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Abstract

Wetlands contribute to 30% of global methane emissions due to an imbalance between microbial methane production and

consumption. Methanogenesis and methanotrophy have mainly been studied separately, and little is known about their potential

interactions in aquatic environments. To mimic the interaction between methane producers and oxidizers in the environment, we

co-cultivated the methanogenic archaeonMethanosarcina barkeri with aerobicMethylocystaceaemethanotrophs in an oxygen-

limited bioreactor using acetate as methanogenic substrate. Methane, acetate, dissolved oxygen, available nitrogen, pH, temper-

ature, and cell density were monitored to follow system stability and activity. Stable reactor operation was achieved for two

consecutive periods of 2 months. Fluorescence in situ hybridization micrographs indicated close association between both groups

of microorganisms. This association suggests that the methanotrophs profit from direct access to the methane that is produced

from acetate, while methanogens are protected by the concomitant oxygen consumption of the methanotrophs. This proof of

principle study can be used to set up systems to study their responses to environmental changes.
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Introduction

Wetlands are the biggest natural methane source and contrib-

ute 30% to global methane emissions (167 Tg CH4/year)

(Saunois et al. 2016). Methane is an important greenhouse

gas (GHG) with a 34-fold higher warming potential than

CO2 (Myhre et al. 2013). Eighteen percent of the total global

greenhouse effect is currently attributed to methane (Prather

et al. 2012; Myhre et al. 2013). In wetlands, methanogenic

archaea carry out the final reaction in the anaerobic degrada-

tion of organic matter resulting in methane production.

Wetland methane emissions are mitigated by the activity of

both anaerobic methanotrophic bacteria and archaea

(Raghoebarsing et al. 2006; Ettwig et al. 2010; Haroon et al.

2013) and aerobic methanotrophic bacteria (reviewed by

Hanson and Hanson 1996). Aerobic methanotrophy has been

estimated to be the most significant methane oxidation path-

way in cold ecosystems (Mackelprang et al. 2011; Barbier

et al. 2012; Knoblauch et al. 2013), although anaerobic meth-

ane oxidizers have also been detected in cold freshwater and

peatland ecosystems (Smemo and Yavitt 2011; Gupta et al.

2013; Kao-Kniffin et al. 2015). Early studies on lake and

peatland systems indicated that aerobic methanotrophs have

the potential to oxidize up to 95% of the methane that is

produced (Yavitt et al. 1988; Frenzel et al. 1990). Spatial co-

existence has been observed in, for example, cooperation of

nitrogen cycle microorganisms (Sliekers et al. 2002; Yang

et al. 2012). Several studies implied that this coexistence in
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seemingly anoxic environments is probably enabled due to

high oxygen consumption rates (Oswald et al. 2016;

Martinez-Cruz et al . 2017). In addit ion, aerobic

methanotrophs are tolerant to long periods of anoxic condi-

tions (Roslev and King 1994).

The interactions between methanogens and aerobic

methanotrophs that may strongly control the GHG fluxes of

cold wetland ecosystems remain poorly understood

(Bridgham et al. 2013). Only few studies on methane fluxes

in oxic-anoxic systems have been done so far (Gerritse and

Gottschal 1993; Shen et al. 1996; Miguez et al. 1999). Shen

et al. designed a bioreactor with an aerobic-anaerobic interface

using a granular sludge bed that allowed for sufficient methan-

ogenic activity to support growth of the aerobic methanotroph

Methylosinus sporium (Shen et al. 1996). However, this sys-

tem did not employ axenic cultures and observations showed

gradual reduction of M. sporium, indicating competition for

oxygen with facultative anaerobic bacteria. Similarly, Miguez

et al. used an upflow anaerobic sludge blanket (UASB) reactor

to co-cultivate complex methanogenic cultures with the aero-

bic methanotrophs Methylosinus trichosporium and

M. sporium (Miguez et al. 1999). Gerritse and Gottschal were

the first to set up defined co-cultures with Methanosarcina

barkeri andMethanobacterium formicicum together with aer-

obic methanotrophicMethylocystis sp. (Gerritse and Gottschal

1993). However, in-depth data on species interactions are

lacking. Here, we established a co-culture of the methanogen

M. barkeri and aerobic Methylocystaceae methanotrophs in a

membrane bioreactor to generate a method to study interspe-

cies interactions between methane cycle microorganisms.

Under oxygen-limited conditions, a stable co-culture was

monitored over time and several key parameters were

determined.

Materials and methods

Strains

M. barkeri DSM 800 and Methylosinus sporium DSM

17706 strains were ordered from the DSMZ (Leibniz

Institute DSMZ-German Collection of Microorganisms

and Cell Cultures, Braunschweig, Germany) as actively

growing cultures. M. sporium was chosen for high sub-

strate affinity (Murrell et al. 2000) and co-occurrence in

methanogenic-methanotrophic cultures (Shen et al. 1996;

Miguez et al. 1999). Genomic analysis of the M. sporium

culture indicated presence of a second strain of another

Methylocystaceae species related to Methylocystis rosea,

as described in detail in the BResults^ section. M. barkeri

was chosen for the oxygen-limited reactor set-up due to

its relative high oxygen tolerance (up to several hours

under atmospheric oxygen levels) and wide substrate

range (Kiener and Leisinger 1983; Brioukhanov et al.

2000; Maeder et al. 2006). Furthermore, its reference ge-

nome is available (PRJNA230939). M. barkeri can per-

form acetoclastic methanogenesis via acetate dismutation

to methane and CO2. In addition, M. barkeri can be

grown on mineral media, a prerequisite for this co-

cultivation study (Maestrojuan and Boone 1991).

M. sporium was pre-grown on general medium as de-

scr ibed at BReactor set-up and co-cul t ivat ion.^

M. barkeri was pre-grown on methanogen medium

(1.7 mM KH2PO4, 0.9 mM NH4Cl, 0.2 mM MgSO4·

7H2O, 0.2 mM CaCl2·2H2O, 0.5 mM NaCl, 0.7 μM

FeSO4·7H2O, 0.25 g/L Tryptone, 0.25 g/L yeast extract,

1 mL 1000× trace elements SL-6 including 81.5 μM

CeCl·7H2O (DSMZ, Braunschweig, Germany), and

1 mL 1000× vitamin solution (DSMZ, Braunschweig,

Germany) with 100 mM acetate and using 0.001%

resazurin (w/v) as redox indicator). pH was adjusted to

8.5 with sodium hydroxide, and bottles were made anoxic

with a triplicate + 1 bar overpressure gas followed by a

15 min vacuum cycle using a 9:1 Argon/CO2 gas mixture

resulting in a pH of around 7.0 after autoclaving.

Reactor set-up and co-cultivation

Reactor set-upA 2 L membrane bioreactor (MBR, see Yoon

(2016) for details) with an operational volume of 1.5 L,

and a settling and bleed cycle to control growth rate, and

to select for aggregates, was designed for the co-culturing

of methanogens and aerobic methanotrophs (Fig. 1). A

general medium was devised that allowed growth of both

methanogens and methanotrophs (1.0 mM MgSO4·7H2O,

0.23 mM CaCl·2H2O, 1.7 mM KH2PO4, 5.1 mM NaCl,

7.2 μM FeSO4 ·7H2O, 3.7 mM NH4Cl, 26.2 mM

CH3COOH, 0.25 g/L Tryptone, 0.25 g/L yeast extract,

1 mL 1000× trace elements SL-6 including 81.5 μM

CeCl·7H2O (DSMZ, Braunschweig, Germany), and 1 mL

1000× vi tamin solut ion (DSMZ, Braunschweig,

Germany)). pH was adjusted to 7.0. At t = 111 days,

Tryptone and yeast extract were removed from the medium

to reduce risk of contamination in the bioreactor. Growth

tests on Tryptone and yeast extract free medium confirmed

that growth of both methanogens and methanotrophs was

possible (data not shown). The total medium flow supply

was set to 0.5 L/day, and the volume was kept constant at

1.5 L using a level-controlled effluent pump. The gas flow

rate was set to 5 mL/min. Initial gas mixture composition

was set to 1.51 mL Argon/CO2 (9:1) mixture, 2.38 mL air,

and 0.75 mL methane. After 15 weeks of co-cultivation,

the gas inflow was increased to 10 mL/min to reduce the

risk of air diffusion into the reactor. Simultaneously, the

methane inflow percentage was reduced based on the

prevailing methane consumption data. The mixture
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contained 6.77 mL argon/CO2, 2.86 mL air, and 0.37 mL

methane per minute. O2 and pH were monitored using

AppliSens probes (AppliSens Z001023551 and Applisens

Z010023520, Applikon Biotechnology B.V., Delft,

The Netherlands). The pH was controlled at 7.0 ± 0.1 using

a probe-linked KHCO3 pump. The MBR was continuously

mixed at 150 rpm using a stainless steel rotor blade con-

trolled by an Applikon stirrer controller (Applikon stirrer

controller P100, Applikon Biotechnology B.V., Delft,

The Netherlands). The system was operated at room tem-

perature (± 20 °C).

Co-cultivationThe methanotroph-only culture was grown to

OD600 of 0.7 under oxygen limitation, which created an-

oxic conditions in the liquid. After at least a week of an-

oxia (O2 detection limit 3 μM), the reactor was inoculated

with M. barkeri. Fourteen days after inoculation with

M. barkeri, a bleed cycle was introduced to select for

methanogen-methanotroph aggregates and to remove ex-

cess methanotrophic biomass. The bleed cycle was set to

30 min pre-settling (no stirring) to minimize loss of aggre-

gates followed by removal of 50-mL reactor fluid from the

upper layer in 20 min. Triplicate samples were taken every

3–4 days. Cells and supernatant were taken aseptically

from the MBR and separated by centrifugation for

10 min at maximum speed (20,348×g) and used for protein

determination, FISH microscopy, and activity tests.

Monitoring of growth and substrate metabolism

OD600 and protein assay After sterilization, the bioreactor

was inoculated with M. sporium. Batch culture and reactor

optical density were measured on a Bio-Rad SmartSpec™

3000 spectrophotometer with the pre-set OD600 method

(Bio-Rad Laboratories, Veenendaal, The Netherlands)

using 1.6-mL semi-micro polystyrene cuvettes (Sarstedt

AG & Co. KG, Nümbrecht, Germany). For analysis of total

protein contents, duplicate 1.5 mL reactor liquid pellets

were resuspended in 0.3 mL 3 M NaOH and boiled for

10 min at 95 °C. Samples were cooled down to RT, neu-

tralized with 0.3 mL 3 M HCl, and centrifuged for 1 min at

maximum speed. Ten microliters supernatant was loaded

onto a polystyrene flat-based 96-well microtest plate

(Sarstedt AG & Co. KG, Nümbrecht, Germany). To each

well, 200 μl working solution (50 parts of Pierce BCA

Protein Assay Kit, reagent A (article no 23223) and 1 part

of 4% cupric sulfate in Milli-Q water was added and mixed

by pipetting. Samples were incubated for 30 min at 60 °C.

After cooling down to room temperature, the absorbance

was measured at 562 nm on a SpectraMax 190 Microplate

Reader (Molecular Devices, Sunnyvale CA, USA), and

data were analyzed using SoftMax Pro 6.4 (Molecular

Devices, Sunnyvale CA, USA). Values were compared to

a standard curve with bovine serum albumin (BSA) in

Milli-Q. OD600 values and total protein analysis achieved

similar results (Supplementary Information Fig. S1).

Methane and oxygen For all gas determinations, 50 μl gas

samples were withdrawn with a gas-tight glass syringe

(Hamilton, Reno NE, USA). Methane in- and outflow

concentrations were measured daily using a HP5890a

gas chromatograph (Hewlett Packard 5890a, Agilent

Technologies, Santa Clara CA, US) equipped with a

Porapaq Q 100/120 mesh and a thermal conductivity de-

tector (TCD) using N2 as carrier gas (Sigma-Aldrich,

Saint Louis MI, USA). Data were analyzed using GC

ChemStation Rev. A.10.02 (Agilent Technologies, Santa

Clara CA, USA). Oxygen concentrations were determined

with the same gas sampling and volume on an Agilent

6890 series gas chromatograph coupled to a mass spec-

trometer (Agilent Technologies, Santa Clara CA, USA)

equipped with a Porapaq Q column heated at 80 °C with

helium as carrier gas. Data were analyzed with the MSD

ChemStation F01.01.2317 (Agilent Technologies, Santa

Clara, CA, USA). All gas measurements were performed

in duplicate.

AcetateAcetate concentrations were determined according

to the protocol described by Kage and co-workers with

the following modifications: An internal standard (IS)

was prepared by dissolving 0.1 mM methylstearate (MS)

Fig. 1 Set-up of the 2 L membrane bioreactor (MBR) with a constant

volume of 1.5 L. The inflow gas was a mixture of CH4, Argon and CO2,

and compressed air of which the ratios could be modified. Medium and

buffer (KHCO3) inflows and bleed and effluent outflows were controlled

by calibrated medium pumps. Temperature, pH and dissolved O2 were

constantly monitored using in-liquid probes. Contents were mixed at

150 rpm with a stainless steel rotor blade

Appl Microbiol Biotechnol (2018) 102:5685–5694 5687



in n-hexane (Kage et al. 2004). For each reaction, 40 μl

supernatant sample, 40 μl 0.5 M phosphate-buffered sa-

line (PBS 65 mM NaCl, 5 mM phosphate buffer pH 7.4

(80% Na2HPO4 and 20% NaH2PO4)), and 200 μl

pentafluorobenzyl bromide (PFBBr) in acetone at a con-

centration of 100 mM were mixed and incubated for 1 h

at 60 °C. Acetate standard solutions were prepared ac-

cording to Kage et al. (2004) using sodium acetate in

Milli-Q water with a concentration range from 0 to

10 mM. Four hundred microliters of the 0.1 mM MS

solution in n-hexane was added, and samples were

vortexed for 1 min at RT and centrifuged for 2 min at

maximum speed. One hundred microliters aliquots were

divided into 12 × 32 mm clear Cronus crimp vials capped

with rubber/PTFE snap caps (SMI-LabHut Ltd. ,

Maisemore, UK); 0.1 mL 15 mm tip clear glass inserts

were used to reduce the required sample volume (VWR

International BV, Amsterdam, The Netherlands). Pure n-

hexane was added to the vials to avoid excess sample

evaporation. All samples were injected five times on a

JEOL AccuTOF-GCv JMS-100GCv (JEOL Ltd. ,

Akishima, Tokyo, Japan).

Ammonium and nitrite Ammonium concentrations were

measured using 50 μl supernatant sample and 750 μl

OPA Reagent (0.54% (w/v) ortho-phthaldialdehyde,

0.05% (v/v) β-mercaptanol and 10% (v/v) ethanol in

400 mM potassium phosphate buffer (pH 7.3)). Samples

were vortexed shortly and incubated at room temperature

(RT) for 20 min. Absorbance was measured at 420 nm

and values were compared to a calibration curve with

ammonium chloride in Milli-Q. Nitrite concentrations

were measured using 100 μl sample, 100 μl nitrite reagent

(1% (w/v) sulfanilic acid in 1 M HCl and 100 μl 0.1% (w/

v) naphtylethylene diaminedihydrochloride in water).

Samples were mixed by pipetting and incubated for

20 min at RT. Standard curves were prepared by using a

dilution series of sodium nitrite in Milli-Q. Absorbance

was measured at 540 nm. Both assays were performed

in triplicate in a 96-well plate set-up as described for the

protein assay.

Fluorescence in situ hybridization (FISH) microscopy

FISH microscopy samples were taken weekly and

prepared in duplicate according to the FISH protocol as

described by Amann et al. (1990) using a hybridization

buffer with 35% (v/v) formamide. M. sporium was

targeted using bacterial EUB mix probes (5′-GCT GCC

TCC CGT AGG AGT-3′; 5′-GCA GCC ACC CGT AGG

TGT-3′; 5′-GCA GCC TTC CGT AGA AGT-3′) (Daims

et al. 1999). M. barkeri was targeted by a combination of

ARCH-0890 probe (5′-GTG CTC CCC CGC CAA TTC

CT-3′) targeting archaea (Stahl and Amann 1991) and

MSMX-0860 probe (5′-GGC TCG CTT CAC CGC

TTC CCT-3′) targeting Methanosarcinaceaea (Raskin

et al. 1994).

Genome sequencing and data analysis
of methanotrophic culture

DNAwas extracted from 20 mL pelleted methanotrophic cul-

ture grown to an OD600 of ~ 1. DNAwas extracted using the

cetyltrimethylammoniumbromide (CTAB) extraction buffer

protocol as described by Zhou et al. (1996). DNA library prep-

aration and sequencing was performed by BaseClear on an

Illumina HiSeq2500 platform using the Illumina paired end

protocol (BaseClear B.V., Leiden, The Netherlands). Quality-

trimming, adapter removal, and contaminant-filtering of

Illumina HiSeq paired-end sequencing reads was performed

using BBDUK (BBTOOLS version 37.76) (Bushnell 2014).

Trimmed reads were assembled using metaSPAdes v3.11.1

(Nurk et al. 2017) at default settings. MetaSPAdes iteratively

assembled themetagenome using k-mer size 21, 33, 55, 77, 99,

and 127. Reads were mapped back to the metagenome using

Burrows-Wheeler Aligner 0.7.17 (BWA) (Li and Durbin

2018), employing the Bmem^ algorithm. The sequence map-

ping files were handled and converted as needed using

SAMtools 1.6 (Li et al. 2018). Metagenome binning was per-

formed for contigs greater than 1500 bp using five binning

algorithms: BinSanity v0.2.6.1 (Graham et al. 2017),

COCACOLA (Lu et al. 2018), CONCOCT (Alneberg et al.

2014), MaxBin 2.0 2.2.4 (Wu et al. 2015), and MetaBAT 2

2.12.1 (Kang et al. 2015). The bin sets from each algorithm

were supplied to DAS Tool 1.0 (Sieber et al. 2017) for consen-

sus binning to obtain the final optimized bins. The quality of

the generated bins was assessed through single-copy marker

gene analysis using CheckM 1.0.7 (Parks et al. 2015).

Genomes were annotated with Prokka 1.12 (Seemann 2014)

using the NCBI Reference Sequence Database (RefSeq) re-

lease 85 (Pruitt et al. 2018). Predicted protein sequences were

submitted to the KEGG Automatic Annotation Server

(KAAS—last update April 3, 2015) (Moriya et al. 2007) for

pathway analyses. Genome annotations were examined using

the Artemis genome browser release 16.0.0 (Rutherford et al.

2000). For 16S rRNA gene analysis, raw Illumina HiSeq reads

were mapped against the SILVA SSU non-redundant database

version 128 and de novo assembled as described in in ’t Zandt

et al. (2017).

Nucleotide sequence accession numbers

All sequencing data were submitted to the GenBank databases

under BioProject PRJNA434352. The genome bins were sub-

mitted as genome data under BioSample accession number

SAMN08554708 and SAMN08554709.
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Results

Start-up of the oxygen-limited bioreactor

A membrane bioreactor was inoculated with aerobic

methanotrophs and fed with a gas mixture containing

methane and oxygen. A stable co-culture of anaerobic

methanogens and aerobic methanotrophs could be obtain-

ed for over 2 months. Optical density (OD) was followed

over time (Fig. 2). The initial phase with only aerobic

methanotrophs indicated a rapid growth based on an

OD600 increase from 0.3 to 0.85 within 55 days. The

methanotrophs were put under oxygen limitation, and af-

ter the dissolved oxygen levels dropped below the detec-

tion limit (≤ 3 μM), the OD600 was diluted to 0.5 and the

reactor was inoculated on t = 92 days with the methano-

genic archaeon M. barkeri. Oxygen levels remained be-

low the detection limit for the entire experiment. At t =

105 days, methane inflow was reduced to 1.25 mL/min to

restrict methanotrophic growth. Co-culture OD values in-

creased to almost 1 within 19 days. At t = 113 days, ad-

ditional biomass was removed and a bleed was installed to

remove 1/30th of the reactor volume per day to target an

OD600 of around 0.5. From t = 113 days to the end of

reactor operation at t = 337 days OD600 values ranged

from 0.4 to 0.7.

Reducing methane flux results in higher reactor
stability

Inflow and outflow methane concentrations were measured

to follow methanotrophic activity (Fig. 3). During pre-

cultivation with methanotrophs (t = 0 to 92 days), methane

consumption was highly variable as indicated by the devi-

ation in the data. Directly after the inoculation with

M. barkeri at t = 92 days, the total methane consumption

rates increased about tenfold from days 92 to 104 with an

average of 41.4 ± 0.8 (standard error, SE) mmol/day, prob-

ably due to removal of excess (inactive) biomass prior to

inoculation. A similar observation was made between t =

55 and 65 days after excess biomass was removed.

Methane consumption rates increased to an average of

43.5 ± 1.4 (SE) mmol/day. On t = 205 days, methane influx

was lowered to 0.62 mL/min to reduce methanotrophic

growth and to make the system more dependent on inter-

nally produced methane. After second addition of

M. barkeri on t = 252 days, this resulted in the observation

of up to ten times more methanogen-methanotroph

aggregates.

Ammonium and nitrite concentrations were measured

weekly within the co-cultivation periods from t = 83 to t =

315 days to monitor nitrogen availability, consumption, and

nitrite toxicity risk (data not shown). Total available ammoni-

um ranged between 2.3 and 4.7 mM with an average of 3.3 ±

0.5 (standard deviation, SD) mM.

Monitoring showed constant availability
and consumption of acetate

Five millimolars of acetate was added to the medium as

methanogenic substrate. Acetate concentrations were

monitored weekly (Fig. 4). These data indicated acetate

consumption during the pre-cultivation period and thus

suggested that the methanotrophic bacteria assimilated

some of the acetate into biomass. M. barkeri Ks for

acetate is 3–5 mM, and the threshold is 0.2–1.2 mM

(Daniels 1993). Acetate concentrations were increased

to 10 mM after 92 days to reduce acetate limitation

risks for the methanogens. Further measurements indi-

cated that acetate was not limiting during the entire co-

cultivation periods.

Fig. 2 Optical density of biomass

during operation of the membrane

bioreactor. Gray areas indicate co-

cultivation periods. At t = 92,

methanogens were added. The

first co-cultivation lasted until t =

155 days. At t = 252, a second

batch of M. barkeri was added.

The second co-cultivation lasted

until t = 317. The dashed line in-

dicates installation of the bleed at

t = 113
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Fluorescence in situ hybridization showed clustering
of methanogens and aerobic methanotrophs

Using fluorescence in situ hybridization (FISH) microsco-

py, the formation of aggregates containing both aerobic

methanotrophs and anaerobic methanogens was detected

over time (Fig. 5a–d). Abundance estimations from the

FISH micrographs indicated a ratio of methanotrophs to

methanogens of around 100:1, which was supported by

the observed rapid growth of the methanotrophic popula-

tion. First distinct aggregates were observed after 22 days

of co-cultivation (Fig. 5b). The structure of the aggregates

after 49 (t = 142) and 63 (t = 156) days of co-cultivation

(Fig. 5c, d) showed a center or multiple centers of

methanogen clusters (sarcina-shaped cell packages)

surrounded by multiple cell layers of methanotrophs. This

led to the hypothesis that both methanogens and aerobic

methanotrophs profit from this specific spatial organization

(Supplementary Information Fig. S2). Methanogenic ca-

pacity of the reactor contents was still retained when

samples were batch cultured anaerobically with acetate as

sole carbon source (data not shown).

Lower methane/ammonium ratio induced nitrite
toxicity event

After reducing the methane influx to 0.62 mL/min on t =

205 days, nitrite increased from background levels of 15.6 ±

10.8 (SD) μM to 78.6 ± 4.8 (SD), probably due to the non-

specif ic co-metabol ism of ammonia by methane

monooxygenase (MMO) of the aerobic methanotrophs under

methane-limiting conditions. The nitrite accumulation result-

ed in a decrease of M. barkeri cells as could be observed by

FISH microscopy (data not shown). To minimize the risk of

ammonium co-metabolism, ammonium concentration in the

inflow medium was lowered from 3.7 to 1 mM. Growth ex-

periments with axenic cultures of M. barkeri indicated that

growth was not limited by ammonium concentrations down

to 1 mM but was reduced when concentrations fell below

0.5 mM. Although the ammonium source is shared during

Fig. 4 Weekly measurements of

the acetate concentrations in the

reactor liquid. Gray areas indicate

co-cultivation periods. At t = 92,

methanogens were added. The

first co-cultivation lasted until t =

155 days. At t = 252, a second

batch of M. barkeri was added.

The second co-cultivation lasted

until t = 317. Error bars indicate

standard error of the mean, n = 5

technical replicate measurements

on a JEOL AccuTOF-GCv
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Fig. 3 Total methane

consumption in mmol/day as

measured by reactor inflow and

outflow gas methane concentra-

tions. Gray areas indicate co-

cultivation periods. At t = 92,

methanogens were added. The

first co-cultivation lasted until t =

155 days. At t = 252, a second

batch of M. barkeri was added.

The second co-cultivation lasted

until t = 317. Right top graph

shows zoom-in from t = 200 to

t = 350 days
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co-cultivation, reactor liquid ammonium concentrations never

dropped below 0.5 mM (data not shown). After system stabi-

lization, a second inoculation with M. barkeri was performed

(t = 252 days) to confirm the successful co-cultivation and to

show repeated formation of interactions between

methanogens and aerobic methanotrophs (Fig. 5e–h).

Genome sequencing and analysis of aerobic
methanotrophs

To confirm the identity of the methanotrophs, the culture

was sequenced using Illumina HiSeq technology.

Sequence analysis was performed using consensus bin-

ning, annotation, and de novo assembly based on a 16S

rRNA gene identification approach. The culture appeared

to contain two methanotrophic species. The first bin was

assigned to Methylosinus (3.79 Mbp, GC-content 65.2%,

N50 = 96,528 bp, 55 contigs) and had 100% complete-

ness, 0.31% contamination, and no strain heterogeneity.

The second bin was identif ied as Methylocyst is

(4.36 Mbp, GC-content 62.5%, N50 = 136,571 bp, 55

contigs) with 99.7% completeness, 0.32% contamination,

and no strain heterogeneity. De novo assembly of SILVA

database mapped reads resulted in two 16S rRNA gene

contigs. Contig 1 (842 bp) showed 100% nucleotide se-

quence identity (e-value 0.00, bitscore 1350) with the 16S

rRNA gene of Methylosinus sporium strain NCIMB

11126 as ordered from the DSMZ culture collection.

Contig 2 (1431 bp) showed 98.5% nucleotide sequence

identity (e-value 0.00, bitscore 2328) to the 16S rRNA

gene of Methylocystis rosea strain SV97.

Discussion

Here, we present a proof of concept for the co-cultivation of

anaerobic methanogenic archaea and aerobic methanotrophic

bacteria in an oxygen-limited bioreactor. Only few studies

have previously investigated co-cultivation of methanogens

and methanotrophs (Gerritse and Gottschal 1993; Shen et al.

1996; Miguez et al. 1999). These studies showed that co-

cultivation of methanogens and methanotrophs is possible,

but they did not provide in-depth data on species interactions

and system operation.With the present study, we provide a

method to study interspecies interactions between meth-

ane cycle microorganisms under oxygen limitation. FISH

micrographs showed a tight spatial organization between

the methanogenic sarcina clusters and layers of aerobic

methanotrophic cells. This confirmed our hypothesis that

methanotrophs profited from the production of methane

from acetate by the methanogens and were therefore

closely associated with the methanogens (Fig. 5).

Methanogens are most likely protected against oxygen

by methanotrophs (Fig. 5).

Genome sequencing of the methanotrophic culture indicat-

ed presence of both a Methylosinus and a Methylocystis

a b

e f g h

c d

Fig. 5 a–d Fluorescence in situ hybridization micrographs of the reactor

biomass after 1 (a), 22 (b), 49 (c), and 63 days (d) of inoculation with

M. barkeri. e–h Fluorescence in situ hybridization micrographs of the

reactor biomass after 3 (e), 16 (f), 30 (g), and 65 days (h) of the second

inoculation withM. barkeri. Aerobic methanotrophic bacteria are stained

in green (EUB mix), and M. barkeri are stained in magenta (overlay of

ARCH-0890 and MSMX-0860 in blue and red respectively). Scale bars

represent 10 μm

Appl Microbiol Biotechnol (2018) 102:5685–5694 5691



species. Both species are members of the alphaproteobacterial

family Methylocystaceae and possess pmoA genes encoding

the particulate methane monooxygenase that oxidizes

methane at atmospheric levels (Dunfield et al. 1999;

Kravchenko et al. 2010). M. sporium is a suitable candi-

date for the co-cultivation set-up due to its high substrate

aff ini ty (Murrel l e t a l . 2000) . In addi t ion, for

M. trichosporium, that is closely related to M. sporium,

Km values for methane were as low as 0.8–2.0 μM de-

pending on the strain (Joergensen and Degn 1983).

Furthermore, M. sporium has often been used in previous

methanogenic-methanotrophic cultures (Shen et al. 1996;

Miguez et al. 1999). Acetate measurements (Fig. 4)

showed acetate consumption by the methanotrophic cul-

ture. Genome data confirmed the presence of genes

encoding acetate kinase (AckA), acetate-CoA ligase

(ACSS), and phosphate acetyltransferase (Pta) in both

genome bins. It is known that methanotrophs can metab-

olize acetate, but to our knowledge, growth on acetate

and other carbon-carbon bond substrates had been

thought to be limited to Methylocella and Methylocapsa

species (Dedysh et al. 2005; Dunfield et al. 2010). The

carbon fixation pathways showed the alphaproteobacterial

type II pathway of formaldehyde conversion to L-Serine

via 5,10-methylenetetrahydromethanopterin (5,10-methy-

lene THMPT).

Co-culture studies could significantly contribute to our cur-

rent knowledge on methanogen-methanotroph interactions in

the environment. The metabolic processes that drive

ecosystem-scale GHG fluxes are dependent on the activ-

ity of both the aerobic and anaerobic microbial commu-

nity members (McCalley et al. 2014). Especially the in-

terplay between methanogens and aerobic methanotrophs

is relevant, since this determines the types and quantities

of GHG fluxes into the atmosphere. The use of pre-

defined methanogen-methanotroph co-cultures enables

the study of environmental effectors including tempera-

ture, pH, substrate, and oxygen availability on methane

fluxes and methanogen-methanotroph interactions under

controlled conditions. These studies could provide exper-

imental evidence to better estimate wetland GHG fluxes.

Methanogen-methanotroph interactions in the environ-

ment have recently gained more attention with the con-

t r ad ic tory obse rva t ions of ox ic wate r co lumn

methanogenesis and methanogenesis in oxic soils

(Bogard et al. 2014; Angle et al. 2017), aerobic

methanotrophic activity in anoxic lake waters and sedi-

ments (Oswald et al. 2016; Martinez-Cruz et al. 2017),

and fermentative activity of gammaproteobacterial

methanotrophs under oxygen limitation (Kits et al.

2015). Our study provides a new method to study inter-

species interactions of methane cycle microorganisms un-

der an array of environmental conditions.
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