1 and BP3 (Table 2), whilst BP4 was more 

associated with recent travel (Table 2; Figure 2). In contrast to 
the major BP3 MSM lineage in S.  sonnei, the BP2 MSM lin-
eage in S. flexneri was not associated with ciprofloxacin resist-
ance at a lower breakpoint of 0.12 μg/mL and did not harbor 
QRDR mutations (Figure 2; Supplementary Dataset). However, 
63.8% (67/105) of isolates in the BP2 MSM lineage of S. flexneri 
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Figure 1. Population structure of 364 Australian Shigella sonnei isolates included in this study. A, The midpoint rooted phylogenetic tree of Shigella sonnei is plotted on 
the left. A total of 16 additional representative genomes are included as references to the established population structure [29]. BAPS groups are highlighted. B, Primary 
risk factors are shown. C, Phenotypic resistance profiles are shown next to their corresponding genotypic mutations for ciprofloxacin (number of QRDR mutations; see text), 
azithromycin (mphA), trimethoprim (any dfr gene), and sulfonamides (any sul gene). In addition, the effect of reducing the ciprofloxacin breakpoint to 0.12 μg/mL is displayed 
(HRP). Abbreviations: AZT, azithromycin; BAPS, Bayesian Analysis of Population Structure; CIP, ciprofloxacin; HRP, high resistance potential; MSM, men who have sex with 
men; QRDR, quinolone resistance determining region; SUL, sulfamethoxazole; TMP, trimethoprim.

D
ow

nloaded from
 https://academ

ic.oup.com
/cid/article/69/9/1535/5274662 by guest on 21 August 2022



AMR Shigellosis in MSM • cid 2019:69 (1 November) • 1539

harbored azithromycin-resistant plasmids, similar to those in 
the S. sonnei BP3 MSM lineage (see below; Figures 2 and 3).

For context, we undertook combined analyses of 691 S. sonnei 
isolates (364 Australian and 327 international) and 408 S. flexneri 
isolates (171 Australian and 237 international; Supplementary 
Figures 4 and 5). For both Australian and United Kingdom 
S.  sonnei and S.  flexneri, there was limited clustering of iso-
lates according to the region of travel (Supplementary Figures 
4 and 5). Australian S.  sonnei MSM isolates in BP3 formed a 
distinct lineage, almost completely comprising Australian iso-
lates (Supplementary Figure 4). In contrast, for S. flexneri, inter-
national serotype 2a isolates in the previously described MSM 
clades from Baker et al [10] clustered together in the phylogeny 
with Australian isolates in the MSM-associated BP2 lineage 
(Supplementary Figure 5). Moreover, 31 of these international 
S. flexneri isolates also harbored pKSR100 plasmids, similar to 
those described from the United Kingdom (see below; Figure 
3), further suggesting intercontinental dissemination of the 
MSM-associated S. flexneri 2a lineage.

Global Dissemination of Multidrug-resistant Plasmids Across Shigella 
Species and Lineage

To understand the relatedness of multidrug-resistant plas-
mids in our study, specifically amongst MSM-associated iso-
lates, long-read sequencing was performed on 4 genomes, 
representing S.  flexneri BP1 and BP2 and S.  sonnei BP1 

and BP3 (Supplementary Dataset). All 4 plasmids harbored 
blaTEM-1, ermB, and mph(A), and 3 of the plasmids contained 
an integron with additional AMR genes: namely, sul1, dfrA17, 
and aadA5 (Figure 3). Comparison with pKSR100 (a con-
jugative plasmid previously identified in MSM-associated 
Shigella in the United Kingdom [7, 10]) revealed a high level 
of homology between pKSR100 and all 4 plasmids (Figure 
3). The global relationship of pKSR100 plasmids was further 
explored by comparing all pKSR100-like plasmids (from our 
study and other recent work [10, 13]) to pKSR100 (Figure 
4). The pKSR100-like plasmids were disseminated across 
Shigella species, but were predominantly associated with 
MSM-associated shigellosis, both in Australia and overseas 
(Figure 4).

DISCUSSION

In this study, we demonstrated that the local and global dissemi-
nation of clinically significant AMR Shigella spp. is driven largely 
by the spread of highly related, multidrug-resistant plasmids that 
are not restricted by Shigella species or lineage. By sampling all 
isolates in a population (rather than representatively sub-sam-
pling known outbreaks) and integrating them with epidemio-
logical data, we identified distinct correlations between Shigella 
sub-lineages and the 2 major modes of shigellosis acquisition 
in high-income countries: namely, international travel and 

Table 2. Characteristics of Shigella flexneri Isolates Included in This Study and Associations With Phylogenetic Groupings

Characteristic

BAPS Groupa

PbBP1 BP2 BP3 BP4

Median pairwise SNP difference (IQR) 162 (125–181) 139 (6–283) 91 (70.25–615) 259 (118.25–325.75)

Phenotypic resistance Number resistant / isolates tested (% resistant)  

Ampicillin 26/32 (81.3) 102/105 (97.1) 15/16 (93.8) 6/10 (60.0) <.001

Ciprofloxacin 2/32 (6.3) 12/105 (11.4) 0/16 (23.5) 2/10 (20.0) .30

Azithromycin 12/32 (37.5) 74/105 (70.5) 6/16 (37.5) 0/10 (0) <.001

Ceftriaxone 0/32 (0) 1/105 (1.0) 0/16 (0) 0/10 (0) .86

Trimethoprim 24/32 (75.0) 92/105 (87.6) 2/16 (12.5) 7/10 (70.0) <.001

Sulfathiozole 20/32 (62.5) 67/105 (63.8) 3/16 (18.6) 6/10 (60.0) .008

Gentamicin 1/32 (3.1) 0/105 (0) 0/16 (0) 0/10 (0) .25

Meropenem 0/32 (0) 0/105 (0) 0/16 (0) 0/10 (0) NA

Resistant to 2 oral antimicrobials 13/32 (40.6) 58/105 (55.2) 0/16 (0) 2/10 (20.0) <.001

Resistant to 3 oral antimicrobials 0/32 (0)  1/105 (1.0) 0/16 (0) 0/10 (0) .91

High resistance potential for ciprofloxacin 18/29 (62.1) 14/97 (14.4) 0/15 (0) 6/10 (60.0) <.001

Epidemiological characteristic  

 Males (% BAPS group) 25/32 (78.1) 89/105 (84.8) 13/16 (81.3) 5/10 (50.0) .001

 Median age (IQR) 39 (30.25–47.75) 37 (28–50) 35.5 (30.25–49.25) 30 (7.25–38) .19

  Overseas travel or contact with trav-
eler (% BAPS group)

11/32 (34.4) 19/105 (18.0) 6/16 (37.5) 6/10 (60.0) .008

  Male-to-male sexual contact (% BAPS 
group)

7/32 (21.9) 52/105 (49.5) 6/16 (37.5) 1/10 (10.0) .003

 Other/unknown (% BAPS group) 14/32 (43.8) 34/105 (32.4) 4/16 (25.0) 3/10 (30.0) .05

Abbreviations: BAPS, Bayesian Analysis of Population Structure; BP, BAPS group; IQR, interquartile range; NA, not applicable; SNP, single-nucleotide polymorphism.
aThere were 8 isolates that belonged to divergent group (BP5) and were excluded from this analysis (see text). Also, 10 isolates that belonged to distant serotype 6 were excluded.
bAs determined through a 2 x 4 χ2 test.

D
ow

nloaded from
 https://academ

ic.oup.com
/cid/article/69/9/1535/5274662 by guest on 21 August 2022



1540 • cid 2019:69 (1 November) • Ingle et al

domestically acquired MSM-associated shigellosis, each associ-
ated with approximately one-third of all cases in this study.

Of specific concern was the high prevalence of resistance 
to those oral agents currently recommended for the treat-
ment of shigellosis. Approximately 50% of all isolates displayed 

resistance to azithromycin, representing, to date, the highest re-
ported azithromycin resistance rate in Shigella spp. globally [13, 
32, 33]. Notably, azithromycin resistance was significantly more 
common in MSM-associated Shigella (93% in BP3 S. sonnei and 
71% in BP2 S. flexneri), signalling the demise of azithromycin as 
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Figure 2. Population structure of 171 Australian Shigella flexneri isolates and 20 additional representative genomes are included as references to the established pop-
ulation structure [28]. A, The midpoint rooted phylogenetic tree of Shigella flexneri is plotted on the left. BAPS groups are highlighted. B, Primary risk factors are shown. 
C, Phenotypic resistance profiles are shown next to corresponding genotypic mutations for ciprofloxacin (number of QRDR mutations; see text), azithromycin (mphA), tri-
methoprim (any dfr gene), and sulfonamides (any sul gene). In addition, the effect of reducing the ciprofloxacin breakpoint to 0.12 μg/mL is displayed (HRP). Abbreviations: 
AZT, azithromycin; BAPS, Bayesian Analysis of Population Structure; CIP, ciprofloxacin; HRP, high resistance potential; MSM, men who have sex with men; QRDR, quinolone 
resistance determining region; SUL, sulfamethoxazole; TMP, trimethoprim.
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a suitable treatment option for domestically acquired shigello-
sis in MSM in our population. The reasons for this high rate of 
azithromycin resistance are multifactorial and are likely related 
to both host and pathogen factors. First, the recommended use 
of azithromycin as an empiric agent for the syndromic treat-
ment of urethritis is likely to have exerted selection pressure 
for the emergence of azithromycin resistance in MSM [34]; 
this hypothesis is corroborated by the contemporaneous emer-
gence of azithromycin resistance in other sexually transmitted 
pathogens, such as Neisseria gonorrhoeae, Treponema pallidum, 
and Mycoplasma genitalium [35–38]. Second, the finding that 
mph(A) was harbored on genetically similar pKSR100-like plas-
mids, regardless of species or lineage, highlights the apparent 
ease of horizontal transmission of these particular plasmids; 
this observation is supported by the identification of similar 
plasmids from multiple geographic locations and epidemiolog-
ical contexts [7, 9, 10, 13]. Collectively, our data support the ex-
istence of a global outbreak of a highly successful azithromycin 
resistance plasmid, predominantly in MSM populations.

Compared to azithromycin resistance, ciprofloxacin re-
sistance was largely associated with international travel to 
areas of high endemicity (particularly Southeast and Central 
Asia), rather than local populations, in keeping with the fact 
that ciprofloxacin is a restricted antibiotic in Australia [39]. 
However, when an MIC threshold of 0.12 μg/mL was applied, 
approximately 57% of all tested isolates in our study were clas-
sified as HRP, compared to only 18% at the current resistance 
breakpoint of >1.0  μg/mL. The difference was largely driven 
by the MSM-associated S.  sonnei BP3 lineage, in which all 
HRP isolates harbored single mutations (mainly gyrA S83L) 
in the QRDR. This finding is of specific concern, given (1) the 
sequential development of resistance in the QRDR, in which 
the gyrA S83L mutation is a first step [12], and (2) the con-
current high prevalence of azithromycin resistance in MSM-
associated shigellosis, which may increase the therapeutic 
use of ciprofloxacin, leading to a detrimental “Catch 22” sit-
uation in which ciprofloxacin use further drives resistance 
in this population. Future work should closely monitor the 
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clinical outcomes associated with such cases and, indeed, re-
cent guidelines suggest that antimicrobial treatment should 
now only be reserved for high-risk populations (eg, immuno-
compromised patients; the very young or elderly; and indi-
viduals at risk of causing outbreaks, such as food handlers or 
childcare workers) [21].

Given our finding of several travel-associated cases within 
major MSM-associated S.  sonnei and S.  flexneri lineages, it is 
plausible that MSM lineages were imported into Australia, 
with subsequent onwards transmission in the context of a suc-
cessful epidemiological triad of host (dense MSM networks 
with high-risk sexual behaviors), pathogen (highly infectious 
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bacterial species with transmissible resistance determinants), 
and environment (selection pressure from azithromycin use). 
Indeed, many isolates in the Australian S.  flexneri 2a MSM-
associated lineage were highly related at a core genome level 
to isolates from a previous UK study [10], further highlight-
ing the importance of global travel in propagating shigellosis 
outbreaks. Moreover, the hypothesis of the importation and 
domestic spread of pathogens in MSM is also supported by 
recent outbreaks of other pathogens, such as hepatitis A virus 
[40] and azithromycin-resistant Neisseria gonorrhoeae [41], 
demonstrating the need for an improved understanding of the 
factors that may promote such outbreaks, such as human im-
munodeficiency virus  (HIV) co-infection, HIV pre-exposure 
prophylaxis (PrEP), asymptomatic carriage, and circumstan-
tial features, such as social networking applications and recrea-
tional drug use.

In addition to MSM-associated shigellosis, the other major 
burden of disease in our study was amongst returning travel-
ers. Previous work from the United Kingdom has demonstrated 
travel-associated Shigella sub-lineages, with distinct phylogeo-
graphic associations [9]. Here, we broaden this genomic frame-
work extensively to include isolates from returned travelers 
in Australia. Like the UK study, we observed similar patterns 
of triple QRDR mutations in Shigella isolates from Southern 
Central Asia (mainly India, Pakistan, and Nepal), and Southeast 
Asia (mainly Vietnam and Cambodia), further highlighting 
these regions as reservoirs of resistant enteric pathogens [12], 
a situation that has parallels with the global emergence of fluo-
roquinolone-resistant Salmonella Typhi [42]. Our study further 
demonstrates the utility of genomic surveillance in detecting 
emerging genotypic AMR patterns, using isolates from returned 
travelers as a proxy for assessing AMR in other regions.

Key strengths of our study include our contemporary sam-
pling frame (ie, 2016–2018); comprehensive coverage of 
cultured cases of shigellosis; and the integration of detailed epi-
demiological data. Further, previous studies have demonstrated 
high interconnectivity of MSM populations in urban Australia 
[43], meaning that our findings are likely to have applicability 
across major cities in Australia. Moreover, the inclusion of epi-
demiologically relevant international isolates provides addi-
tional geographic context [9, 10, 13].

Although we received all cultured isolates in the state during 
the study, this represented only 43% of shigellosis notifications 
over the study period. This limitation applies to all WGS-based 
studies of shigellosis, whereby the increasing use of molecular 
testing for enteric pathogens reduces the availability of isolates 
for additional analyses [44]. This situation has marked parallels 
with the use of molecular testing for N. gonorrhoeae, where the 
reduction of bacterial cultures is compromising the ability to 
detect multidrug-resistant isolates [45]. In an era of increasing 
AMR in STIs, it is critical that concerted efforts are made to en-
sure the continuation of culture-based surveillance.

In conclusion, we present, to our knowledge, the first pop-
ulation-based genomic surveillance of shigellosis in Australia. 
We demonstrate the global dissemination of a multidrug-re-
sistant plasmid, present across multiple continents and highly 
associated with MSM. This represents a significant and im-
mediate health threat, not only in Australia, but also globally. 
Urgent multidisciplinary public health measures are required, 
including the enhanced contact tracing of multidrug-resistant 
cases of shigellosis (which could be informed by WGS data), 
improved antimicrobial stewardship, improved information on 
the clinical outcomes of resistant shigellosis, and heightened 
awareness of shigellosis as an STI.
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