
Co-Con: Coordinated Control of Power and Application

Performance for Virtualized Server Clusters

Xiaorui Wang and Yefu Wang

University of Tennessee, Knoxville, TN 37996

{xwang, ywang38}@utk.edu

Abstract— Today’s data centers face two critical challenges.
First, various customers need to be assured by meeting their
required service-level agreements such as response time and
throughput. Second, server power consumption must be con-
trolled in order to avoid failures caused by power capacity
overload or system overheating due to increasing high server
density. However, existing work controls power and application-
level performance separately and thus cannot simultaneously
provide explicit guarantees on both. This paper proposes Co-
Con, a novel cluster-level control architecture that coordinates
individual power and performance control loops for virtualized
server clusters. To emulate the current practice in data centers,
the power control loop changes hardware power states with no
regard to the application-level performance. The performance
control loop is then designed for each virtual machine to
achieve the desired performance even when the system model
varies significantly due to the impact of power control. Co-Con
configures the two control loops rigorously, based on feedback
control theory, for theoretically guaranteed control accuracy and

system stability. Empirical results demonstrate that Co-Con can
simultaneously provide effective control on both application-level
performance and underlying power consumption.

I. INTRODUCTION

In recent years, power control (also called power capping)

has become a serious challenge for data centers. Precisely

controlling power consumption is an essential way to avoid

system failures caused by power capacity overload or overheat-

ing due to increasing high server density (e.g., blade servers).

Since a cluster of high-density servers may share the same

power supplies when they locate in the same rack enclosure,

cluster-level power control is of practical importance because

an enclosure may need to reduce its power budget at runtime

in the event of thermal emergency or a partial power supply

failure. In addition, although power provisioning is commonly

used in data centers, strictly enforcing various physical and

contractual power limits [1] is important because many data

centers are rapidly expanding the number of hosted servers

while a capacity upgrade of their power distribution systems

has lagged far behind. As a result, it can be anticipated that

high-density server enclosures in future data centers may often

need to have their power consumption dynamically controlled

under tight constraints.

An effective way to control server power consumption is to

dynamically transition the hardware components from high-

power states to low-power states whenever the system power

consumption exceeds a given power budget. However, the

situation is more complicated when we consider the hosted

This work was supported, in part, by NSF CSR Grant CNS-0720663,
NSF CAREER Award CNS-0845390, ONR Grant N00014-09-1-0750, and
a Power-Aware Computing Award from Microsoft Research.

commercial computing services running on the servers. An

important goal of data centers is to meet the service-level

agreements (SLAs) required by customers, such as response

time and throughput. SLAs are important to operators of

data centers because they are key performance indicators for

customer service and are part of the customer commitments.

Degrading the performance of the hardware components solely

for the consideration of power may have a negative impact on

the SLAs. For example, the transition of processor power states

in a server can be used not only to control power consumption,

but it also has significant influence on the response time of

a hosted web service on the server. Therefore, the power

consumption and application-level performance of computing

servers must be controlled in a holistic way so that we can

have explicit guarantees on both of them.

Existing solutions to power and performance control for

enterprise servers approach the problem in two separate ways.

Performance-oriented solutions at the system level focus on

using power as a knob to meet application-level SLAs while

reducing power consumption in a best-effort manner [2], [3],

[4], [5], [6]. However, those solutions do not have any explicit

monitoring and control of power consumption. Consequently,

they may violate specified power constraints and thus result in

undesired server shutdown. On the other hand, power-oriented

solutions treat power as the first-class control target by adjust-

ing hardware power states with no regard to the SLAs of the

application services running on the servers [7], [8], [9], [10].

As a result, existing solutions cannot simultaneously provide

explicit guarantees on both application-level performance and

underlying power consumption.

Simultaneous power and performance control faces several

major challenges. First, in today’s data centers, a power control

strategy may come directly from a server vendor (e.g., IBM)

and is implemented in the service processor firmware [8],

without any knowledge of the application software running on

the server. On the other side, a performance controller needs to

be implemented in the application software in order to monitor

and control the desired application-level performance, without

direct access to the system hardware. Therefore, it may not be

feasible to have a single centralized controller that controls

both application-level SLAs and underlying server power

consumption [11]. Instead, a coordinated control strategy is

more preferable. Second, many existing control strategies in

the system were designed with the assumption that the system

is controlled exclusively by this strategy. For example, some

servers may come with an already implemented power control

loop from the vendor. In that case, other control loops (e.g.,

performance) need to be designed accordingly to achieve the

desired overall control functions. Third, multiple high-density

servers located within the same rack enclosure share common

power supplies and may have different workload intensities.

As a result, cluster-level control solutions are needed to

allow shifting of power and workload for optimized system

performance. Fourth, as many data centers start to adopt

virtualization technology for resource sharing, application per-

formance of each virtual machine (instead of the entire server)

needs to be effectively controlled. Finally, as both power and

performance are critical to data centers, control accuracy and

system stability must be analytically assured.

In this paper, we propose Co-Con, a novel coordinated

control architecture that provides explicit guarantees on both

power and application-level performance for virtualized high-

density servers that share the same power supplies in a

cluster (e.g., an enclosure). Co-Con is designed based on well-

established control theory for theoretically guaranteed control

accuracy and system stability. Specifically, the contributions

of this paper are four-fold:

• We design a coordinated control architecture that is

composed of a cluster-level power control loop and a

performance control loop for each virtual machine. We

configure different control loops to achieve the desired

power and performance control objectives.

• We model the application performance of virtual ma-

chines and design the performance controller based on

the model. We analyze the impact of power control on

the performance model, and prove the control accuracy

and system stability of the performance controller even

in the face of model variations.

• We provide the implementation details of each component

in our control architecture.

• We present empirical results to demonstrate that our

control solution can effectively control both the power

consumption of a cluster and the application performance

of all the virtual machines in the cluster.

The rest of the paper is organized as follows. Section II in-

troduces the proposed Co-Con control architecture. Section III

presents the modeling, design and analysis of the performance

controller. Section IV provides the implementation details of

each component in the control loops. Section V presents our

empirical results conducted on a physical testbed. Section VI

highlights the distinction of our work by discussing the related

work. Section VII concludes the paper.

II. CO-CON: COORDINATED CONTROL ARCHITECTURE

In this section, we give a high-level description of the Co-

Con coordinated control architecture.

An important feature of Co-Con is that it relies on feedback

control theory as a theoretical foundation. In recent years,

control theory has been identified as an effective tool for

power and performance control due to its analytical assurance

of control accuracy and system stability. Control theory also

provides well-established controller design approaches, e.g.,

standard ways to choose the right control parameters, such

that exhaustive iterations of tuning and testing can be avoided.

Furthermore, control theory can be applied to quantitatively

analyze the control performance (e.g., stability, settling time)

even when the system model changes significantly due to

various system uncertainties such as workload variations. This

rigorous design methodology is in sharp contrast to heuristic-

based adaptive solutions that heavily rely on extensive manual

tuning.

As shown in Figure 1, Co-Con is a two-layer control

solution, which includes a cluster-level power control loop and

a performance control loop for each virtual machine.

A. Cluster-level Power Control

The cluster-level power controller dynamically controls the

total power consumption of all the servers in the cluster by

adjusting the CPU frequency of each server with Dynamic

Voltage and Frequency Scaling (DVFS). We choose to have

cluster-level power control because the total power consump-

tion of a cluster (e.g., an enclosure) needs to stay below the

capacity of the shared power supplies. In addition, as shown

in previous work [9], [12], cluster-level power shifting among

different servers can lead to better system performance. There

are several reasons for us to use processor DVFS as our

actuation method in this work. First, processors commonly

contribute the majority of total power consumption of a server

[13]. As a result, the processor power difference between the

highest and lowest power states is large enough to compensate

for the power variation of other components and can thus

provide an effective way for server power control. Second,

DVFS has small overhead while some other actuation methods

like turning on/off servers may lead to long delays and even

requires human intervention for security check or service

configurations, making them less feasible to be used in a real

data center, especially when application response time is a

concern. Finally, most today’s processors support frequency

scaling by DVFS or clock modulation [8] while there are still

very few real disks or memory devices that are commercially

available and allow power throttling. We plan to extend our

control architecture to include other actuation methods in our

future work.

The cluster-level power control loop is invoked periodically

as follows: 1) The cluster-level power monitor (e.g., a power

meter) measures the total power consumption of all the servers

in the last control period and sends the value to the power

controller. The total power consumption is the controlled

variable of the control loop. 2) Based on the difference

between the measured power consumption and the desired

power set point, the power controller computes the new CPU

frequency level for the processors of each server, and then

sends the level to the CPU frequency modulator on each server.

The CPU frequency levels are the manipulated variables of

the control loop. 3) The CPU frequency modulator on each

server changes the DVFS level of the processors accordingly.

The power controller provides an interface to assign weights

to different servers. For example, the CPU allocation ratio of

each server (i.e., percentage of CPU resource allocated to all

the virtual machines on the server) in the last control can be

provided to the controller as weight to give more power to a

server whose ratio is higher than the average.

In this paper, our power controller is designed based on

the control algorithm presented in [9]. The major difference is

��������
��	
�	�������	����	� ����� ���������������� ��� ��� ������������� ��������

 !"#�� $%��	&���	��	
�	���������	� �����'	�()��%��*)����	 ��� +���)	����������	 ���������, ��� ���
 !"#��$����'� �+� ... ���������- ��� ���

 !"#��$����'� �+�
./0123456734.68246//3456734968:264./01234 56734;0<</:31 ./01234=/3>3/ .5? @31604A3 .664B:8C264

.5?C//6AC2:684C2:61
.5? D43E038A:31

Fig. 1. Coordinated power and performance control architecture for virtualized server clusters. Co-Con controls both power and application-level performance
by coordinating a cluster-level power controller and a performance controller for each virtual machine.

that the CPU allocation ratio of each server is used as weight

for power allocation in our work, while the CPU utilization

of each server is used as weight in [9]. The rationale is that

CPU allocation ratio is the total requested CPU resource to

achieve the desired response times for all the virtual machines

on a server. A large ratio means that the server has already

allocated most of its CPU resource (i.e., CPU time) and thus

needs a higher power budget such that the server can run at a

higher CPU frequency.

B. Performance Control

In the second layer, for every virtual machine on each server,

we have a performance controller that dynamically controls the

application performance of the virtual machine by adjusting

the CPU resource (i.e., fraction of CPU time) allocated to it. In

this paper, as an example SLA metric, we control the response

time of the web server installed in each virtual machine, but

our control architecture can be extended to control other SLAs.

In addition, we control the average response time to reduce the

impact of the long delay of any single web request. However,

our control architecture can also be applied to control the

worst-case or 90-percentile response time. We assume that the

response time of a web server is independent from that of

another web server, which is usually true because they may

belong to different customers. Hence, we choose to have a

performance control loop for each virtual machine. Our control

solution can be extended to handle multi-tier web services

by modeling the correlations between different tiers, which is

part of our future work. A cluster-level resource coordinator

is designed to utilize the live migration [14] function to move

a virtual machine from a server with too much workload to

another server for improved performance guarantees.

The performance (i.e., response time) control loop on each

server is also invoked periodically. The following steps are ex-

ecuted at the end of every control period: 1) The performance

monitor of each virtual machine measures the average response

time of all the web requests (i.e., controllable variable) in the

last control period, and then sends the value to the correspond-

ing performance controller. 2) The controller of each virtual

machine computes the desired amount of CPU resource (i.e.,

manipulated variable) and sends the value to the CPU resource

allocator. Steps 1 and 2 repeat for all the virtual machines

on the server. 3) The CPU allocator calculates the total CPU

resource requested by the performance controllers of all the

virtual machines. If the server can provide the total requested

resource, all the requests are granted in their exact amounts.

Unallocated resource will not be used by any virtual machines

in this control period and can be used to accept virtual machine

migration. If the requested resource is more than the available

resource, one or more selected virtual machines (running

low-priority web services) will be given less resource than

requested. If this situation continues for a while, a migration

request is sent to the cluster-level CPU resource coordinator

to move the selected virtual machines to other servers. 4) The

cluster-level coordinator tries to find other servers with enough

resource and migrates the virtual machines. Please note that

the focus of our paper is the coordination of the performance

and power controllers. Therefore, we adopt a simple first-

fit algorithm to find the first server with enough resource

for each virtual machine that needs to be migrated. More

advanced algorithms (e.g., [15], [16]) can be easily integrated

into our control architecture to maintain load balancing among

different servers while minimizing migration overhead. If the

coordinator cannot find any servers with enough resource, the

migration request is declined. In that case, admission control

can be enforced for the low-priority web services.

Clearly, it is important to coordinate different control loops.

Today’s high-density servers commonly come with imple-

mented power control loops from vendors. Many of those con-

trol loops were designed to change hardware power states with

no regard to application-level SLAs. On the other hand, those

control loops commonly allow certain degree of configurations

such as their power budget and control period. To emulate this

common practice in today’s data centers, our power control

loop is adopted from a control algorithm that has no regard to

the application-level SLAs [9]. We then design the response

time controller accordingly and configure both the power and

response time control loops to work together for achieving

the desired control objectives. We introduce the design and

analysis of the performance controller in the next section. The

implementation details of other components in the control loop

are provided in Section IV.

III. RESPONSE TIME CONTROLLER

In this section, we first introduce the system modeling

and design of the response time controller. We then present

control analysis to configure the response time control loop to

coordinate with the power control loop.

A. System Modeling

We first introduce some notation. Tr, the control period, is

selected to include multiple web requests. r(k) is the average

response time of all the web requests of the virtual machine

in the kth control period. Rs is the set point, i.e., the desired

response time for the virtual machine. a(k) is the amount

of CPU resource allocated to the virtual machine in the kth

control period. The virtual machine hypervisor uses a(k) (e.g.,

the cap parameter in Xen [17]) to assign CPU resource to the

virtual machine. In the kth control period, given the current

average response time r(k), the control goal is to dynamically

choose a CPU resource amount a(k) such that r(k + 1) can

converge to the set point Rs after a finite number of control

periods.

The relationship between r(k) and a(k) is normally non-

linear due to the complexity of computer systems. Since

nonlinear control can lead to unacceptable runtime overhead,

a standard way in control theory to handle such systems is

to linearize the system model by considering the deviations

of those variables from their respective operating points [18].

Therefore, instead of directly using r(k) and a(k) to model

the system, we build a linear model by using their differences

with their operating points, r and a, which are defined as the

typical values of r(k) and a(k), respectively. Specifically, the

controlled variable in the system model is ∆r(k) = r(k)− r.

The desired set point is ∆Rs = Rs − r. The control error is

e(k) = ∆Rs − ∆r(k). The manipulated variable is ∆a(k) =
a(k) − a. An example way to choose operating points in the

system is to select the middle value of a typical range of

CPU resource amount as a, and then measure the resultant

average response time as r. To model the dynamics of the

controlled system, namely the relationship between the con-

trolled variable (i.e., ∆r(k)) and the manipulated variable (i.e.,

∆a(k)), we use a standard approach to this problem called

system identification [19]. Instead of trying to build a physical

equation that is usually unavailable for computer systems, we

infer the relationship by collecting data in experiments and

establish a statistical model based on the measured data.

Based on control theory, we use the following standard

difference equation to model the controlled system:

∆r(k) =

m1∑

i=1

bi∆r(k − i) +

m2∑

i=1

ci∆a(k − i) (1)

where m1 and m2 are the orders of the control output (i.e.,

∆r(k)) and control input (i.e., ∆a(k)), respectively. bi and ci

are control parameters whose values need to be determined by

system identification.

TABLE I

MODEL ORDERS AND CORRESPONDING ROOT MEAN SQUARED ERRORS.

m1 = 0 m1 = 1 m1 = 2

m2 = 1 127.90 71.70 68.08

m2 = 2 105.59 71.62 71.09

m2 = 3 99.32 71.09 67.99

For system identification, we need to first determine the

right orders for the system, i.e., the values of m1 and m2 in

the difference equation (1). The order values are normally a

compromise between model simplicity and modeling accuracy.

In this paper, we test different system orders as listed in Table

I. For each combination of m1 and m2, we generate a series

of control inputs to stimulate the system and then measure

the control output in each control period. Our experiments

are conducted on the testbed introduced in detail in Section

IV. Based on the collected data, we use the Least Squares

Method (LSM) to iteratively estimate the values of parameters

bi and ci. The values in Table I are the estimated accuracy of

the models in terms of Root Mean Squared Error (RMSE).

We choose to have the orders of m1 = 1 and m2 = 1
because this combination has a reasonably small error while

keeping the orders low, as shown in Table I. We then use

white noise to generate control inputs in a random fashion to

validate the results of system identification by comparing the

actual system outputs and the estimated outputs based on the

model from system identification. Figure 2 demonstrates that

the estimated outputs of the selected model are sufficiently

close to the measured actual system outputs. Therefore, the

nominal system model resulted from our system identification

is:

∆r(k) = b1∆r(k − 1) − c1∆a(k − 1) (2)

where b1 = 0.71 and c1 = 6.57 are control parameters resulted

from our experiments with the relative CPU frequency (i.e.,

the CPU frequency relative to the highest frequency) as 0.73.

Note that the real model of the system may be different

from the nominal model at runtime due to CPU frequency

changes caused by the power control loop. In Section III-C,

we analyze the impact and prove that the system controlled

by the controller designed based on the nominal model can

remain stable as long as the CPU frequency change is within

a certain range.

B. Controller Design

The goal of the controller design is to achieve system

stability, zero steady-state error and short settling time when

the nominal system model (2) is accurate. Control performance

such as system stability can be quantitatively analyzed when

the system model varies due to the impact of CPU frequency

changes. The analysis is presented in Section III-C. Follow-

ing standard control theory [19], we design a Proportional-

Integral-Derivative (PID) controller to achieve the desired

control performance such as system stability and zero steady-

0 500 1000 1500 2000

−20

0

20

Time (s)
 C

h
a

n
g

e
 i
n

 C
P

U
 a

llo
c
a

ti
o

n

(c
a

p
a

c
it
y
)

0 500 1000 1500 2000

−500

0

500

Time (s)

C
h

a
n

g
e

 i
n

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

Model Measured

(a) Model input (b) Measured output verifying the estimated model output

Fig. 2. System model validation with white noise input.

state error. The PID controller function in the Z-domain is:

F (z) =
K1z

2 − K2z + K3

z(z − 1)
(3)

where K1 = −0.1312, K2 = −0.0948, and K3 = −0.0139
are control parameters that are analytically chosen based on

the pole placement method [19] to achieve the desired control

performance. The time-domain form of the controller (3) is:

∆a(k) = ∆a(k−1)+K1e(k)−K2e(k−1)+K3e(k−2) (4)

C. Control Analysis for Coordination with Power Control

Loop

An important contribution of this work is to coordinate

different control loops for achieving the desired power and

performance control objectives. As introduced before, we

assume the power control loop is designed with no regard

to the application-level SLAs. Therefore, the design of perfor-

mance controller needs to account for the impact of the CPU

frequency changes caused by the power control loop.

Although the controlled system is guaranteed to be stable

when the system model (2) is accurate, stability has to be

guaranteed even when the model varies due to CPU frequency

changes. We first quantitatively investigate the impact of

CPU frequency on the system model by conducting system

identification under different CPU frequencies. In our exper-

iments, we find that parameter c1 in the nominal model (2)

changes significantly when the CPU frequency changes, while

parameter b1 remains almost the same with only negligible

variations. This can be explained from the systems perspective.

Since a(k) is the amount of CPU resource (i.e., fraction of

CPU time) allocated to the virtual machine, its contribution

to response time change ∆r(k) is affected by the current

CPU frequency. When the processors are running at a lower

CPU frequency, more CPU time is needed to achieve the

same application performance. Figure 3 plots the relationship

between the parameter c1 and the relative CPU frequency.

The linear regression fits well (with R2 = 0.961) with the

curve. Therefore, The actual system model under different

CPU frequencies is as follows:

∆r(k) = b1∆r(k − 1) − c′
1
∆a(k − 1) (5)

where c′
1

= 1/(0.155f+0.041) is the actual control parameter

and f is the current relative CPU frequency. f can be treated

as a constant for the performance control loop because its

settling time is designed to be shorter than the control period

of the power control loop.

There are three steps to analyze the stability of the closed-

loop system controlled by the response time controller. First,

y = 0.155x + 0.041
R² = 0.9610.2

0.25

In
v
e

rs
e

 o
f
c

1

R² = 0.961

0.1
0.15

In
v
e

rs
e

 o
f
c

0.05
0.2 0.4 0.6 0.8 1

Relative CPU frequency

Fig. 3. The relationship between parameter c1 and CPU frequency

we derive the controller function F (z) presented in (3), which

represents the control decision made based on the nominal

model (2). Second, we derive the closed-loop system transfer

function by plugging the controller F (z) into the actual system

(5). The closed-loop transfer function represents the system

response when the controller is applied to a system whose

model is different from the one used to design the controller.

Finally, we derive the stability condition of the closed-loop

system by computing the poles of the closed-loop transfer

function. If all the poles are inside the unit circle, the system

is stable when it is controlled by the designed response time

controller, even when the real CPU frequency is different from

the frequency used to design the controller. We have developed

a Matlab program to perform the above analysis automatically.

Our results show that the system is guaranteed to be stable

as long as the relative CPU frequency is within the range of

[0.19, 1]. The details are presented in an extended version of

this paper [20].

In our analysis, we have also proven that the settling time

of the response time control loop is within 24s (i.e., 4 control

periods) when the relative CPU frequency is between 0.32
and 1. Therefore, we choose the control period of the power

control loop to be 24s for a trade-off between system response

speed and allowed CPU frequency range. To guarantee that the

performance control loop always enters the steady state within

24s, the CPU frequency must be limited within [0.32, 1]. The

intersection range between this range and the range derived

for system stability is used as the frequency constraints for

the power control loop. The constraints are used by the power

controller to determine the CPU frequency of each server in

the cluster. In addition, we have proven that the controlled

system has zero steady state error even when the system model

varies due to the impact of CPU frequency changes. Similar

analysis has also been applied to model the system variations

caused by different workload intensities. The analyses are

provided in the extended version [20].

IV. SYSTEM IMPLEMENTATION

In this section, we introduce our testbed and the implemen-

tation details of the two control loops.

A. Testbed

Our testbed includes a cluster of four physical computers

that are named Server1 to Server4. A fifth computer named

Storage is used as the storage server for the Network File

System (NFS). Storage is not part of the cluster. All the com-

puters run Fedora Core 8 with Linux kernel 2.6.21. Server1

and Server 3 are each equipped with 4GB RAM and an AMD

Opteron 2222SE processor, which supports 8 frequency levels

from 1GHz to 3GHz. Server2 and Server4 are each equipped

with 4G RAM and an Intel Xeon X5160 processor, which has

4 frequency levels from 2GHz to 3GHz. All the servers are

connected via an Ethernet switch.

Xen 3.1 is used as the virtual machine monitor on all the

four servers in the cluster. Each virtual machine (VM) is

configured with 2 virtual CPUs and is allocated 512 MB of

RAM. An Apache server is installed in each VM and runs as

a virtualized web server. The Apache servers respond to the

incoming HTTP requests with a dynamic web page written

in PHP. This example PHP file runs a set of mathematical

operations. On each server, Xen is configured to allow and

accept VM live migration [14], which is used to move VMs

from one server to another without stopping the web services.

To support live migration, the VMs are configured to have

their virtual hard disks on Storage via NFS. This configura-

tion allows a VM to find its virtual hard disk in the same

place before and after a live migration. Initially, Server1 is

configured to have 3 VMs. Server2 is idling with no VMs.

In our live VM migration experiment, a VM on Server1 is

dynamically moved to Server2, when there is no enough CPU

resource on Server1 to meet the response time requirements

of all the three VMs.

The client-side workload generator is the Apache HTTP

server benchmarking tool (ab), which is designed to stress

test the capability of a particular Apache installation. This

tool allows users to change the concurrency level, which is

the number of requests to perform in a very short time to

emulate multiple clients. A concurrency level of 60 is used

to do system identification while various concurrency levels

(detailed in Section V) are used in our experiments to stress

test our system. The workload generator runs on Storage.

B. Control Components

We now introduce the implementation details of each com-

ponent in our two control loops.

Response Time Monitor. To eliminate the impact of net-

work delays, we focus on controlling the server-side response

time in this paper. The response time monitor is implemented

as a small daemon program that runs in each VM. The

monitor periodically inserts multiple sample requests into

the HTTP requests that are received from the client-side

workload generator. Two time stamps are used when a sample

request is inserted and when the corresponding response is

received. The average time difference is used as the server-

side response time, which is sent to the corresponding response

time controller.

Response Time Controller. As introduced in Section II,

there is a response time controller for every VM. The con-

troller implements the control algorithm presented in Section

III. A server-level daemon program written in Perl sequentially

runs the controller of every VM on the physical server and

computes the total CPU resource requested by all the VMs.

If the total requested resource keeps exceeding the available

resource of the server for a while, a migration request is sent to

the cluster-level resource coordinator. Otherwise, the daemon

program calls the CPU resource allocator to enforce the

desired CPU allocation based on the CPU resource requests.

The control period of the response time controller is selected

to be 6 seconds such that multiple HTTP requests can be

processed. The maximum allowed response time is 800ms.

To give some leeway to the Apache web servers, the set point

of the response time controller (i.e., the desired response time)

is selected to be 700ms.

CPU Resource Allocator. We use Credit Scheduler [17],

Xen’s proportional share scheduler, to allocate the available

CPU resource. In Credit Scheduler, each VM is assigned a

cap and a weight. The value of cap represents the upper limit

of CPU time (in percentage) that can be allocated to the VM.

A cap of 40 means the VM is allowed to consume at most

40% time of a core of a dual-core CPU, while a cap of 200

means 100% time of both the two cores. The value of weight

is used to give preference among different VMs. In this paper,

we use cap to allocate CPU resource and use the same fixed

weight for all the VMs.

Power Monitor. The power consumption of the entire

cluster is measured with a WattsUp Pro power meter, which

has an accuracy of 1.5% of the measured value. The power

meter samples the power data every second and then sends the

reading to the cluster-level power controller through a system

file /dev/ttyUSB0.

Power Controller. In our experiments, the cluster-level

power controller is a C program running on Storage. It receives

the total power consumption of the cluster from the power

monitor and runs the power control algorithm presented in

[9]. Based on the analysis in Section III-C, the longest settling

time of the response time control loop is 24 seconds when the

CPU frequency varies within a wide range. The control period

of the power controller is therefore selected to be 24 seconds.

Various power set points are used in our experiments.

CPU Frequency Modulator. In this paper, we use AMD’s

Cool’n’Quiet technology and Intel’s SpeedStep technology

to enforce the desired CPU DVFS level. In Linux sys-

tems, to change CPU DVFS level, one needs to install

the cpufreq package and then use the root privilege to

write the new level into the system file /sys/devices/sys-

tem/cpu/cpu0/cpufreq/scaling setspeed. However, this is more

complicated with the Xen virtual machine monitor because

Xen lies between the Linux kernel and the hardware, and

thus prevents the kernel from directly modifying the hardware

register. In this work, the source code of Xen 3.1 has been

hacked to allow the modification.

The Intel and AMD CPUs used in our experiments support

only several discrete frequency levels. However, the new

CPU frequency level periodically received from the power

controller could be any value that is not exactly one of the

supported frequency levels. Therefore, the modulator code

must resolve the output value of the controller to a series of

supported frequency levels to approximate the desired value.

For example, to approximate 2.89GHz during a control period,

the modulator would output a sequence of supported levels:

2.67, 3, 3, 2.67, 3, 3, etc on a smaller timescale. The detailed

modulator algorithm can be found in [8].

V. EMPIRICAL RESULTS

In this section, we present our empirical results. We first

evaluate the response time controller. We then examine the

simultaneous power and response time control provided by

Co-Con in an important scenario: power budget reduction at

runtime (e.g., due to thermal emergency). More empirical re-

sults for Co-Con’s performance under different power budgets

and in the scenario of live VM migration can be found in the

extended version [20].

A. Response Time Control

In this experiment, we disable the power controller to

evaluate the response time controllers of the three VMs on

Server1. Figure 4 shows a typical run of the response time

control loops. At the beginning of the run, the controllers

of the three VMs all achieve the desired response time set

point, i.e., 700ms, after a short settling time. At time 600s,

the workload of VM2 increases significantly. This is common

in many web applications. For example, breaking news on a

major newspaper website may incur a huge number of accesses

in a short time. To stress test the performance of our controller

in such an important scenario, we increase the concurrency

level of VM2 from 60 to 90 between time 600s and time 1200s

to emulate the workload increase. The suddenly increased

workload causes VM2 to violate its response time limit at

time 600s. The response time controller of VM2 responds to

the violation by allocating more CPU resource to VM2. As

shown in Figure 4(b), the CPU resource allocated to VM2

is increased from around 35 (i.e., 35% CPU time) to around

55. As a result, the response time of VM2 converges to 700ms

again. Without the controller, the response time of VM2 would

increase to approximately 1000ms, which is signficantly longer

than the maximum allowed response time (i.e., 800ms). At

time 1200s, the concurrency level of VM2 returns to 60,

leading to an unnecessarily short response time. The controller

of VM2 then reduces the CPU resource allocated to VM2.

Note that reducing VM2’s resource is necessary because the

CPU resource could be allocated to other VMs if they have

increased workloads. From Figure 4, we can see that the

response times of VM1 and VM3 are not influenced by the

workload variations occurred to VM2, which validates our

design choice of having a response time controller for each

virtual machine.

As discussed in Section III-C, our response time model is

the result of system identification with a CPU frequency of

0.73 and a concurrency level of 60. To test the robustness of

the response time controller when it is applied to a system that

is different from the one used to do system identification, we

conduct two sets of experiments with wide ranges of CPU

frequency and concurrency level, respectively. Figure 5(a)

shows the average response times (with standard deviations)

achieved by the controllers when the CPU frequency varies

from 0.63 to 0.93. Figure 5(b) shows that less CPU resource

is needed to achieve the same response times when CPU fre-

quency is higher. Figure 6 is the result when the concurrency

level varies from 50 to 75. The controllers also achieve the

desired response times and use more CPU resource when

the concurrency level is higher. The two sets of experiments

demonstrate that the response time controllers work effectively

to achieve the desired response times for all the VMs even

when the actual system model is different from the nominal

model used to design the controller.

B. Coordinated Power and Response Time Control

An important contribution of Co-Con is that it can provide

simultaneous control of power and application-level response

time for virtualized server clusters. In this experiment, we

enable both the response time controllers and the power con-

troller to stress test Co-Con’s control functions in a scenario

that is important to data centers. In this scenario, the power

budget of the cluster needs to be reduced at runtime due to

various reasons such as failures of its cooling systems or its

power supply systems. The power budget is then raised back

after the problem is fixed.

For comparison, we first run a baseline called PowerOnly,

which has only the power controller used in Co-Con, without

the response time controllers. In PowerOnly, each VM has a

fixed amount of CPU resource that is configured to achieve

the desired response time initially. PowerOnly represents a

typical power-oriented solution that is designed with no re-

gard to application-level performance. Figure 7(a) shows that

PowerOnly can effectively reduce power by lowering the

CPU frequencies of the servers, when the budget is reduced

from 640W to 560W at time 600s. However, without explicit

performance control, lowering CPU frequency has a negative

impact on the application-level response times. As shown

in Figure 7(b), PowerOnly has unnecessary short response

times before the power budget reduction and violates the

maximum allowed limit (i.e., 800ms) afterward. Please note

that a solution with only performance control would also fail,

because it could not effectively reduce power during the budget

reduction and so would result in undesired server shutdown.

We then test Co-Con in the same scenario. Figure 7(c)

shows that Co-Con can effectively control power even though

the budget is reduced and raised back. In the meantime, Co-

Con dynamically adjusts CPU resource allocated to the VMs

to control the application-level response times. As a result, all

the VMs achieve the desired response time (i.e., 700ms) on

average and stay below the maximum allowed limit most of the

time, as shown in Figure 7(d). This experiment demonstrates

that Co-Con can simultaneously provide robust power and

response time guarantees despite power budget reduction at

runtime.

1050

1400

m
e

 (
m

s
)

0

350

700

0 600 1200 1800R
e

s
p

o
n

s
e

 t
im

Time (s)

VM1 VM2 VM3

40

60

n
 (

c
a

p
)

0

20

0 600 1200 1800C
P

U
 a

ll
o

c
a

ti
o

Time (s)

VM1 VM2 VM3

(a) Response times (b) CPU allocation

Fig. 4. A typical run of the response time controllers under a workload increase to VM2 from time 600s to 1200s. Response time of VM2 is controlled to
700ms by increasing its CPU resource allocation.

600

800

1000

s
p

o
n

s
e

m
s

)

0

200

400

600

0.63 0.68 0.73 0.78 0.83 0.88 0.93

A
v
e

ra
g

e
 r

e
s

ti
m

e
 (

m

Relative frequency

VM1 VM2 VM3 Set point

60

80

o
c

a
ti

o
n

p

)

VM1 VM2 VM3

0

20

40

0.63 0.68 0.73 0.78 0.83 0.88 0.93

C
P

U
 a

ll
o

(c
a

p

Relative frequency

(a) Response times (b) CPU allocation

Fig. 5. Response times and CPU allocation of the VMs under different CPU frequencies. The controllers can effectively achieve the set point (700ms) even
when the CPU frequency is changed for power control.

0

200

400

600

800

1000

50 55 60 65 70 75

A
v
e

ra
g

e
 r

e
s

p
o

n
s

e

ti
m

e
 (

m
s

)

Concurrency level

VM1 VM2 VM3 Set point

60

80

o
n

 (
c

a
p

)

0

20

40

50 55 60 65 70 75C
P

U
 a

ll
o

c
a

ti
o

Concurrency level

VM1 VM2 VM3

(a) Response times (b) CPU allocation

Fig. 6. Response times and CPU allocation of the VMs under different workloads. The controllers can effectively achieve the desired set point (700ms) even
when the workload concurrency level changes.

600

650

u
m

p
ti

o
n

500

550

0 600 1200 1800

P
o

w
e

r
c

o
n

s
u

(W
)

Time (s)

Power Set point

1050

1400

m
e

 (
m

s
)

0

350

700

0 600 1200 1800

R
e
s
p

o
n

s
e
 t

im

Time (s)

VM1 VM2 VM3 Limit

(a) Power consumption of the cluster under PowerOnly (b) Response times under PowerOnly

600

650

u
m

p
ti

o
n

500

550

0 600 1200 1800

P
o

w
e
r

c
o

n
s

u
(w

)

Time (s)

Power Set point

1050

1400

e
 (

m
s

)

0

350

700

0 600 1200 1800R
e

s
p

o
n

s
e

 t
im

Time (s)

VM1 VM2 VM3 Limit

(c) Power consumption of the cluster under Co-Con (d) Response times under Co-Con

Fig. 7. Comparison between PowerOnly and Co-Con in terms of response times and power consumption, when power budget is reduced at runtime (e.g., due
to failures) between time 600s and 1200s. PowerOnly violates the response time limit (800ms) while Co-Con successfully controls both power and response
times.

VI. RELATED WORK

Control theory has been successfully applied to control

power or cooling for enterprise servers [7], [21]. For example,

Lefurgy et al. [8] have shown that a control-theoretic solution

outperforms a commonly used heuristic-based solution by

having more accurate power control and better performance.

Wu et al. [10] manage power by controlling the synchronizing

queues in multi-clock-domain processors. Wang et al. [9]

develop a MIMO control algorithm for cluster-level power

control. Those projects are different from our work because

they control power consumption only and thus cannot provide

guarantees for application-level performance.

Some prior work has proposed control-theoretic approaches

to controlling application-level SLAs by using power as a

knob. For example, Horvath et al. [22] use dynamic voltage

scaling (DVS) to control end-to-end delay in multi-tier web

servers. Sharma et al. [5] apply control theory to control

application-level quality of service requirements. Chen et al.

[3] also present a feedback controller to manage the response

time in a server cluster. Wang et al. [6] control response times

for virtualized servers. Although they all use control theory to

manage system performance and reduce power consumption,

they do not provide any absolute guarantee on power con-

sumption. Some recent work [23], [24], [25] presents heuristic

solutions to manage power in virtualized environments. Li et

al. also propose optimization algorithms to manage energy

for disks and memory [26]. In contrast, we develop control

strategies based on rigorous control theory.

Recently, Kephart et al. have proposed a coordinated man-

agement strategy to achieve trade-offs between power and

performance for a single non-virtualized server [11]. Kusic

et al. present a power and performance management strategy

based on lookahead control [27]. In contrast, our coordinated

architecture is a cluster-level solution that provides explicit

guarantees on both power and performance for virtualized

server clusters. Raghavendra et al. [28] present a multi-

level coordinated power management framework at the cluster

level. In contrast to their work that focuses only on power

and system-level resource utilizations, we explicitly control

application-level SLAs, i.e., the response time of web requests.

In addition, while their work is evaluated only based on simu-

lations, we present extensive empirical results to demonstrate

the efficacy of our control architecture.

VII. CONCLUSIONS

Existing solutions to power and performance control for

enterprise servers approach the problem in two separate ways.

Performance-oriented solutions at the system level focus on

meeting application-level performance requirements while re-

ducing power consumption in a best-effort manner. On the

other hand, power-oriented solutions treat power as the first-

class control target while trying to maximize the system

performance. As a result, these solutions cannot simultane-

ously provide explicit guarantees on both application-level

performance and underlying power consumption. In this paper,

we have presented Co-Con, a cluster-level control architecture

that coordinates individual power and performance control

loops to explicitly control both power and application-level

performance for virtualized server clusters. Empirical results

demonstrate that Co-Con can simultaneously provide effective

control on both application-level performance and underlying

power consumption.

REFERENCES

[1] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in ISCA, 2007.

[2] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat, and R. P.
Doyle, “Managing energy and server resources in hosting centers,” in
SOSP, 2001.

[3] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and N. Gau-
tam, “Managing server energy and operational costs in hosting centers,”
in SIGMETRICS, 2005.

[4] M. Elnozahy, M. Kistler, and R. Rajamony, “Energy-efficient server
clusters,” in PACS, 2002.

[5] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and Z. Lu, “Power-
aware QoS management in web servers,” in RTSS, 2003.

[6] Y. Wang, X. Wang, M. Chen, and X. Zhu, “Power-efficient response
time guarantees for virtualized enterprise servers,” in RTSS, 2008.

[7] R. J. Minerick, V. W. Freeh, and P. M. Kogge, “Dynamic power
management using feedback,” in COLP, Sep. 2002.

[8] C. Lefurgy, X. Wang, and M. Ware, “Power capping: a prelude to power
shifting,” Cluster Computing, vol. 11, no. 2, pp. 183–195, 2008.

[9] X. Wang and M. Chen, “Cluster-level feedback power control for
performance optimization,” in HPCA, 2008.

[10] Q. Wu, P. Juang, M. Martonosi, L.-S. Peh, and D. W. Clark, “Formal
control techniques for power-performance management.” IEEE Micro,
vol. 25, no. 5, pp. 52–62, 2005.

[11] J. O. Kephart, H. Chan, R. Das, D. W. Levine, G. Tesauro, F. Rawson,
and C. Lefurgy, “Coordinating multiple autonomic managers to achieve
specified power-performance tradeoffs,” in ICAC, 2007.

[12] M. E. Femal and V. W. Freeh, “Boosting data center performance
through non-uniform power allocation.” in ICAC, 2005.

[13] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. McDow-
ell, and R. Rajamony, “The case for power management in web servers,”
Power Aware Computing, 2002.

[14] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in NSDI, 2005.

[15] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem, P. Kokosielis,
and S. Kamath, “Automatic virtual machine configuration for database
workloads,” in SIGMOD, 2008.

[16] X. Wang, Y. Chen, C. Lu, and X. Koutsoukos, “On controllability and
feasibility of utilization control in distributed real-time systems,” in
ECRTS, 2007.

[17] “Credit Scheduler,” http://wiki.xensource.com/xenwiki/CreditScheduler.
[18] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback

Control of Computing Systems. John Wiley & Sons, 2004.
[19] G. F. Franklin, J. D. Powell, and M. Workman, Digital Control of

Dynamic Systems, 3rd edition. Addition-Wesley, 1997.
[20] X. Wang and Y. Wang, “Co-con: Coordinated control of power and

application performance for virtualized server clusters, Tech Report,
UTK,” http://pacs.ece.utk.edu/techreports/tech0908.pdf, 2008.

[21] K. Skadron, T. Abdelzaher, and M. R. Stan, “Control-theoretic tech-
niques and thermal-RC modeling for accurate and localized dynamic
thermal management,” in HPCA, 2002.

[22] T. Horvath, T. Abdelzaher, K. Skadron, and X. Liu, “Dynamic voltage
scaling in multi-tier web servers with end-to-end delay control,” IEEE

Transactions on Computers, vol. 56, no. 4, 2007.
[23] R. Nathuji and K. Schwan, “VirtualPower: Coordinated power manage-

ment in virtualized enterprise systems,” in SOSP, 2007.
[24] J. Stoess, C. Lang, and F. Bellosa, “Energy management for hypervisor-

based virtual machines,” in USENIX, 2007.
[25] J. Choi, S. Govindan, B. Urgaonkar, and A. Sivasubramaniam, “Pro-

filing, prediction, and capping of power consumption in consolidated
environments,” in MASCOTS, Sep 2008.

[26] X. Li, Z. Li, F. David, P. Zhou, Y. Zhou, S. Adve, and S. Kumar,
“Performance-directed energy management for main memory and disks,”
in ASPLOS, 2004.

[27] D. Kusic, J. Kephart, J. Hanson, N. Kandasamy, and G. Jiang, “Power
and performance management of virtualized computing environments
via lookahead control,” in ICAC, 2008.

[28] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu, “No
power struggles: Coordinated multi-level power management for the data
center,” in ASPLOS, 2008.

