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Abstract—Co-clustering is a powerful data mining tool for
co-occurrence and dyadic data. As data sets become increasing-
ly large, the scalability of co-clustering becomes more and more
important. In this paper, we propose two approaches to par-
allelize co-clustering with sequential updates in a distributed
environment. Based on these two approaches, we present a new
distributed framework, Co-ClusterD, that supports efficient
implementations of co-clustering algorithms with sequential
updates. We design and implement Co-ClusterD, and show
its efficiency through two co-clustering algorithms: fast non-
negative matrix tri-factorization (FNMTF) and information
theoretic co-clustering (ITCC). We evaluate our framework
on both a local cluster of machines and the Amazon EC2
cloud. Our evaluation shows that co-clustering algorithms
implemented in Co-ClusterD can achieve better results and
run faster than their traditional concurrent counterparts.
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I. INTRODUCTION

Co-clustering is a powerful data mining tool for two-
dimensional co-occurrence and dyadic data. It has practical
importance in a wide range of applications such as text
mining [1], recommendation systems [2], and the analysis
of gene expression data [3]. Typically, clustering algorithms
leverage an iterative refinement method to group input points
into clusters. The cluster assignments are performed based
on the current cluster information (e.g., the centroids of
clusters in k-means clustering). The resulted cluster assign-
ments can be utilized to further update the cluster informa-
tion. Such a refinement process is iterated till the cluster
assignments become stable. Depending on how frequently
the cluster information is updated, clustering algorithms
can be broadly categorized into two classes. The first class
updates the cluster information after all input points have
updated their cluster assignments. We refer to this class of
algorithms as clustering algorithms with concurrent updates.
In contrast, the second class updates the cluster information
whenever a point changes its cluster assignment. We refer
to this class of algorithms as clustering algorithms with
sequential updates.

Clustering algorithms with sequential updates intuitively
outperform their concurrent counterparts, since they always

leverage the most up-to-date cluster information to group
input points. A number of existing studies (e.g., [4], [5]) have
supported this claim. Despite the potential advantages of se-
quential updates, parallelizing co-clustering algorithms with
sequential updates is challenging and is not directly support-
ed by the existing distributed frameworks (e.g., Hadoop [6]
or Spark [7]). Specifically, if we let each worker machine
update the cluster information sequentially, it might result in
inconsistent cluster information across worker machines and
thus the convergence properties of co-clustering algorithms
cannot be guaranteed; if we synchronize the cluster infor-
mation whenever a cluster assignment is changed, it will
incur large synchronization overhead and thus result in poor
performance in a distributed environment. Consequently,
co-clustering algorithms with sequential updates cannot be
easily performed in a distributed manner.

Toward this end, we propose two approaches to parallelize
sequential updates for co-clustering algorithms. The first
approach is referred to as dividing clusters. It divides the
problem of clustering rows (or columns) into independent
tasks and each of which is assigned to a worker. In order
to make tasks independent, we randomly divide row (or
column) clusters into multiple non-overlapping subsets at
the beginning of each iteration, and let each worker perform
row (or column) clustering with sequential updates on one
of these subsets.

The second approach is referred to as batching points.
Relaxing the stringent requirement of sequential updates, it
parallelizes sequential updates by performing batch updates.
Instead of updating the cluster information after each change
in cluster assignments, batch updates perform a batch of row
(or column) cluster assignments, and then update the cluster
information. We typically divide rows and columns of the
input data matrix into several batches and let all workers
perform row (or column) clustering with concurrent updates
on each batch.

Based on these two approaches, we design and im-
plement a distributed framework, Co-ClusterD, to support
efficient implementations of co-clustering algorithms with
sequential updates. Co-ClusterD provides an abstraction
for co-clustering algorithms with sequential updates and



allows programmers to specify the sequential update oper-
ations via simple APIs. We evaluate Co-ClusterD through
two co-clustering algorithms: fast nonnegative matrix tri-
factorization (FNMTF) [8] and information theoretic co-
clustering (ITCC) [9]. Experimenting on a local cluster of
machines and the Amazon EC2 cloud, we show that co-
clustering algorithms implemented in Co-ClusterD can ob-
tain better results while running faster than their traditional
concurrent counterparts.

II. CO-CLUSTERING AND UPDATE STRATEGIES

A. Definitions and Overview

Co-clustering is also known as bi-clustering, block clus-
tering or direct clustering [10]. Formally, given a m × n
matrix Z, a co-clustering can be defined by two map-
s ρ and γ, which groups rows and columns of Z in-
to k and l disjoint or hard clusters respectively. Specif-
ically, ρ : {u0, u1, ..., um} → {p1, p2, ..., pk} and γ :
{v0, v1, ..., vn} → {q1, q2, ..., ql}, where ρ(u) = p means
that row u is in row cluster p, and γ(v) = q indicates
that column v is in column cluster q. If we reorder rows
and columns of Z and let rows and columns of the same
cluster be close to each other, we obtain k × l correlated
sub-matrices. Each sub-matrix is referred to as a co-cluster.

Typically, the goal of data co-clustering is to find (ρ, γ)
such that the following objective function is minimized.

C(Z, Z̃) =

m∑
u=1

n∑
v=1

wuvdϕ(zuv, ˜zuv)

=
k∑

p=1

∑
{u|ρ(u)=p}

l∑
q=1

∑
{v|γ(v)=q}

wuvdϕ(zuv, spq),

(1)
where C(Z, Z̃) is the approximation error between the
original matrix Z and the approximation matrix Z̃ uniquely
determined by (ρ, γ), wuv denotes the pre-specified weight
of pair (u, v), dϕ is a given distance measure (e.g., Euclidean
distance), zuv and ˜zuv are the elements of Z and Z̃ respec-
tively, spq is the cluster information that gives the statistic
on co-cluster (p, q).

To find the optimal (ρ, γ), a broadly applicable approach
is to leverage an iterative process, which monotonically
decreases the objective function above by intertwining both
row and column clustering iterations. Such kind of co-
clustering algorithms can be referred to as alternate min-
imization based co-clustering algorithms [11], which are
considered as our main focus in this paper.

Typically, alternate minimization based co-clustering al-
gorithms repeat the following four steps till convergence.
Step I: Keep γ fixed, for every row u, find its new row
cluster assignment by the following equation.

ρ(u) = argminp

l∑
q=1

∑
{v|γ(v)=q}

wuvdϕ(zuv, spq). (2)

Step II: With respect to (ρ, γ), update the cluster
information (i.e., the statistic of each co-cluster) by the
following equation.

spq = argminspq

∑
{u|ρ(u)=p}

∑
{v|γ(v)=q}

wuvdϕ(zuv, spq).

(3)
Step III: Keep ρ fixed, for every column v, find its new
column cluster assignment by the following equation.

γ(v) = argminq

k∑
p=1

∑
{u|ρ(u)=p}

wuvdϕ(zuv, spq). (4)

Step IV: The same as Step II.
In the above general algorithm, some implementations

might combine Step II and Step IV into one step.

B. Co-Clustering with Sequential Updates

Motivated by the fact that sequential updates can achieve
faster convergence and better results than concurrent updates
for clustering algorithms, we introduce sequential updates
for alternate minimization based co-clustering algorithms.
Unlike concurrent updates that perform the cluster informa-
tion update after all rows (or columns) have updated their
cluster assignments, sequential updates perform the cluster
information update after each change in cluster assignments.

Specifically, alternate minimization based co-clustering
algorithms with sequential updates repeat the following six
steps till convergence.
Step I: Keep γ fixed, pick a row u in some order, find its
new row cluster assignment by Eq. (2).
Step II: With respect to (ρ, γ), update the involved statistics
of co-clusters by Eq. (3) once u changes its row cluster
assignment.
Step III: Repeat Step 1 and Step II until all rows have been
processed.
Step IV: Keep ρ fixed, pick a column v in some order, find
its new column cluster assignment by Eq. (4).
Step V: With respect to (ρ, γ), update the involved statistics
of co-clusters by Eq. (3) once v changes its column cluster
assignment.
Step VI: Repeat Step IV and Step V until all columns have
been processed.

When performing sequential updates, a row (or column)
re-assignment only gives rise to the update of the statistics
of co-clusters related to the reassigned row (or column). In
addition, if the statistic can be updated incrementally (e.g.,
the statistic are the mean or summation of the co-cluster), we
can update the statistics by subtracting or adding the effects
of the reassigned row (or column). Therefore, updating the
cluster information frequently does not necessarily introduce
much computational overhead.



III. PARALLELIZING CO-CLUSTERING WITH
SEQUENTIAL UPDATES

A. Dividing Clusters Approach

Suppose in a distributed environment which consists of
a number of worker machines, each worker independently
performs sequential updates during the iterative process. The
statistics of co-clusters (Scc) should be updated whenever a
row (or column) changes its cluster assignment. However,
since the workers run concurrently, it may result in incon-
sistent Scc across workers. Thus the convergence properties
of co-clustering algorithms cannot be maintained. Therefore,
we propose dividing clusters approach to solve this problem.

The details of the dividing clusters approach are described
as follows. Suppose we want to group the input data matrix
into k row clusters and l column clusters, the number of
workers is p (p < k and p < l), and each worker wi holds
a subset of rows Ri and a subset of columns Ci. When
performing row clustering, we randomly divide row clusters
Sr into p non-overlapping row subsets Sr

1 , S
r
2 , ..., S

r
p . These

subsets are distributed to each worker in a one-to-one
manner. When worker wi receives Sr

i , it can perform row
clustering with sequential updates for its rows Ri among the
subset of row clusters Sr

i . For example, assume that Sr
i is

{1, 3, 6}, wi will perform row clustering for its rows whose
current cluster assignments are in Sr

i , and allow these rows
to change their cluster assignments among row clusters 1,
3, and 6. Since wi updates only a non-overlapping subset of
Scc, the sequential updates on worker wi will never affect
the updates on other workers. The subsets of Scc and cluster
indicators updated by each worker will be combined and
synchronized over iterations. Here we have illustrated how
to perform row clustering. Column clustering can be done
in a similar way.

B. Batching Points Approach

The dividing clusters approach eliminates the dependency
on the cluster information for each worker and enables co-
clustering with sequential updates in a parallel and dis-
tributed manner. However, it assumes that the number of
workers is less than the number of clusters. Such assumption
might restrict the scalability of this approach. For example,
when the number of workers is larger than the number of
clusters, this approach cannot utilize the extra workers to
perform data clustering. Therefore, by relaxing the stringent
constraint of sequential updates, we introduce batch updates
for alternate minimization based co-clustering algorithms.
The difference between batch and sequential updates is
that batch updates perform the cluster information update
after a batch of rows (or columns) have updated their
cluster assignments, rather than after each change in cluster
assignments.

The details of the batching points approach are described
as follows. Suppose each worker wi holds a subset of rows

Ri and a subset of columns Ci. When performing row
clustering, we randomly divide Ri into p non-overlapping
subsets R1

i , R
2
i , ..., R

p
i . We refer to Rj

i as a batch. Each
worker processes only one of its batches with concurrent
updates in each iteration. A synchronization process for the
cluster information update is initiated at the end of each
iteration. Such iteration continues until all batches have
been processed, then it switches to column clustering which
is performed in a similar way. During the synchronization
process, each worker computes the statistics of co-clusters
on Ri (or Ci). We refer to such statistics obtained by each
worker as one slice of Scc. All of the slices will be combined
to obtain a new Scc used for the next iteration.

IV. CO-CLUSTERD FRAMEWORK

A. Design and Implementation

Since existing distributed frameworks cannot directly sup-
port co-clustering algorithms with sequential updates, it
calls for a distributed framework that inherently supports
sequential updates for co-clustering algorithms. Based on the
proposed approaches for parallelizing sequential updates in
the previous section, we design and implement Co-ClusterD,
a distributed framework for co-clustering algorithms with
sequential updates. Co-ClusterD consists of a number of
basic workers and a leading worker. Each basic worker
performs row and column clustering independently. The
leading worker plays a coordination role during the data
co-clustering process.

For a given co-clustering job, Co-ClusterD proceeds in
two stages: cluster information initialization and data co-
clustering. In the cluster information initialization stage,
assuming there are w workers in the distributed environment,
Co-ClusterD first partitions the input data matrix into w row
and w column subsets. Next, each worker loads one row sub-
set, one column subset, and the initial cluster assignments.
Then, each worker calculates its slice of Scc and sends it to
the leading worker. Finally, the leading worker combines
all slices of Scc and thus the initial Scc is obtained. In
the data co-clustering stage, Co-ClusterD works on the co-
clustering algorithm implemented by users. The algorithm
can be easily implemented by overriding a number of APIs
provided by Co-ClusterD. It alternatively performs row and
column clusterings until the number of iterations exceeds a
user-defined threshold. In particular, for the dividing clusters
approach, users can specify the number of iterations repeated
for row (or column) clustering before switching to the other
side of clustering. For the batching points approach, users
can specify the number of row (or column) batches each
work holds. To reduce the communication overhead, the
input data matrix will not be repartitioned during the data
co-clustering stage. In other words, row and column subsets
held by each worker will not be shuffled and only the
updated cluster assignments and the cluster information will



be synchronized among workers over iterations through the
network.

Co-ClusterD is implemented based on iMapreduce [12],
which is a distributed framework based on Hadoop and has
built-in support for iterative algorithms. In fact, Co-ClusterD
is independent of the underlying frameworks. We choose
iMapreduce since it can better support the iterative processes
of co-clustering algorithms.

B. API

Co-ClusterD allows users without much knowledge on
distributed computing to write distributed co-clustering al-
gorithms. Users need to implement only a set of well defined
APIs provided by Co-ClusterD. In fact, these APIs are
callback functions, which will be automatically invoked by
the framework during the data co-clustering process. The
descriptions of these APIs are as follows.
(1) cProto genClusterProto(bRow,

pointS, Ind): Users specify how to generate the
cluster prototype, which plays the role of “centroid” in
row (or column) clustering, and it can be constructed by
the cluster indicators and the statistics of co-clusters Scc.
The parameter bRow indicates whether row clustering is
performed right now. If bRow is true, pointS is one row
of Scc, and Ind is the column-cluster indicators of the
input data matrix. Otherwise, pointS is one column of
Scc, and Ind is the row-cluster indicators of the input data
matrix.
(2) double disMeasure(point, cProto):

Given a point and a cluster prototype cProto, users
specify a measure to quantify the distance between them.
point denotes a row or a column.
(3) Scc updateSInc(bRow, point,

preCID, curCID, Scc, rInd, cInd): Users
specify how to incrementally update Scc when a point
changes its cluster assignment from previous cluster
preCID to current cluster curCID. rInd and cInd are
row-cluster and column-cluster indicators of the input data
matrix respectively.
(4) slice updateSliceInc(bRow, point,

preCID, curCID, slice, subInd, Ind): Users
specify how to incrementally update a slice of Scc when
a point changes its cluster assignment from previous
cluster preCID to current cluster curCID. If bRow is
true, subInd is the row-cluster indicators of the subset
of rows the worker holds, and Ind is the column-cluster
indicators of the input data matrix. Otherwise, subInd is
the column-cluster indicators of the subset of columns the
worker holds, and Ind is the row-cluster indicators of the
input data matrix.
(5) slice buildOneSlice(bRow, subInd,

Ind): Users specify how to build one slice of Scc. The
parameters in this function have the same meanings as the
parameters in function (4).

(6) Scc combineSlices(slices, rInd,
cInd): Users specify how to combine the slices of Scc

sent by workers. slices is the slices of Scc given by
workers. rInd and cInd are row-cluster and column-
cluster indicators of the input data matrix respectively.

The API sets used by the dividing clusters approach and
the batching points approach are summarized in table I.

Table I
API SETS FOR DIFFERENT APPROACHES

Approach Initialization Data Co-clustering
Dividing Clusters (5), (6) (1), (2), (3)
Batching Points (5), (6) (1), (2), (4), (6)

C. Fault Tolerance and Load Balance

In Co-ClusterD, fault tolerance is implemented by a
global checkpoint/restore mechanism, which is performed
at a user-defined time interval. The cluster information and
cluster assignments in the leading worker are dumped to
a reliable file system every period of time. If any worker
fails (including the leading worker), the computation will
roll back to the most recent iteration checkpoint and resume
from that iteration. In addition, since Co-ClusterD is based
on iMapreduce [12], it also inherits all the salient features
of Mapreduce’s style fault tolerance.

The synchronous computation model used by our Co-
ClusterD framework also makes load balance become an
important issue. This is because the running time of each
iteration is dependent on the slowest worker. Therefore, if
the capacity of each computer in the distributed environment
is homogeneous, the workload should be evenly distributed.
Otherwise, the workload should be distributed according to
the capacity of each worker.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness and efficiency
of Co-ClusterD in the context of two clustering algorithms
ITCC and FNMTF on several real world data sets. We
compare Co-ClusterD to a state-of-the-art Hadoop based
co-clustering framework DisCo [13]. Since DisCo does not
support co-clustering algorithms with sequential updates, we
implement only concurrent updates in DisCo. However, in
Co-ClusterD, both concurrent and sequential updates are
implemented. The experiments are performed on both small-
scale and large-scale clusters.

A. Experiment Setup

We use real world data sets downloaded from UCI Ma-
chine Learning Repository [14] to evaluate the co-clustering
algorithms. These data sets are summarized in Table II.

We build a small-scale cluster of local machines and a
large-scale cluster on the Amazon EC2 cloud to run experi-
ments. The small-scale cluster consists of 4 machines. Each



Table II
DESCRIPTION OF DATA SETS

Data sets samples features non-zeros
KOS 3430 6906 467714
NIPS 1500 12419 1900000

ENRON 39861 28102 6400000

machine has Intel Core 2 Duo E8200 2.66GHz processor,
3GB of RAM, 1TB hard disk, and runs 32-bit Linux Debian
6.0 OS. These 4 machines are connected to a switch with
communication bandwidth of 1Gbps. The large-scale cluster
consists of 100 High-CPU medium instances on the Amazon
EC2 Cloud. Each instance has 1.7GB memory and 5 EC2
compute units.

B. Small-scale Experiments

For small-scale experiments, data sets KOS and NIPS are
used for evaluation. The number of row (or column) clusters
is set to 40. For the dividing clusters approach, each worker
is randomly assigned a subset of row (column) clusters with
size 10 in each iteration. In addition, the number of iterations
repeated for row (or column) clustering is set to 4. For the
batching points approach, each worker divides its subset of
rows (or columns) into 16 batches.
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Figure 1. Cost function vs. running time comparisons for co-clustering
algorithms with different update strategies

As shown in Figure 1, we can observe that co-clustering
algorithms with concurrent updates implemented in Co-
ClusterD (denoted by “Concurrent”) converge faster than
those implemented in DisCo (denoted by “DisCo”) although
they converge to the same values. This is because Co-
ClusterD leverages a persistent job for the iterative process
of the co-clustering algorithm rather than using one job for
one row (or column) clustering iteration which is adopted
by DisCo. Hence, Co-ClusterD reduces the repeated job
initialization overhead in each iteration and achieves fast

convergence. In addition, we can also observe that algo-
rithms parallelized by the dividing clusters approach and the
batching points approach converge faster and obtain better
results than their concurrent counterparts implemented in
DisCo and Co-ClusterD.

C. Large-scale Experiments

To validate the scalability of our framework, we also
run experiments on the Amazon EC2 cloud. The data set
ENRON is used for evaluation. The number of row (or
column) clusters is set to 20. Since the scalability of the
dividing clusters approach is dependent on the relationship
between the number of workers and the number of clusters,
only the batching points approach is evaluated. The number
of row (or column) batches each worker holds is set to 4.
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Figure 2. Speedup and performance comparisons

As shown in Figure 2(a) and Figure 2(c), algorithm-
s implemented in DisCo (denoted by “DisCo”) and Co-
ClusterD with concurrent updates (denoted by “Concurrent”)
obtain the same speedup. This is because both of them
perform concurrent updates. We can also observe that their
speedups are better than Co-ClusterD using the batching
points approach. The reason lies in that concurrent updates
performs less cluster information updates than the batching
points approach and thus results in less synchronization
overhead. However, since the bases of computing speedups
are different, a better speedup does not necessarily lead
to a shorter running time. As shown in Figure 2(b) and
Figure 2(d), co-clustering algorithms parallelized by the
batching points approach still converge much faster than
their concurrent counterparts implemented in DisCo and Co-
ClusterD.

VI. RELATED WORK

As huge data sets become prevalent, improving the scal-
ability of clustering algorithms has drawn more and more



attention. Many scalable clustering algorithms are proposed
recently. Dave et al. [15] propose a scheme of implementing
k-means with concurrent updates on Microsoft’s Windows
Azure cloud. Ene et al. [16] design a method of implement-
ing k-center and k-median on Mapreduce. Yin et al. [17]
develop a distributed framework called FreEM for paral-
lelizing EM algorithms. However, these studies are different
from ours as they are devoted to scaling up one-sided clus-
tering algorithms. Folino et al. [18] propose a parallelized
efficient solution to the high-order co-clustering problem
(i.e., the problem of simultaneously clustering heterogeneous
types of domain) [19]. George et al. [20] design a parallel
version of the weighted Bregman co-clustering algorithm
[11] and use it to build an efficient real-time collaborative
filtering framework. Deodhar et al. [21] develop a paral-
lelized implementation of the simultaneous co-clustering and
learning algorithm [22] based on Mapreduce. Papadimitriou
et al. [13] propose the distributed co-clustering (DisCo)
framework, under which various co-clustering algorithms
can be implemented. However, while these studies focus
on parallelizing co-clustering with concurrent updates, our
work is devoted to parallelizing co-clustering with sequential
updates.

VII. CONCLUSIONS

In this paper, we propose dividing clusters and batching
points approaches to parallelize co-clustering with sequen-
tial updates. Based on these two approaches, we design
and implement a distributed framework referred to as Co-
ClusterD, which supports efficient implementations of co-
clustering algorithms with sequential updates. Experimental
results show that co-clustering algorithms implemented in
Co-ClusterD can obtain better results and run faster than
their traditional concurrent counterparts.
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