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ABSTRACT
Motivation: Large scale gene expression data are often
analysed by clustering genes based on gene expression
data alone, though a priori knowledge in the form of bi-
ological networks is available. The use of this additional
information promises to improve exploratory analysis con-
siderably.
Results: We propose constructing a distance function
which combines information from expression data and
biological networks. Based on this function, we compute a
joint clustering of genes and vertices of the network. This
general approach is elaborated for metabolic networks. We
define a graph distance function on such networks and
combine it with a correlation-based distance function for
gene expression measurements. A hierarchical clustering
and an associated statistical measure is computed to
arrive at a reasonable number of clusters. Our method is
validated using expression data of the yeast diauxic shift.
The resulting clusters are easily interpretable in terms of
the biochemical network and the gene expression data
and suggest that our method is able to automatically
identify processes that are relevant under the measured
conditions.
Contact: Daniel.Hanisch@scai.fhg.de
Keywords: gene expression; biological networks;
metabolic networks; co-clustering; clustering.

INTRODUCTION
One of the most popular tools for exploratory analysis
of gene expression data is clustering of genes and/or
experiments. Clustering methods try to group the objects
under consideration into (usually disjoint) groups sharing
a common characteristic reflected by a similarity measure
defined on the objects. Since the influential paper of Eisen
et al. (1998), clustering methods are routinely used to

cluster genes based on a distance measure quantifying the
degree of co-regulation.

Furthermore, clustering is also frequently used as the
basis for further computational analysis. For example, the
function of a gene can be predicted according to known
functions of other genes from the same cluster (Eisen
et al., 1998). If the arrays are clustered instead of the
genes, classes and subclasses of samples can be detected
and predicted. By searching the promoter sequences of
all genes of a cluster for overrepresented patterns, new
transcription factor binding sites can be identified. Gene
expression clusters can also be mapped onto metabolic
networks in order to find pathways of interest (van Helden
et al., 2000).

It appears that this sequential evaluation of the data—
by first clustering the gene expression data alone, and
incorporating additional information only after the clusters
are determined—is suboptimal. One major problem is that
the boundaries of the resulting clusters are arbitrary to
some degree. Information from other sources could often
help in resolving ambiguities or in avoiding erroneous
linking based on spurious similarities.

In this paper, we propose a novel method that utilizes
information in the form of biological networks in an inte-
grated manner to improve the result of the clustering. Bio-
logical networks relate genes, gene products or groups of
those (e.g., protein complexes or protein families) to each
other in the form of a graph (Bhalla and Iyengar, 1999).
In such a graph, nodes represent molecules and edges in-
dicate our knowledge of existing or absent relationships.
In general, the edges of biological networks may represent
proven facts, but also uncertain information or hypotheses.

There have been previous suggestions for the integrated
non-sequential analysis of gene expression data and
biological networks. For example, the correct topology
of small regulatory networks can be inferred by Bayesian
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reasoning (Hartemink et al., 2001). Our pathway scoring
method (Zien et al., 2000) scores metabolic pathways
in terms of gene expression data, but suffers from the
combinatorial explosion encountered during pathway
generation. Apart from designing improved scoring
functions, Kurhekar et al. (2002) suggest selecting rel-
evant pathways from a predefined collection, like those
given by KEGG (Kanehisa, 1996). While this solves the
computational problems, it restricts the analysis to a static
view of the biological network as imposed by the pathway
collection.

The co-clustering method proposed here, however, is
able to extract relevant pathways that cross the boundaries
of such categories. Whereas conventional cluster methods
rely on gene expression data alone, we propose combining
measures derived from gene expression data and metrics
on biological networks into a single distance function.
Thus, if for a set of genes a distance function, δexp, is
defined based on the expression data and another distance
function, δnet, is defined based on a biological network, we
propose to compute a combined distance function � as

� = f (δexp, δnet).

Through the combination of both distance measures, ad-
ditional structure specified in the biological network can
be imposed on the gene expression data. This in turn may
lead to increased stability of the clustering solution, if both
kinds of information are coherent, i.e., gene expression
measurements support relations of the network and vice
versa. More importantly, co-clustering should lead to bi-
ologically more meaningful clusters in many cases. For
example, the question concerning which metabolic path-
ways are activated in the course of an experiment can be
examined through gene expression measurements (DeRisi
et al., 1997). In this case, reasonably coherent expression
of genes participating in an activated pathway can be ex-
pected. However, searching for the best correlation in the
set of measured genes (as attempted in standard clustering
procedures) might not lead to biologically sound results
even in the absence of measurement errors.

In the following section we will discuss the application
of co-clustering to metabolic networks. This entails repre-
sentation of the metabolic data, definition of sensible dis-
tance functions on expression data and network separately,
followed by the definition of the combined distance func-
tion. After presentation of the clustering methodology, the
performance of our method on a real-world data set is dis-
cussed. The paper closes with perspectives for other possi-
ble applications of our method and suggestions for further
improvement.

APPLICATION TO METABOLIC NETWORKS
The focus of this paper is on the analysis of co-regulated
metabolic pathways supported by gene expression mea-

surements. Metabolic reactions are an integral part of ev-
ery organism and comprise fundamental cellular processes
such as protein synthesis or energy production. This set-
ting is well suited to assessing the feasibility of our ap-
proach as sets of metabolic reactions and associated path-
ways (e.g., KEGG) and gene expression data known to
represent metabolic changes (e.g., DeRisi et al. (1997))
are readily available and reasonably well understood.

Metabolic network acquisition and representation
In our setting metabolic networks consist of a set of
chemical reactions, most of which are catalysed by en-
zymes. Enzymatic reactions which can be assembled into
a metabolic network are available in several databases.
We choose the KEGG database (Kanehisa, 1996) as it
provides an organization of reactions into pathways as
well as a large dataset of curated metabolic reactions. The
pathways reflect commonly used categories and can be
visualized on manually drawn pathway maps. Since our
co-clustering procedure does not utilize this information,
it is well suited as an independent evaluation guide.

As of December 2001 the KEGG dataset consisted of
approximately 4000 metabolic reactions. Each reaction is
realized in some organism and is annotated with a reaction
identifier, functionally important educts and products, and
the classification of the catalysing enzyme. Each reaction
may be uni- or bi-directional. We take the combination
of identifier and EC classifier to be a unique identifier
for a metabolic reaction in the network. We assemble
this set of reactions into a network in the form of a
PETRI net, similar to the method described by Küffner
et al. (1999). The constructed PETRI net is essentially a
bipartite graph in which one set of nodes (termed places)
represents molecules (metabolites and enzymes) and the
other set of nodes (called transitions) defines chemical
reactions among the molecules. A directed edge between
a molecule and a reaction implies that the molecule is
product or educt of the reaction depending on the direction
of the edge. Note that a catalysing enzyme is educt and
product simultaneously, i.e., two edges connect it to an
associated transition. Enzyme identifier can occur multiple
times as each may be able to catalyse multiple reactions.
A unification of these nodes would introduce unwanted
shortcuts into the metabolic network which may have no
biological meaning. In fact, these nodes may be assigned
to different clusters in our co-clustering procedure.

Our co-clustering method should be able to extract
biologically plausible subnetworks in the light of the given
gene expression data. This should partly correspond, but
not be restricted, to defined KEGG pathways. Moreover,
we construct a network which is not specific to any
single organism. Indeed, it would be possible to construct
specialized networks for certain organisms based on the
KEGG data. Such a network would consist of fewer
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reactions than the generic one as enzymes might not be
present or unknown in the chosen organism. Therefore,
it might exhibit a less connected and more cluster-like
structure. In this work, however, we report detailed results
on only the generic network. Thereby, we emulate the
situation in organisms with little prior knowledge. In such
organisms known reactions may be connected by generic
ones to yield a hypothetical, but plausible, network.

Network distance function
The underlying assumption for our network distance func-
tion is that enzymes are related according to their prox-
imity in the network. This is reasonable, as the biolog-
ical processes under consideration consist of successive
metabolic reaction steps which constitute our network.

In order to construct a distance function for the
metabolic network δnet, we interpret the derived PETRI

net as an undirected graph G = (V, E) with node set
V and edge set E . In our case, V is the set of all places
and transitions of the PETRI net. Thus, V consists of all
molecules, i.e., proteins, metabolites, and reactions of
the metabolic network. Furthermore, we define a weight
function w : E → R which associates a weight with
each edge. Let W ⊂ V be the set of molecules for
which gene expression data are available. Then we define
δnet : W × W → R for two vertices wi , w j ∈ W as the
minimum weight of all paths connecting vertices wi and
w j .

These minimal weights can be computed efficiently
using basic graph algorithms. We first eliminate all |V | −
|W | superfluous vertices by considering for each such
vertex x all pairs of neighbours. Let (vi , v j ) be such
a pair of neighbouring vertices. If the weight w(px ) of
the path px = (vi , x, v j ) is smaller than the weight of
the path pv = (vi , v j ), we connect vi and v j with an
edge with weight w(px ). If all pairs of neighbours have
been considered, the node x and all incident edges can
be deleted. For the remaining |W | nodes of interest we
use the Floyd–Warshall algorithm (Cormen et al., 1992)
to compute all shortest paths. For dense graphs, the first
step can be time-consuming because |V |2 pairs of vertices
have to be considered in the worst case, thus resulting in a
worst case running time of O(|V − W ||V |2). In our sparse
network, however, this worst case running time is virtually
never observed. When nodes are processed in order of
increasing degree, it will often suffice to consider only
a small fraction of V as most nodes have few incident
edges. The subsequent Floyd–Warshall algorithm takes
time O(|W |3).

Another option computing the minimal weights is the
Dijkstra shortest-path algorithm (Cormen et al., 1992).
This algorithm can compute the shortest path weights of
one vertex to all other vertices in asymptotic running time
O(|V |log|V | + |E |) for non-negative weight functions.

As we need to compute the weights for all vertices in the
set of interest W , the overall running time to compute the
network distance function is O(|W ||V |log|V | + |W ||E |).
We found that the first strategy is much faster for the
networks under consideration. Reasons may be that the
worst-case bound of the first strategy is not sharp for our
class of graphs and the constant hidden in the O-notation
is small.

As the number of interesting vertices is usually smaller
than the number of all vertices and because the network
under consideration is sparse, computation of this distance
function is feasible for even large networks. Furthermore,
in our procedure graph distances need to be computed only
once for each network.

The simplest plausible choice for the weight function
is the uniform weighting w(e) = 1 for all e ∈ E . The
resulting distance function is termed δuni

net .
Recently it has been shown that metabolic networks

exhibit a scale-free structure (Jeong et al., 2000; Fell
and Wagner, 2000). Indeed, this is true for the network
constructed from KEGG reactions. One characteristic of
networks with a scale-free structure is that relatively few
high-degree nodes are found. These so-called hubs often
constitute unspecific or ubiquitous molecules (e.g., ATP
or NH3). Thus, the connections introduced by such nodes
may be biologically unimportant or even misleading. In
other words, we prefer clusters in which all genes are
reachable from each other in a few steps without hubs.
This can be reflected in the distance function using the
degree of a vertex v, i.e., the number of edges incident to
v, termed deg(v). Our alternative weighting function for
an edge e between two vertices v and w is defined as

w(e) =
{

deg(v) if v is a molecule
deg(w) otherwise.

Note that the graph is bipartite, i.e., every edge connects
one molecule with one reaction. We do not use the sum
deg(v) + deg(w) as we do not want to penalize reactions
with many involved molecules, but only substrates partici-
pating in different biological processes. The resulting dis-
tance function is termed δnorm

net . Histograms of the distance
distributions for the metabolic network according to both
functions are depicted in Figure 1.

Gene expression distance function
Several alternative distance functions for gene expression
measurements have been proposed. The most popular
choice in the case of time-series data is the Pearson
correlation coefficient, as suggested by Eisen et al. (1998).
This coefficient quantifies the degree of linear dependence
between two time-courses of gene expression levels. In
this paper, we used log-ratio transformed data, i.e., for
each sample of interest, the logarithm of the ratio of the
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Fig. 1. On the left, histogram of network distances without degree
normalization. On the right, histogram of network distances with
degree normalization. For both data sets 0.9% of the distances were
infinite. These are omitted in the plots.

sample and a control measurement is computed. If Gik
represents this value for gene gi at time point k, then the
correlation coefficient ρ is defined as

ρ(gi , g j ) = 1

N

∑
k

(
Gik − µi

σi

) (
G jk − µ j

σ j

)
,

where µi and σi denote mean and standard deviation of
the transformed time series data of gene i . The correlation
coefficient can be converted easily into a distance measure
in the range 0 to 2 by

δexp(gi , g j ) = 1 − ρ(gi , g j ).

This distance function quantifies the degree of dissimilar-
ity for our gene expression data set. Here we consider anti-
correlated genes as most distant. The use of correlation
as a distance function is reasonable in our setting as we
expect a similar expression pattern between genes in suc-
cessive (or related) reaction steps in metabolic pathways.
However, we cannot expect to see perfect correlation of
expression in a pathway for two reasons. First, gene ex-
pression measurements reflect the amount of mRNA in the
sample and, thus, the amount of enzyme to be produced
in the near future. Second, expression measurements are
noisy with current high-throughput technology. Neverthe-
less, a coordinated change in the expression patterns of
participating genes is to be expected when a metabolic
pathway changes its activity level.

CO-CLUSTERING
In the following we define how to combine the distance
functions for networks and gene expression data and how
to compute the desired clustering. Note that a large part
of the following discussion applies not only to metabolic
networks but also to more general biological networks.

Combining nodes and genes
The network distance function δnet operates on pairs
of enzyme nodes in the graph, whereas the expression

distance function δexp operates on pairwise expression
measurements, i.e., genes of an organism. To construct
a combined function, a mapping M that relates genes to
enzyme nodes in the graph is required.

For yeast, such a mapping is available from the MIPS
database (Mewes et al., 1997). In this database, E.C.-
classifications are assigned to all open reading frames
(ORFs) with known metabolic function. This mapping
is not one-to-one. Indeed, one ORF may have several
enzymatic functions, and conversely several ORFs may
map to one E.C. entry. In addition, each single EC
number may correspond to several nodes in the network
for reasons given above. To cope with this situation, the
combined distance function is defined on the product set
of genes and relevant nodes in the network. Members of
this product set are termed objects. Thus, if G is the set
of genes and V is the set of nodes in the network, then the
mapping M ⊂ G×V defines the domain of the combined
distance function and, thus, the set of objects used in the
clustering procedure.

To illustrate this, consider nodes with enzyme clas-
sification Hexokinase (EC number 2.7.1.1). There
are two yeast proteins which are associated with this
function, HXK1 and HXK2. However, during diauxic
shift, the expression of these two genes is strongly
anti-correlated (DeRisi et al., 1997). Conversely, the
hexokinase belongs to the group of phosphotranferases.
For instance, it can catalyse the conversion of α-D-
glucose to α-D-glucose 6-phosphate (KEGG reaction ID
R01786) as well as the conversion of D-glucosamine
to D-glucosamine 6-phosphate (KEGG reaction ID
R01961). While these reactions are similar, it is not clear
a priori that they are embedded in the same functional
context and should therefore share a cluster. Indeed, in
terms of the KEGG pathways, these reactions occur in
the glycolysis and aminosugars metabolism pathways,
respectively. Consequently, our method constructs dis-
tinct objects for each gene/reaction pair. For example,
the protein HXK1 would map to two distinct objects,
i.e., o1 = (g1, v1) = (HXK1, EC 2.7.1.1/R01786) and
o2 = (g1, v2) = (HXK1, EC 2.7.1.1/R01961). The
protein HXK2 is treated analogously. The co-clustering
results in a clustering of such objects which can be
reduced to a clustering of vertices or genes, as necessary.

Combining distances
The combined distance function should assign a small
distance to pairs of objects which are close in the network
and show similar expression patterns. Objects which are
far apart in the network and thus are presumably used in
different biological context should be far apart according
to the combined function. The same holds true for objects
which are not co-regulated or even oppositely regulated,
as we want to extract co-regulated pathways. The largest
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Fig. 2. Graph of combined distance function �norm.

distance should be assigned to objects which are far apart
according to both distance measures. In addition, the
combined function should be robust against noise in the
data. For example, perfect correlation should not result
in extraordinarily small distance in comparison with a
good or moderate correlation, as such differences might
often be due to measurement noise. This in turn could
lead to artifacts in the clustering procedure. Analogously,
erroneously missing links between enzymes of interest
in the network should not lead to prohibitively high
distances. This robustness can be achieved by saturation
at the extremes of the parameter space.

One function capable of combining the individual dis-
tance functions into a joint one with the above properties
is the sum of two logistic curves. This sigmoidal func-
tion attains its maximum for minimal x- and y-values and
gradually declines with increasing x- and y-values. As our
distance function needs to assign minimal values for mini-
mal parameter values, the functional form of the combined
function � for two objects oi , o j ∈ M with correspond-
ing genes gi , g j and corresponding enzyme nodes in the
graph vi , v j is

�(oi , o j ) = 1 − 0.5 × (λexp(gi , g j ) + λnet(vi , v j )),

where λ�(xi , x j ) = 1

1 + e−s�(δ�(xi ,x j )−ν�)

for � ∈ {exp, net}. The parameters ν�, s� ∈ R control the
shape of the logistic curve. Essentially, a one-dimensional
logistic curve is a smooth threshold function with value
1/2 at point ν� . The parameter s� controls the slope of the
curve. We set the parameter ν� to the mean of the distance
distributions of the network and expression distances,
respectively. The parameter s� is chosen heuristically
to yield a moderate slope (s� = 6/ν� ). The resulting
combined distance function is shown in Figure 2. A
validation of this combination can be found in the Results
section.

As pointed out above, genes and vertices may occur
multiply in distinct objects. It needs to be considered
whether pairs of these objects are assigned a sensible
distance. The first case is that one vertex is assigned to
several genes, i.e., more than one gene may fulfill the
desired function or even all genes are needed to fulfill
the enzymatic activity (e.g., as subunits in a complex).
Then we leave the network distance of zero as implied
by the distance function, δnet unchanged. This means that
these objects share a cluster if their expression profiles
do not disagree strongly. In the second case, when one
gene is mapped to several vertices in the network, we
set the expression distance to the mean of all expression
distances, i.e., to a normalized value of 1/2. The rationale
for this is that distinct vertices in the network catalyse
different reactions, and thus a single gene may play a role
in different biological contexts. A perfect correlation of
the expression measurements, however, might prevent the
assignment to different clusters.

Clustering methodology
From the large number of available cluster methods, we
chose a version of hierarchical average linkage clustering.
Since the influential work of Eisen et al. (1998), this is one
of the most popular clustering techniques for the analysis
of gene expression measurements. Starting from the set
of objects as singleton clusters, the method successively
joins clusters with smallest average pairwise distance. The
result of a hierarchical clustering procedure is a binary tree
(or a dendrogram) in which each inner node represents a
joining step of the procedure. To produce a set of clusters,
the tree is cut by removing all nodes after a chosen joining
step.

One major problem arising in cluster analysis is deter-
mining the appropriate number of clusters and thus the
cutting point for the dendrogram. Various statistical mea-
sures exist for this purpose. We selected the silhouette-
coefficient (Rousseeuw, 1987). This coefficient measures
the quality of a clustering by a comparison of the tight-
ness and separation of clusters. Let i be any object in the
clustering and A its corresponding cluster. Then

a(i) = 1

|A| − 1

∑
j∈A, j =i

�(i, j)

measures the average distance of i to all other objects in
the cluster A. Then we compute for each cluster C = A

d(i, C) = 1

|C |
∑
j∈C

�(i, j)

to quantify the distance to other clusters. The minimum
value,

b(i) = min
C =A

d(i, C),
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gives the distance of i to the second-best cluster. The
silhouette value s(i) of i is then defined as

s(i) = b(i) − a(i)

max{a(i), b(i)} .

This value in the range [−1; 1] quantifies how well object
i fits into cluster A. If the s(i) is smaller than zero, the
nearest cluster would be a better choice. The average
silhouette value is the average of the s(i) over all objects
in the clustering and is a measure for the quality of the
clustering. It has to be noted that other measures may be
important for the assessment of cluster quality as well. For
example, we are interested in clusters of a certain size
or compactness, which is not directly measured by the
average silhouette coefficient. Nonetheless, it provides a
good aid in choosing reasonable cutting points. We will
plot this average silhouette value for different cut points
of our dendrogram to find sensible clusterings.

RESULTS
To evaluate the performance of our method, we use the
gene expression time series measurements conducted by
DeRisi et al. (1997) for the organism S. cerevisiae (yeast).
In this data set, measurements for seven different time
points are taken. In this experiment, yeast is inoculated
into a sugar-rich medium. When the sugar is progressively
depleted, the metabolism of yeast switches from anaerobic
growth to aerobic respiration. This so-called diauxic shift
involves changes in several metabolic processes which
should be detectable by our method. DeRisi and co-
workers manually analysed several pathways related to the
diauxic shift which can serve as a standard of truth for the
validation of our method.

Of the 6101 yeast ORFs measured in this experiments,
642 have known metabolic functions, according to the
MIPS database (Mewes et al., 1997). 884 nodes in the
metabolic network derived from the KEGG database
correspond to these enzymatic functions. Due to the
multiplicity of the mapping, we arrive at 1571 objects to
be clustered.

In a first step, we compare the relative quality of
the five defined distance functions, i.e., the gene ex-
pression distance function δexp, the normalized and
non-normalized network distance functions δuni

net and
δnorm

net , and the two combined distance functions �uni and
�norm. DeRisi et al. (1997) found that the glycolysis
pathway is influenced significantly by the diauxic shift.
From this pathway we selected ORFs (and corresponding
objects) which score highest in our pathway scoring
method (Zien et al., 2000), i.e., show high co-regulation
and constitute a complete reaction chain (YGL253W,
YBR196C, YMR205C, YKL060C, YJR009C, YDR050C,
YCR012W, YHR174W, YAL038W). As a figure of merit
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Fig. 3. Relative quality of defined distance functions. The higher
the curve, the better the respective distance function discriminates
related from unrelated objects.

for the quality of a distance function, we plot the fraction
of distances among all objects against the fraction of
pairwise distances of glycolysis objects found among
these. In other words, we investigate which fraction of
relationships within the glycolysis pathway is already
considered when we inspect a certain fraction of all
distances. The resulting graph is shown in Figure 3.

Although each distance function is far better than
random, the combined distance functions clearly perform
best. For instance, to consider 90% of distances among
glycolysis objects, we need to inspect only approximately
6% of the overall data, in contrast to 23% for the
expression distance function. Note that the expression
distance function δexp begins with a moderate slope
indicating that many co-regulated objects are present. By
utilizing network information, pairs of objects that are co-
regulated but far apart in the network, are not considered at
an early stage. The steep slope of the combined functions
shows that this is successfully accomplished. In addition,
the normalized functions perform better than their non-
normalized counterparts indicating that the scale-free
structure of metabolic networks can provide additional
distance information compatible with the definition of
the glycolysis pathway and probably with the notion of
metabolic pathways in general.

In the following discussion, we focus on the normalized
combined distance function. As already hinted at by the
above evaluation, the normalized distance function leads
to biologically more plausible clusters. In particular, link-
ing of clusters via ubiquitous nodes, such as NH3, CO2 or
ATP, does not occur. After construction of the dendrogram
based on �norm, we computed the average silhouette value
for a range of possible cutting points (cf. Figure 4) to find
a clustering reflecting the desired output, i.e., clusters cor-
responding to pathways with coordinated change in gene
expression.
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Fig. 4. Average silhouette values for clusterings resulting from
different cut-off values. The normalized network distance function
is used. Cutting points are marked with dashed lines.

Part A of Figure 4 has highest average silhouette values.
Cutting points in this interval result in clusters of objects
with multiple representations, i.e., objects sharing the
same E.C. number and similar expression patterns or
one gene mapped to several closely related nodes in the
network. For instance, most subunits of V-type and F-
type ATPases are co-regulated and cluster together during
this phase. Interestingly, these types of ATPases exhibit
different regulation patterns. Whereas F-type ATPase, also
known as ATP synthase, is upregulated during diauxic
shift, V-type ATPase is downregulated. ATPases are
proton transporters using ATP in the process. In contrast
to V-type ATPase, F-type ATPase (located in the inner
membrane of mitochondria) is usually driven in reverse by
chemiosmosis to produce ATP. This becomes increasingly
necessary as the ATP supply through the glycolysis
chain ceases. Other examples include the formation of
cytochrome c oxidase which is upregulated to enhance the
capability of yeast to produce ATP in the respiratory chain,
and the upregulated succinate dehydrogenase which plays
a role in the TCA cycle. The average size of clusters during
this period, however, is small (2 objects per cluster). Since
the focus of this study is the identification of co-regulated
pathways, i.e. clusters exceeding a certain size, we inspect
further local maxima of the silhouette coefficient.

For very late cutting points we find an artificial increase
of the average silhouette value. At this point, huge
clusters have formed which do not exhibit either tight
correlation of expression nor small network distance.
However, unconnected small clusters are present which
are still far apart from the main component, thus resulting
in a high average silhouette value.

More interestingly, Figure 4 shows an alternative cutting
point in section B, which leads to a clustering with
pathway-like clusters with an average size of 9 objects per
cluster. Table 1 depicts the largest resulting clusters which
exhibit relatively high co-regulation.

These clusters are able to paint a picture similar to
the one extracted manually by DeRisi and co-workers.
Their main observations are covered by clusters E
(down-regulated glycolysis pathway), D (up-regulated
TCA cycle) and J (up-regulated carbohydrate storage
pathways). During growth in a sugar-rich medium, the
yeast cell employs the glycolysis pathway for energy pro-
duction. This pathway constitutes the main part of cluster
E , which is illustrated in more detail in Figure 5. The
expression pattern of cluster E shows down-regulation of
genes during diauxic shift. This is due to the fact that the
yeast cells turn to ethanol as an alternative energy source,
when the sugar in the medium is exhausted. This pathway
is marked in Figure 5 with bold edges.

Cluster E does not contain only edges from the
glycolysis pathway. Parts of the pentose phosphate
pathway, which constitutes an alternative for conversion
of glucose 6-phosphate into pyruvate for energy pro-
duction, are included in the cluster. Moreover, reactions
are included which convert other types of sugar (e.g.,
sucrose or UDPglucose) to α-D-Glucose. At the end of
the glycolysis pathway, we find reactions that channel
phosphoenolpyruvate to the phenylalanin, tyrosin and
trypsin metabolism. All of these additional pathways also
exhibit down-regulation during diauxic shift.

In contrast, we find up-regulation during diauxic shift
for all genes in cluster D, which is composed of mainly
the TCA cycle. This cycle is essential in aerobic growth,
as it provides energy using acetyl-CoA as its source. In this
cluster, we find additional reactions from the glutamate
metabolism. Here, 2-oxoglutarate is transaminated to
4-aminobutyrate which in turn can be transformed to
succinate by succinsemialdehyde. This reaction chain
avoids oxidative decarboxylation in favour of nitrogen-
containing products.

In cluster A, we find DNA- and RNA-polymerases and
the V-type ATPase, already discussed before, together
with some supporting reactions from the purin and
pyrimidine metabolism. This cluster shows consistent
down-regulation. DNA- and RNA-polymerase activity as
well as ATPase is reduced due to scant energy resources.

Cluster H , in contrast, contains the F-type ATPase,
parts of the purin metabolism and parts of the riboflavin
metabolism. F-type ATPase is used for ATP production,
and riboflavin metabolism may be activated to produce
riboflavin and, in turn, FAD, which is used for energy
production in the TCA cycle. This cluster contains
genes enabling alternative ways of energy production in
response to the declining supply of glucose.

The final cluster J incorporates one key player respon-
sible for the switch from glycolysis to gluconeogenesis
(FBP1), together with pathways which support the
channelling of glucose away to the carbohydrate storage
pathways (e.g., starch metabolism). Again, this cluster
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Table 1. This table shows the 10 largest clusters with gene expression distance smaller than 0.3 sorted by combined average distance. Main constituent KEGG
pathways are listed for each cluster; single nodes may belong to pathways not listed here. Column regulation describes characteristic expression pattern
during diauxic shift. The three following columns give the number of objects, distinct ORFs and distinct EC classifiers, respectively. The last two columns
give the average value for expression and normalized network distance within the respective cluster

Id Pathways regulation # objects # ORFs # EC δnorm
net δexp

A Purin and Pyrimidine metabolism with complexes DNA /
RNA polymerases, V-type ATPase; part of Aminosugar
metabolism

down 174 71 27 49.84 0.24

B Sterol biosynthesis and Glycoprotein biosynthesis; fragment
of Fructose metabolism

down 51 38 22 51.83 0.29

C Purin and Histidine metabolism; parts of Folate biosynthesis
and Pyrimidine metabolism

down 75 57 51 71.50 0.26

D TCA cycle and Glutamate metabolism up 76 45 30 72.29 0.23
E Glycolysis, Pentose phosphate pathway; Starch metabolism;

start of Phenylalanin, Tyrosin and Trypsin metabolism
down 83 50 38 70.82 0.29

F Phenylalanin, Tyrosin and Trypsin metabolism; part of Folate
biosynthesis

down 41 25 22 74.43 0.25

G Amino acid metabolisms: Valine,Leucine, Isoleucin
metabolism; Glycine, Serine, Thrionine, Methionine
metabolism; Selenoamino acid metabolism

down 121 68 59 79.28 0.25

H Purin metabolism with F-type ATP synthase up 52 33 19 70.86 0.28
I Pyruvate metabolism; Selenoamino acid metabolism; Valine,

Leucine, Isoleucine degradation
down 39 18 17 83.83 0.28

J Starch and Sucrose metabolism; Glycerolipid metabolism;
part of Glycolysis, Fructose, Mammose and Galactose
pathway

up 94 60 51 79.85 0.29

corresponds well to a set of genes manually identified by
DeRisi and co-workers to be involved in the described
processes.

It has to be noted that outliers, i.e., reactions that are not
connected to the main component of a cluster, are usually
present. This situation is to be expected as clustering
is a heuristic procedure and the hierarchical clustering
algorithm employed here is susceptible to noise-induced
instability. The big picture of the clusters presented here
was stable against changes of the parameters. This leads to
the conclusion that resampling or bootstrapping methods
(e.g., Kerr and Churchill (2001)) should be applied
to detect the reliable cores of the computed clusters.
Nonetheless, the generated clustering, as shown above,
helps to quickly obtain a picture of metabolic changes
indicated by the gene expression data.

In contrast to the results shown above, we evaluated
clusters based on only expression or network distances.
Figure 6 shows a comparison of clustering based on
three distance functions: δexp (expression only), δnorm

net
(normalized network only) and �norm (combined).

For every feasible cutting point of the resulting dendro-
grams, we evaluate the average distance of each object
to all objects within the same cluster. The average of this
value over all objects provides a measure for the com-
pactness of a clustering according to a specific distance
function. We compute this value separately for all three

distance functions. Figure 6 indicates that clustering
based on network distance or expression distance alone
is not sufficient to arrive at co-regulated pathway-like
clusters. When gene expression distance is clustered, the
corresponding network distance is high and vice versa.
This means that we would either end up with sets of
well co-regulated genes which are scattered over the
network or with a compact part of the network which is
not co-regulated. The combined distance function, how-
ever, is able to yield clusters with low average distance
according to network and expression distance function
simultaneously. This shows that our method successively
incorporated joint information on regulation and network
proximity into the clustering process.

DISCUSSION AND FUTURE WORK
We demonstrate a general method for the coupled analysis
of gene expression data and biological networks. While
its aim is similar to that of pathway scoring (Zien et
al., 2000), our method for co-clustering of networks and
expression data avoids the necessity of defining pathways
beforehand. Thus, we neither have to deal with the
combinatorial explosion encountered when enumerating
all possible pathways, nor have to rely on prior knowledge
of possible areas of interest, nor do we have to adopt a
static view of the network. Therefore, our method is a
novel approach that allows for an entirely exploratory joint
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Fig. 5. This diagram shows the main part of Cluster E of Table 1. The cluster contains the down-regulated glycolysis pathway (marked with
thick edges) and fragments of several directly connected reactions with co-regulated catalysing enzymes. Some unconnected nodes have been
omitted. Either these are nodes with duplicate EC identifiers catalysing different reactions or nodes connected via few missing enzymes to
the main component.

analysis of gene expression data and biological networks.
Sequential evaluation methods (e.g., van Helden et al.

(2000)) to construct metabolic pathways from clusters
of gene expression face the problem of determining the
correct number of clusters based solely on gene expression
data. To the best of our knowledge, this problem has
not been addressed in this context. It may be useful to
infer a small number of clusters and map these (therefore
large) clusters onto metabolic networks. However, this
direct approach leads to a static view of the network. To
arrive at a dynamic view, post-processing of the mapping
is mandatory, which leads to the same problems our
approach solves in an integrated manner.

There are several meaningful options for the distance
functions and corresponding parameter settings. Though
our choice was motivated heuristically, we were able to
successfully validate it on the gene expression experiment
conducted by DeRisi et al. (1997). Networks built from
metabolic reactions are well suited as validation scenario
because large, curated networks are available (Kanehisa,
1996). Co-regulation can be expected to be the most

important relationship on the gene expression data and
much is already known about metabolic pathways which
enables for a kind of evaluation of the results. However,
for a full quantitative analysis, a gold standard is required,
e.g., a database of activated pathways for specific expres-
sion measurements. Unfortunately, this gold standard is
not available yet.

Our co-clustering method is by no means restricted to
metabolic networks. We expect to be able to base analysis
on regulatory networks, networks of interacting proteins,
or hypothetical networks mined from the scientific liter-
ature. As such networks may be huge, the ability of co-
clustering to locate areas of interest will be most useful
for their analysis. After this exploratory step, the relevant
subnets can be corrected or complemented by human ex-
perts and then analysed in more detail.

Another advantage of co-clustering is its algorithmic
generality. By designing the distance function to reflect
additional biological knowledge, one is still free to select
from a wide variety of proposed clustering algorithms.
Additionally, the apparatus designed for the assessment
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Fig. 6. Comparison of clustering based on three distance functions:
expression distances only, normalized network distances only and
normalized combined distances. Upper figure shows average intra-
cluster expression distance, lower figure shows average intra-cluster
normalized network distance.

of good cluster solutions is also applicable. Consequently,
additional knowledge of biological networks can readily
be used in applications for gene clustering.

The distance function is at the core of our approach.
While the correlation metric is most frequently used with
gene expression data and it appears to be appropriate
in the context of metabolic networks, other metrics may
be necessary for the meaningful analysis of regulatory,
binding or co-occurrence networks. Many of the signaling
cascades that convey information on regulation of other
genes can be expected to be realized by post-translational
processes. Here, the metric should focus on the presence
or absence of expression of the signaling proteins and on
the co-expression of the downstream regulated genes. The
network distance function may also have to be adapted
to regulatory relations. A crucial point is the proper
combination of the two individual distance functions. If
sufficiently many pathways are known to be relevant in
advance, this knowledge may be utilized to automatically
fit the logistic curves or even to learn an appropriate
functional form by employing machine learning methods.
By further developing the method along these lines, we
may be able to extend the capabilities of our method
from metabolic networks to the entire cellular networks:
to direct the scientist quickly to the biological meaning
behind the expression data.
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