
Co-clustering by Block Value Decomposition

Bo Long
Computer Science Dept.

SUNY Binghamton
Binghamton, NY 13902

blong1@binghamton.edu

Zhongfei (Mark) Zhang
Computer Science Dept.

SUNY Binghamton
Binghamton, NY 13902

zzhang@binghamton.edu

Philip S. Yu
IBM Watson Research Center

19 Skyline Drive
Hawthorne, NY 10532

psyu@us.ibm.com

ABSTRACT
Dyadic data matrices, such as co-occurrence matrix, rat-
ing matrix, and proximity matrix, arise frequently in var-
ious important applications. A fundamental problem in
dyadic data analysis is to find the hidden block structure
of the data matrix. In this paper, we present a new co-
clustering framework, block value decomposition(BVD), for
dyadic data, which factorizes the dyadic data matrix into
three components, the row-coefficient matrix R, the block
value matrix B, and the column-coefficient matrix C. Un-
der this framework, we focus on a special yet very popular
case – non-negative dyadic data, and propose a specific novel
co-clustering algorithm that iteratively computes the three
decomposition matrices based on the multiplicative updat-
ing rules. Extensive experimental evaluations also demon-
strate the effectiveness and potential of this framework as
well as the specific algorithms for co-clustering, and in par-
ticular, for discovering the hidden block structure in the
dyadic data.

Categories and Subject Descriptors
E.4 [Coding and Information Theory]: Data compaction
and compression; H.3.3 [Information search and Re-
trieval]: Clustering; I.5.3 [Pattern Recognition]: Clus-
tering

General Terms
Algorithms

Keywords
Co-clustering, Clustering, Matrix Decomposition, Dyadic
Data, Hidden Block Structure, Block Value Decomposition
(BVD), Non-negative Block Value Decomposition (NBVD).

1. INTRODUCTION
The clustering procedure arises in many disciplines and

has a wide range of applications. In many applications,
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such as document clustering, collaborative filtering, and mi-
croarray analysis, the data can be formulated as a two-
dimensional matrix representing a set of dyadic data. Dyadic
data refer to a domain with two finite sets of objects in
which observations are made for dyads, i.e., pairs with one
element from either set. For the dyadic data in these ap-
plications, co-clustering both dimensions of the data matrix
simultaneously is often more desirable than traditional one-
way clustering. This is due to the fact that co-clustering
takes the benefit of exploiting the duality between rows and
columns to effectively deal with the high dimensional and
sparse data that is typical in many applications. Moreover,
there is an additional benefit for co-clustering to provide
both row clusters and column clusters at same time. For
example, we may be interested in simultaneously cluster-
ing genes and experimental conditions in bioinformatics ap-
plications [4, 5], simultaneously clustering documents and
words in text mining [8], simultaneously clustering users and
movies in collaborative filtering.

In this paper, we propose a new co-clustering framework
called Block Value Decomposition (BVD). The key idea is
that the latent block structure in a two-dimensional dyadic
data matrix can be explored by its triple decomposition.
The dyadic data matrix is factorized into three components,
the row-coefficient matrix R, the block value matrix B, and
the column-coefficient matrix C. The coefficients denote the
degrees of the rows and columns associated with their clus-
ters and the block value matrix is an explicit and compact
representation of the hidden block structure of the data ma-
trix.

Under this framework, we develop a specific novel co-
clustering algorithm for a special yet very popular case –
non-negative dyadic data, that iteratively computes the three
decomposition matrices based on the multiplicative updat-
ing rules derived from an objective criterion. By intertwin-
ing the row clusterings and the column clusterings at each
iteration, the algorithm performs an implicitly adaptive di-
mensionality reduction, which works well for typical high-
dimensional and sparse data in many data mining appli-
cations. We have proven the correctness of the algorithm
by showing that the algorithm is guaranteed to converge
and have conducted extensive experimental evaluations to
demonstrate the effectiveness and potential of the frame-
work and the algorithms.

We define the following notations in this paper. Capital-
boldface letters such as R, B, and C denote matrices; small-
boldface letters such as r, b, and c denote column vectors;
lower-case letters such as w denote scalars; and calligraphic



letters such as X denote sets.

2. RELATED WORK
This work is primarily related to two main areas: co-

clustering in data mining and matrix decomposition in ma-
trix computation.

Although most of the clustering literature focuses on one-
sided clustering algorithms, recently co-clustering has be-
come a topic of extensive interest due to its applications
to many problems such as gene expression data analysis [4,
5] and text mining [8]. A representative early work of co-
clustering was reported in [11] that identified hierarchical
row and column clustering in matrices by a local greedy
splitting procedure. The BVD framework proposed in this
paper is based on the partitioning-based co-clustering for-
mulation first introduced in [11].

Information-theory based co-clustering has attracted in-
tensive attention in the literature. The information bottle-
neck (IB) framework [16] was first introduced for one-sided
clustering. Later, an agglomerative hard clustering version
of the IB method was used in [15] to cluster documents af-
ter clustering words. The work in [10] extended the above
framework to repeatedly cluster documents and then words.
An efficient algorithm was presented in [8] that monoton-
ically increases the preserved mutual information by inter-
twining both the row and column clusterings at all stages. A
more generalized co-clustering framework was presented in
[2] wherein any Bregman divergence can be used in the ob-
jective function, and various conditional expectation based
constraints can be incorporated into the framework.

There have been many research studies that perform clus-
tering based on SVD- or eigenvector-based decomposition
[7, 3, 9, 14]. The latent semantic indexing method (LSI)
[7] projects each data vector into the singular vector space
through the SVD, and then conducts the clustering using
traditional data clustering algorithms (such as K-means) in
the transformed space. Since the computed singular vec-
tors or eigenvectors do not correspond directly to individ-
ual clusters, the decompositions from SVD- or eigenvector-
based methods are difficult to interpret and to map to the
final clusters; as a result, traditional data clustering meth-
ods such as K-means must be applied in the transformed
space.

Recently, another matrix decomposition formulation, Non-
negative Matrix Factorization (NMF) [6], has been used for
clustering [17]. NMF has the intuitive interpretation for the
result. However, it focuses on one-dimension of the data
matrix and does not take advantage of the duality between
the rows and the columns of a matrix.

3. BLOCK VALUE DECOMPOSITION
we start by reviewing the notion of dyadic data. The

notion dyadic refers to a domain with two sets of objects,
X = {x1, . . . , xn} and Y = {y1, . . . , ym} in which the ob-
servations are made for dyads(x, y). Usually a dyad is a
scalar value w(x, y), e.g., the frequency of co-occurrence, or
the strength of preference/association /expression level. For
the scalar dyads, the data can always be organized as an n-
by-m two-dimensional matrix Z by mapping the row indices
into X and the column indices into Y. Then, each w(x, y)
corresponds to one element of Z.

We are interested in simultaneously clustering X into k

Original data matrix

X =

R B C

X

Permuted data matrix

with block structure

Reconstructed  matrix

(a) (b)

(c)

Figure 1: The original data matrix (b) with a 2 × 2
block structure which is demonstrated by the per-
muted data matrix (a). The row-coefficient ma-
trix R, the block value matrix B, and the column-
coefficient matrix C give a reconstructed matrix (c)
to approximate the original data matrix (b).

disjoint clusters and Y into l disjoint clusters. This is equiv-
alent to finding block structure of the matrix Z, i.e., finding
k × l submatrices of Z such that the elements within each
submatrix are similar to each other and elements from dif-
ferent submatrices are dissimilar to each other. The original
data matrix and the permuted matrix with explicit block
structure in Figure 1 gives an illustrative example.

Since the elements within each block are similar to each
other, we expect one center to represent each block. There-
fore a k × l small matrix is considered as the compact rep-
resentation for the original data matrix with a k × l block
structure. In the traditional one-way clustering, given the
cluster centers and the weights that denote degrees of ob-
servations associated with their clusters, one can approxi-
mate the original data by linear combinations of the cluster
centers. Similarly, we should be able to ”reconstruct” the
original data matrix by the linear combinations of the block
centers. Based on this observation, we formulate the prob-
lem of co-clustering dyadic data as the optimization prob-
lem of matrix decomposition, i.e., block value decomposition
(BVD).

Definition 1. Block value decomposition of a data matrix
Z ∈ <n×m is given by the minimization of

f(R,B,C) = ‖Z−RBC‖2 (1)

subject to the constraints ∀ij : Rij ≥ 0 and Cij ≥ 0, where
‖ · ‖ denote Frobenius matrix norm, R ∈ <n×k, B ∈ <k×l ,
C ∈ <l×m, k ¿ n, and l ¿ m.

We call the elements of B as the block values; B as the
block value matrix; R as the row-coefficients matrix; and
C as the column-coefficient matrix. As is discussed before,
B may be considered as a compact representation of Z; R
denotes the degrees of rows associated with their clusters;
and C denotes the degrees of the columns associated with
their clusters. We seek to approximate the original data ma-
trix by the reconstructed matrix, i.e., RBC, as illustrated



in Figure 1.
Under the BVD framework, the combinations of the com-

ponents also have an intuitive interpretation. RB is the
matrix containing the basis for the column space of Z and
BC contains the basis for the row space of Z. For example,
for a word-by-document matrix Z, each column of RB cap-
tures a base topic of a particular document cluster and each
row of BC captures a base topic of a word cluster.

Comparing with SVD-based approaches, there are three
main differences between BVD and SVD. First, in BVD, it
is natural to consider each row or column of a data matrix
as an additive combinations of the block values since BVD
does not allows negative values in R and C. In contrast,
since SVD allows the negative values in each component,
there is no intuitive interpretation for the negative combi-
nations. Second, unlike the singular vectors in SVD, the
basis vectors contained in RB and BC are not necessar-
ily orthogonal. Although singular vectors in SVD have a
statistical interpretation as the directions of the variance,
they typically do not have clear physical interpretations. In
contrast, the directions of the basis vectors in BVD have
much more straightforward correspondence to the clusters.
In summary, compared with SVD or eigenvector-based de-
composition, the decomposition from BVD has an intuitive
interpretation, which is necessary for many data mining ap-
plications.

BVD provides a general framework for co-clustering. De-
pending on different data types in different applications, var-
ious formulations and algorithms may be developed under
the BVD framework. An interesting observation is that the
data matrices in many important applications are typically
non-negative, such as the co-occurrence tables, the perfor-
mance/rating matrices and the proximity matrices. Some
other data may be transformed into the non-negative form,
such as the gene expression data. Therefore, in the rest of
the paper, we concentrate on a sub-framework of BVD, the
non-negative block value decomposition (NBVD).

NBVD puts an extra non-negative constraint on the B.
The formal definition is given as follows.

Definition 2. Non-negative block value decomposition of
a non-negative data matrix Z ∈ <n×m (i.e., ∀ij : Zij ≥ 0)
is given by the minimization of

f(R,B,C) = ‖Z−RBC‖2 (2)

subject to the constraints ∀ij : Rij ≥ 0,Bij ≥ 0 and Cij ≥
0, where R ∈ <n×k, B ∈ <k×l , C ∈ <l×m, k ¿ n, and
l ¿ m.

Finally, we compare NBVD with NMF [6]. Given a non-
negative data matrix V, NMF seeks to find an approximate
factorization V ≈ WH with non-negative components W
and H. Essentially, NMF concentrates on the one-way clus-
tering and does not take the advantage of the duality be-
tween the row clustering and the column clustering. In fact
NMF may be considered as a special case of NBVD in the
sense that WH = WIH, where I is an identity matrix. By
this formulation, NMF is a special case of NBVD and it
does co-clustering with the additional restrictions that the
number of the row clusters equals to the number of the col-
umn clusters and that each row cluster is associated with
one column cluster.

4. DERIVATION OF THE ALGORITHM

The objective function in (2) is convex in R, B and C
respectively. However, it is not convex in all of them si-
multaneously. Thus, it is unrealistic to expect an algorithm
to find the global minimum. We derive an EM [1] style
algorithm that converges to a local minimum by iteratively
updating the decomposition using a set of multiplicative up-
dating rules.

First, we prove the following theorem which is the basis
of NBVD algorithm.

Theorem 1. If R, B and C are a local minimizer of the
objective function in (2), then the equations

(ZCT BT )¯R− (RBCCT BT )¯R = 0 (3)

(RT ZCT )¯B− (RT RBCCT )¯B = 0 (4)

(BT RT Z)¯C− (BT RT RBC)¯C = 0 (5)

are satisfied, where ¯ denotes the Hadamard product or en-
trywise product of two matrices.

Proof. Let λ1, λ2, and λ3 be the Lagrange multipliers
for the constraint R,B, and C ≥ 0, respectively, where
λ1 ∈ <k×n, λ2 ∈ <l×k, and λ3 ∈ <m×l. The Lagrange
function L(R,B,C, λ1, λ2, λ3) becomes:

L = f(R,B,C)− tr(λ1R
T )− tr(λ2B

T )− tr(λ3C
T ) (6)

The Kuhn-Tucker conditions are:

∂L/∂R = 0 (7)

∂L/∂B = 0 (8)

∂L/∂C = 0 (9)

λ1 ¯R = 0 (10)

λ2 ¯B = 0 (11)

λ3 ¯C = 0 (12)

Taking the derivatives, we obtain the following three equa-
tions from (7), (8), and (9), respectively.

2ZCT BT − 2RBCCT BT + λ1 = 0 (13)

2RT ZCT − 2RT RBCCT + λ2 = 0 (14)

2BT RT Z− 2BT RT RBC + λ3 = 0 (15)

Applying the Hadamard multiplication on both sides of (13),
(14), and (15) by R, B, and C, respectively, and using con-
ditions (10), (11), and (12), the proof is completed.

Based on Theorem 1, we propose following updating rules.

Rij ← Rij
(ZCT BT )ij

(RBCCT BT )ij
(16)

Bij ← Bij
(RT ZCT )ij

(RT RBCCT )ij
(17)

Cij ← Cij
(BT RT Z)ij

(BT RT RBC)ij
(18)

The time complexity of NBVD algorithm can be shown
as O(t(k + l)nm) where t is the number of iterations. The
complexity is the same as that of the classic one-way clus-
tering algorithm, k-means clustering whose time complexity
is O(tknm). Since NBVD algorithm is simple to implement
and only involves basic matrix operations, it is easy to take
the benefit of distributed computing when dealing with very
large data set.



The conditions in Theorem 1 are the necessary conditions
but not the sufficient conditions for a local minimum. To
assure that the NBVD algorithm is correct, we need to prove
that the objective function (2) is nonincreasing under the
updating rules (16), (17) and (18). This can be done by
making use the concept of an auxiliary function similar to
that used in the EM algorithm [1] and NMF [13]. Due to
the space limit, we omit the details here.

Finally, we consider a special case of NBVD. In practice,
there exists a special type of data, symmetric dyadic data.
The notion of symmetric dyadic refers to a domain with two
identical sets of objects , X = {x1, . . . , xn}, in which the ob-
servations are made for dyads(a, b), where both a and b are
from X and dyads(a, b) = dyads(b, a). Symmetric dyadic
data may be considered as a two-dimensional symmetric ma-
trix. For example, a proximity matrix may be considered as
a symmetric dyadic data.

NBVD algorithm cannot directly be applied to non-negative
symmetric dyadic data, because the extra condition R = CT

needs to be satisfied. Consequently, NBVD algorithm needs
to be revised to accommodate this special case. The formal
definition for symmetric NBVD is,

Definition 3. Symmetric non-negative block value decom-
position of a symmetric non-negative data matrix Z ∈ <n×n

(i.e., ∀ij : Zij ≥ 0) is given by the minimization of

f(S,B) = ‖Z− SBST ‖2 (19)

∀ij : Sij ≥ 0 and Bij ≥ 0, where S ∈ <n×k, B ∈ <k×k, and
k ¿ n.

Given this definition, we derive the updating rules for sym-
metric NBVD as follows.

Sij ← Sij
(ZSB)ij

(SBST SB)ij

(20)

Bij ← Bij
(ST ZS)ij

(ST SBST S)ij
(21)

Note that the symmetric NBVD provides only one cluster-
ing result though it does clustering on both dimensions of
the data matrix. The symmetric NBVD is not a trivial
special case of NBVD. It has a very important application,
graph partition. when applied to the proximity matrix, the
symmetric NBVD algorithm becomes a new graph partition
algorithm.

5. EMPIRICAL EVALUATIONS

5.1 Data Sets and Parameter Settings
We conduct the performance evaluation using the various

subsets of 20-Newsgroup data (NG20 ) [12]and CLASSIC3
data set [8]. The NG20 data set consists of approximately
20, 000 newsgroup articles collected evenly from 20 different
usenet newsgroups. We have exactly duplicated this data
set that is also used in [8, 10] for document co-clustering in
order to ensure the direct comparability in the evaluations.
Many of the newsgroups share similar topics and about 4.5%
of the documents are cross posted making the boundaries
between some news-groups rather fuzzy. To make our com-
parison consistent with the existing algorithms we have re-
constructed various subsets of NG20 used in [8, 10] to all the
subsets, i.e., removing stop words, ignoring file headers, and

NBVD NMF ICC IDC
Binary 0.95 0.91 0.96 0.85
Multi5 0.93 0.88 0.89 0.88
Multi10 0.67 0.60 0.54 0.55

Table 2: NBVD shows clear improvements on the
micro-averaged-precision values on different news-
group data sets over other algorithms.

selecting the top 2000 words based on the mutual informa-
tion. As in [10], we include the subject line in the articles.
Specific details of the subsets are given in Table 1.

Since each document vector of word-by-document matrix
is normalized to have unit L2 norm, in the implementation
of the NBVD, we normalize each column of RB to have the
unit L2 norm. Assume that RB is normalized to RBV.
The cluster labels for the documents are given by V−1C
instead of C.

We measure the clustering performance using the accu-
racy given by the confusion matrix of the obtained clusters
and the ”real” classes. Each entry (i, j) in the confusion
matrix represents the number of documents in cluster i that
are in true class j. Specifically, we use the micro-averaged-
precision.

5.2 Experiment on Word-Document Data
This section provides empirical evidence to demonstrate

that, as a general co-clustering algorithm, how NBVD im-
proves the document clustering accuracy in comparison with
NMF[6], and two other co-clustering algorithms, Information-
theoretic Co-Clustering (ICC) [8] and Iterative Double Clus-
tering algorithm (IDC) [10] .

In the experiments, initial matrices are generated as fol-
lows. All the elements of R and C are generated from uni-
form distribution between 0 and 1 and all the elements of
B are simply assigned to the mean value of the data ma-
trix. Since NBVD algorithm is not guaranteed to find the
global minimum, it is beneficial to run the algorithm several
times with different initial values and choose one trial with
a minimal objective value. In reality, usually a few number
of trials is sufficient. In the experiments reported in this
paper, three trials of NBVD are performed in each test run
and the final results are averages for twenty test runs. The
experiments for NMF are conducted in the same way.

Table 2 records the two confusion matrices obtained on
the CLASSIC3 data set using NMF and NBVD, respec-
tively, with 3 word clusters that is the number of true word
clusters. Observe that NBVD extracted the original clus-
ters with micro-averaged-precision of 0.9879 and NMF led
to a micro-averaged-precision of 0.9866. It is not surprising
that NBVD and NMF have almost the same performance on
the CLASSIC3 data set. This is due to the fact that when
there exists perfect one-to-one correspondence between row
clusters and column clusters, the block value matrix B is
close to the identity matrix and the NMF is equivalent to
NBVD. Table 3 shows a block value matrix for the data set
CLASSIC3. The perfect diagonal structure of Table 3 indi-
cates the one-to-one correspondence structure of document
clusters and word clusters for CLASSIC3.

Table 4 shows the two confusion matrices obtained on the
Multi5 data set by NBVD and NMF respectively. NBVD
and NMF yield micro-averaged-precision of 0.944 and 0.884



Dataset Newsgroups Included # Documents Total
Name per Group Documents
Binary talk.politics.mideast, talk.politics.misc 250 500
Multi5 comp.graphics, rec.motorcycles, res.sports.baseball,

sci.space, talk.politics.mideast 100 500
Multi10 alt.atheism, comp.sys.mac.hardware, misc.forsale,

res.autos, res.sport.hockey, sci.crypt, sci.eldectronics,
sci.med, sci.space, talk.politics.gun 50 500

Table 1: Datasets details. Each data set is randomly and evenly sampled from specific newsgroups.

0.701 0.000 0.000
0.000 0.608 0.000
0.000 0.000 1.000

Table 3: A normalized block value matrix on the
CLASSIS3 data set.

NBVD NMF
92 1 4 3 1 94 4 4 13 2
2 96 3 3 0 1 88 5 5 4
1 0 93 1 0 2 3 90 5 2
4 1 0 93 1 3 4 1 77 0
1 2 0 0 98 0 1 0 3 93

Table 4: NBVD extracts the block structure more
accurately than NMF on Multi5 data set.

respectively. This experiment shows that NBVD has a bet-
ter performance than NMF on the data set Multi5. Com-
pared with CLASSIC3, Multi5 has more complicated hidden
block structure and there is no simple one-to-one relation-
ship between document clusters and word clusters. This
demonstrates that by exploiting the duality of the row clus-
tering and the column clustering, NBVD is more powerful
to discover the complicated hidden block structure of the
data than NMF.

Table 5 shows the micro-averaged-precision measures on
all data sets from NG20 data. All NBVD precision values
are obtained by running NBVD on the corresponding opti-
mal numbers of the word clusters from Figure 1. The peaked
ITC and IDC precision values are quoted from [8] and [10],
respectively. On all data sets NBVD performs better than
its one-sided counterpart NMF. This result justifies the need
to exploit duality between the word clustering and the doc-
ument clustering. Compared with other two state-of-the-art
co-clustering algorithms, NBVD shows clear improvements
on precision for almost all data sets. In particular more
substantial improvements are observed on the complicated
data sets with more clusters, which is the typical scenario
in practice.

NBVD NMF ICC IDC
Binary 0.95 0.91 0.96 0.85
Multi5 0.93 0.88 0.89 0.88
Multi10 0.67 0.60 0.54 0.55

Table 5: NBVD shows clear improvements on the
micro-averaged-precision values on different news-
group data sets over other algorithms.
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Figure 2: The symmetric NBVD shows substan-
tial improvements measured as micro-averaged-
precision values on the newsgroup data sets with
different cluster numbers over AA and NC.

5.3 Experiments on Proximity Data
In this section we provide empirical evidence to demon-

strate the potential of the symmetric NBVD on the impor-
tant application, graph partition. We still concentrates on
the task of document clustering; but this time it is formed
as a graph partition problem. The whole document data
collection is represented as an undirected graph. Each node
of the graph represents a document, and each edge (i, j)
is assigned a weight wij to reflect the similarity between
documents i and j. We conduct experiments on document
clustering based on graph partition and show that the sym-
metric NBVD has superior performance to two state-of-the-
art methods, the Average Association (AA) [18] and the
Normalized Cut (NC) [14].

We use the same data set, NG20, with the same pre-
processing steps defined before. Since each column of the
word-document co-occurrence matrix Z has been normal-
ized to the unit L2 norm, the proximity matrix for the doc-
uments is simply determined as W = ZT Z. The similarity
between two documents is the cosine similarity. Similarly,
micro-averaged-precision is used as the measure metric.

At each run of the test, k news groups are randomly
selected from twenty newsgroups and 250 documents are
randomly selected from each selected newsgroup. For each
given cluster number k, 20 test runs are conducted and the
final precision value is the average of the twenty test runs.
As we did for the general NBVD experiments, 3 trials of the
symmetric NBVD are performed in each test run.

From the performance results reported in Figure 5, it is
clear that as a graph partition algorithm, the symmetric
NBVD improves the document clustering precision substan-



1.134 0.000 0.013 0.000 0.000 0.000
0.000 1.638 0.000 0.000 0.000 0.000
0.013 0.000 1.993 0.000 0.000 0.000
0.000 0.000 0.000 1.425 0.000 0.000
0.000 0.000 0.000 0.000 1.629 0.000
0.000 0.000 0.000 0.000 0.000 1.686

Table 6: The block value matrix of the symmetric
NBVD on the Multi5 data set with 6 document clus-
ters.

0.931 0.000 0.000 0.000 0.000
0.000 1.206 0.000 0.000 0.000
0.000 0.000 0.890 0.000 0.000
0.000 0.000 0.000 1.057 0.000
0.000 0.000 0.000 0.000 1.629

Table 7: The block value matrix of the symmetric
NBVD on the Multi5 data set with 5 document clus-
ters.

tially over AA and NC.
Finally, we apply the symmetric NBVD to the Multi5 data

set to demonstrate the nice property of the block value ma-
trix under the symmetric NBVD. Since the row clusters and
the column clusters are identical under symmetric NBVD,
the block values under the symmetric NBVD have a very
intuitive interpretation. They represent the similarity or
distance between the clusters. When applying the symmet-
ric NBVD to the proximity matrix, the resulting block value
matrix B may be considered as the generic proximity matrix
for the clusters, i.e., Bij denotes the similarity between the
ith clusters and jth clusters. Consequently, the better diag-
onal structure B has, the better clustering we obtain. In the
block value matrix of Table 6, Cluster 1 and Cluster 3 are
more similar to each other than any other pair of different
clusters. Thus, Cluster 1 and Cluster 3 may be merged to
make a better clustering. Applying the symmetric NBVD to
Multi5 with 5 document clusters that is the true number of
document clusters, we obtain a perfect diagonal block value
matrix shown in Table 7. The nice property of the block
value matrix not only provides the intuitive information for
the distribution of the clusters and the quality of the cluster-
ing, but also indicates some interesting and open questions
under the BVD framework, e.g., how to enforce the nice
property of the block value matrix within an algorithm to
make the algorithm more robust and efficient.

6. CONCLUSIONS
In this paper, we have proposed a new co-clustering frame-

work for dyadic data called Block Value Decomposition (BVD).
Under this framework, we focus on a special but also very
popular case, Non-negative Block Value Decomposition, and
have presented the specific novel NBVD algorithm. We have
shown the correctness of the NBVD algorithm theoretically.
We have also reported extensive empirical evaluations to
demonstrate the effectiveness and the great potential of the
BVD framework as well as the NBVD algorithms.
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