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ABSTRACT
Design of physical systems and associated control systems

are coupled tasks; design methods that manage this interaction
explicitly can produce system-optimal designs, whereas con-
ventional sequential processes may not. Here we explore a
new technique for combined physical system and control design
(co-design) based on a simultaneous dynamic optimization ap-
proach known as direct transcription, which transforms infinite-
dimensional control design problems into finite dimensional non-
linear programming problems. While direct transcription prob-
lem dimension is often large, sparse problem structures and fine-
grained parallelism (among other advantageous properties) can
be exploited to yield computationally efficient implementations.
Extension of direct transcription to co-design gives rise to a new
problem structures and new challenges. Here we illustrate di-
rect transcription for co-design using a new automotive active
suspension design example developed specifically for testing co-
design methods. This example builds on prior active suspension
problems by incorporating a more realistic physical design com-
ponent that includes independent design variables and a broad set
of physical design constraints, while maintaining linearity of the
associated differential equations.

1 Introduction
Often dynamic systems developed by engineers employ

electronic control. Successful design of controlled systems is
becoming increasingly important as their number and complex-

ity rises. In conventional design processes the physical system
is designed first, followed by control system design [1]. This se-
quential approach does not fully account for coupling between
physical artifact and control system design, and produces sub-
optimal results [2, 3]. More effective multidisciplinary design
methods that manage the artifact-control coupling explicitly are
being developed, and are often termed co-design methods.

Engineers often employ simulation to predict dynamic sys-
tem performance and support design decisions. Simulation can
be linked to numerical optimization algorithms to aid effective
exploration of design alternatives. Typically a nested approach
is used: the optimization algorithm proposes a candidate de-
sign, which is then tested via simulation, and the results are then
used in finding a new candidate design. Alternative approaches
that perform simulation and optimization simultaneously are ex-
plored here, specifically a family of methods known as direct
transcription (DT).

DT has been employed successfully for control design and
parameter estimation across wide a range of applications, from
chemical process design [4, 5], to aerospace trajectory optimiza-
tion [6–8], to walking dynamics [9], to epidemiology [10], but
has not yet been applied to co-design. In this article we intro-
duce an extension of DT for co-design, explore the associated
advantages and challenges, and demonstrate this approach using
a newly-developed active suspension system example.

1 Copyright c© 2011 by ASME



1.1 Direct Transcription

Here we assume the system to be designed can be modeled
using a system of continuous differential equations:

ξ̇ξξ = fd(ξξξ(t),u(t), t) (1)
0 = fa(ξξξ(t),u(t), t) (2)
0 = ψψψ(ξξξ(tF),u(tF), tF) (3)

Equation (1) defines the time derivatives of a system model,
where ξξξ(t) (length ns) is the vector of state variables and u(t) is
the control input. Equation (2) is the algebraic or path constraint,
and if present, the model is a system of differential-algebraic
equations (DAEs) [11]. The system may also have a bound-
ary condition enforced at the simulation end time tF (Eqn. (3)).
If the model consists only of Eqn. (1) with initial conditions
ξξξ(t0) = ξξξ0, it can be solved with forward simulation using a nu-
merical ODE solver, such as the first-order Runge-Kutta method
(Euler’s method):

ξξξi = ξξξi−1 +hifd(ξξξi−1,u(ti−1), ti−1) (4)

Here hi is the integration step size at ti. Higher-order Runge-
Kutta methods improve accuracy, as do implicit methods that
employ an inner iterative method to solve for ξξξi.

The open-loop control design problem can be written as:

min
ξξξ(t),u(t),tF

J = φ(ξξξ(t),u(t), tF) (5)

subject to Eqns. (1)–(3), where J is the response of a cost func-
tion. The final simulation time tF often is an important quantity,
particularly if the cost function depends on tF or ξξξ(tF). Final
time might also be treated as a fixed parameter. When tF varies,
the number of time steps is fixed, but the time each step repre-
sents is scaled by the value of tF . Feedback control can be ac-
commodated by replacing u(t) with control design variables xc.
Time-independent parameters p can also be added to the set of
optimization variables for parameter estimation problems:

min
ξξξ(t),xc,p

J = φ(ξξξ(t),xc,p) (6)

Optimal control problems may be solved using techniques based
on the calculus of variations, including classical optimal control
methods such as LQR [12]. This approach, however, requires
derivation of derivatives of the system’s Hamiltonian, so is lim-
ited in applicability. A common alternative eliminates ξξξ(t) from
the optimization variable set by solving for state variable values
using a nested simulation within the optimization problem:

min
xc

J = φ(ΞΞΞ,xc) (7)

Here ΞΞΞ is a discretized representation of the state variables,
where the ith row of ΞΞΞ is ξξξi = ξξξ(ti), i = 1,2, . . .nt . This nested
approach enables use of finite-dimensional optimization meth-
ods, such as sequential quadratic programming [13], and is im-
plemented commercial software [14], but has limitations. Dis-
cretization and variable step sizes results in a cost function that

is not smooth or arithmetically consistent [8], i.e., arithmetic op-
erations used to compute cost vary with xc. Non-smoothness
can be managed by increasing optimization finite difference step
sizes or by using gradient-free methods, but this approach may
still suffer from numerical sensitivity, particularly for highly non-
linear or stiff systems. Numerical sensitivity can be reduced by
partitioning the simulation into nT time segments using a tech-
nique know as multiple shooting. The state at the interfaces be-
tween time segments (Y) is controlled directly by the optimiza-
tion algorithm, and state continuity is enforced at convergence
by defect constraints ζζζ(ΞΞΞ,Y):

min
xc,Y

J = φ(ΞΞΞ,xc)

s.t. ζζζi(ΞΞΞ,Y) = 0, i = 1,2, . . .nT −1 (8)

Row j of Y is the state at the beginning of time segment j + 1.
Within each time segment the system is simulated, and defect
constraints require the state at the end of time segment j to match
the jth row of Y. For example, in Fig. 1 the value for ξξξ7 calcu-
lated using simulation over time segment 1 does not match the
value for ξξξ7 specified by Y that serves as the initial conditions
for the simulation over time segment 2. This discontinuity in
state at the interface is quantified using the defect constraint ζζζ1.

ξ(t)

t

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

time segment 1 time segment 2

ζ1

Figure 1: Illustration of continuity defect ζζζ1 between time segments 1
and 2 using the multiple shooting method.

Because Y is specified by the optimization algorithm, the nT
simulations are independent and can be calculated using coarse-
grained parallel computing. The shorter simulation segments re-
duce numerical sensitivity.

In the limit, as nT → nt , the simulation for each time seg-
ment collapses to a single difference equation. The set of de-
fect constraints replace simulation completely, and ΞΞΞ becomes
an optimization variable. This is Direct Transcription (DT); the
infinite-dimensional optimal control problem is transcribed di-
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rectly to a finite-dimension nonlinear programming problem:

min
ΞΞΞ,xc,tF

J = φ(ΞΞΞ,xc, tF)

s.t. ζζζi(ΞΞΞ,xc, tF) = 0 (9)
f̂ai(ΞΞΞ,xc, tF) = 0

where i = 2, . . . ,nt −1,nt

A defect constraint is defined for each time step, and path con-
straints are discretized (f̂ai). This formulation allows for vari-
able tF , and xc can be replaced easily with discretized u(t). As
max(hi)→ 0, the optimality conditions for the DT problem con-
verge to the optimality conditions for Eqn. (5).

While the dimension of the DT problem is large (ΞΞΞ has nt ·ns
elements), its problem structure is advantageous. At every opti-
mization iteration ΞΞΞ is specified completely, so each of the nt−1
defect equations and path constraints are independent, enabling
fine-grained parallel computing. The DT problem can be imple-
mented such that the problem structure is nearly diagonal, en-
abling sparse finite difference gradient evaluations with as few
as two perturbations regardless of problem dimension [8]. The
DT problem is arithmetically consistent, enhancing numerical
properties. Often analytical derivatives can be derived, further
improving solution speed and accuracy. Variable step and order
techniques for DT are available to provide error control [6,8,15].

Direct transcription is especially useful for problems with
path constraints as it avoids another level of nesting within sim-
ulation to solve algebraic constraints; it is capable of handling
higher-index DAEs [15, 16]. Inequality path constraints may
be added directly, a problem element that often is impossible to
solve using any other means [8].

If quadrature is performed using Euler’s method, the defect
constraints are:

ζζζi(ΞΞΞ,xc) = ξξξi−ξξξi−1−hifd(ξξξi−1,xc, ti−1)

Implicit quadrature methods for general nonlinear systems can
be used with DT without requiring inner iterations to solve for
the implicit state values. For example, the defect constraints for
the implicit trapezoidal method are:

ζζζi(ΞΞΞ,xc) = ξξξi−ξξξi−1−
hi

2
(
fd(ξξξi−1,xc, ti−1)+ fd(ξξξi,xc, ti)

)
ξξξi is known a priori (it is a row of ΞΞΞ), so defect equations may be
evaluated without inner iteration. This concept extends to high-
order implicit methods. While these methods are very accurate,
they typically are impractical for forward simulation. Higher-
order implicit methods can be used with DT, allowing fewer time
steps (reducing problem dimension) while maintaining the re-
quired precision [5, 17, 18].

Helpful insights can be gained by considering the differ-
ent paths through the combined state and design solution space
traced by the nested and DT methods. Figure 2 is an abstraction
of these subspaces, each of which may have high cardinality.

The nested approach begins with an initial design point x0,

Ξ

x

x∗,Ξ∗

x0

Ξ0

Nested Path
DT Path

x1

Ξ1

Ξ2

x2

Figure 2: Conceptual solution trajectories through design and state sub-
spaces.

which might include physical system design variables xp in addi-
tion to xc if a co-design problem is being solved. Forward simu-
lation is then used to solve for state values ΞΞΞ0 that are consistent
with physics, The optimization algorithm chooses a new point x1
to reduce J, and the process repeats until convergence to x∗,ΞΞΞ∗.
The nested method can move only in one subspace at a time,
whereas DT can move in both simultaneously, tracing a more
direct path to the solution.

1.2 Relationship to MDO
In this section we clarify the relationship between the three

formulations for optimal control discussed above (nested, mul-
tiple shooting (MS), and DT), and single-level formulations
for multidisciplinary design optimization (MDO) [19, 20]. The
nested solution approach in Eqn. (7) can be viewed as a special
case of the multidisciplinary feasible (MDF) formulation, where
a complete system analysis is performed at every optimization
iteration. In other words, the system is consistent with physics
(i.e., feasible) during the entire solution process because the dif-
ferential equations are satisfied at each optimization step. As
with MDF, optimization variables for the nested approach in-
volve only independent design variables, and the analysis task
is consolidated into a single monolithic process.

The multiple shooting approach in Eqn. (8) is a special case
of the individual feasible formulation (IDF), where the analysis
problem is partitioned into several smaller analysis tasks. Fea-
sibility is maintained within analysis subproblems via simula-
tion, but feasibility across subproblems is only guaranteed at
convergence by defect constraints. In addition to independent
design variables, the set of optimization variables includes in-
terface (coupling) variables that quantify interactions between
analysis subproblems. Auxiliary defect constraints ensure con-
sistency across subproblems at convergence.

Direct transcription (Eqn. (9)) is a special case of the all-at-
once (AAO) formulation, where the optimization algorithm man-
ages both design and all analysis tasks. Analysis equations are
embedded in optimization equality constraints, and state vari-
ables are part of the optimization variable set. These relation-
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Table 1: Relationship between direct transcription and MDO.

MDF/Nested IDF/MS AAO/DT

Solution Process Entire analysis feasible at every opti-
mization iteration

Individual analysis components feasi-
ble at every optimization iteration

Analysis feasible only at optimization
convergence

Optimization Variables Design variables Design and interface variables Design and state variables

Analysis Type Consolidated analysis Partially distributed analysis Fully distributed analysis

ships are summarized in Table 1.

2 Direct Transcription for Co-Design
Co-design methods seek to identify system-optimal designs

for controlled engineering systems by considering simultane-
ously physical artifact (plant) and control design. Conventional
sequential (plant then control) design processes produce sub-
optimal results because the two design domains are coupled.
The sequential process is in essence a single iteration of block-
coordinate descent [21], which even if iterated does not guaran-
tee system optimality.

It is the experience of the authors that with the increasing
complexity and demands associated with modern engineering
systems, control engineers often struggle to meet system require-
ments when using sequential design. Additionally, many new
system capabilities are possible only when plant and control de-
sign are considered together, including areas such as automo-
tive suspension [22], bio-mimetic robotic locomotion [23, 24],
controlled compliant mechanisms [25, 26], and structural design
[27, 28].

New approaches are needed that preserve design freedom
of both plant and control design domains throughout the pro-
cess. Reyer et al. provide a review of such strategies [29]. Fathy
proposed a co-design technique where the control design prob-
lem is nested within the plant design problem, producing sys-
tem optimal results [30]. Allison and Nazari introduced a co-
design method with distinct plant and control design subprob-
lems that are guided toward system optimality using augmented
Lagrangian coordination [31].

A fundamental challenge of solving co-design problems is
managing a heterogeneous set of design variables; control vari-
ables either depend directly on time (e.g., u(t) in Eqn. (5)) or
are proxies for time dependent variables, while plant design vari-
ables typically are time independent. Fathy’s nested approach
manages this by employing established optimal control methods
to solve the inner control problem, and nonlinear programming
algorithms to solve the outer plant design problem. Allison and
Nazari derived an extension of optimal control theory to account
for time-independent linking variables in the control design sub-
problem.

Direct transcription has been applied successfully to pa-
rameter estimation problems with time-independent variables

[5, 8, 32], and it is tempting to leap directly from applying DT
to parameter estimation to co-design. The structures of the two
problems are very different, however, and can be analyzed us-
ing graph-theoretic techniques [33]. Figure 3 illustrates a sim-
plified directed-graph view of the standard DT problem and DT
augmented to handle co-design problems. The plant analysis de-
pends on both plant design variables and state variable values,
and calculates plant design constraints gp and intermediate vari-
ables used in computing the objective function and dynamic con-
straints.

Defect Equations, 

Path Constraints

Objective 

Function

Ξ xc
Plant 

Analysis

p

xp

gp ζ, f̂aJ

Defect Equations, 

Path Constraints

Objective 

Function

Ξ xcp

ζ, f̂aJ

a) b)

Figure 3: Analysis structure of a) DT and b) DT for co-design.

Dependence of plant analysis on ΞΞΞ and influence on J, ζζζ,
and fa is a complication. This may preclude the use of analyti-
cal derivatives, and impacts the density of the Jacobian matrix,
possibly precluding the use of large-scale optimization methods.
These issues may be ameliorated via creative application of path
constraints, or addition of states to the system problem. Nonethe-
less, DT applied to co-design problems still enables massive
parallelization, and the solution of problems with ‘wicked’ ele-
ments, such as singular control problems or inequality path con-
straints. The DT formulation for co-design used here is:

min
ΞΞΞ,xc,xp,tF

J = φ(ΞΞΞ,xc,xp, tF)

s.t. gp(ΞΞΞ,xp)≤ 0
ζζζi(ΞΞΞ,xc,xp, tF) = 0 (10)
fai(ΞΞΞ,xc,xp, tF) = 0

where i = 2, . . . ,nt −1,nt
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3 Active Suspension Case Study
In this section we introduce a new model for an active

suspension system, in fully reproducible detail, that includes a
model of important physical system design considerations in ad-
dition to a dynamic model of the suspension. Effort was made
to maintain linearity of system dynamics to preserve the use-
fulness of this model in other studies that are limited to linear
time-invariant systems.

Consider the quarter-car model of a vehicle suspension il-
lustrated in Fig. 4. The the sprung mass ms (325 kg) and the
unsprung mass mus (65 kg) vertical positions are given by zs and
zus, respectively. The system is excited by variations in road ele-
vation z0 as the vehicle travels at speed v.

v

ks cs

kt
ct

z0

zus

zs

ms/4

mus/4

Figure 4: Quarter-car vehicle suspension model.

The passive dynamic response of this system can be charac-
terized by the following system of linear differential equations:

ξ̇ξξ = Aξξξ+


−1
4ct
mus
0
0

 ż0, (11)

where ξξξ =


zus− z0

żus
zs− zus

żs

 and A =


0 1 0 0
− 4kt

mus
− 4(cs+ct )

mus
4ks
mus

4cs
mus

0 −1 0 1
0 4cs

ms
− 4ks

ms
− 4cs

ms


The tire and sprung mass spring stiffnesses are kt (232.5 ·103

N/m) and ks, respectively, and the tire and spring mass damp-
ing rates are ct and cs, respectively. Here we assume ct = 0.
This canonical model has been used as an example in numer-
ous design studies [34–36], including the design of active con-

trol systems [37–39], where an additional control input term Bu
is appended to Eqn. (11). Often ks and cs are treated as inde-
pendent design variables [36, 37, 40], but are in fact dependent
on geometric design and are subject to stress, fatigue, packaging,
thermal, and other constraints. Here we introduce an extension
to the basic quarter-car model that treats ks and cs as dependent
variables, and incorporates a plant model that computes stiffness
and damping coefficients as a function of independent geomet-
ric spring and damper design variables. The detailed spring and
damper models are presented, followed by a demonstration of
active suspension co-design using DT.

3.1 Spring Design
The vehicle suspension in this model utilizes a helical com-

pression spring with squared and ground ends (Fig. 5). The sus-
pension has a coil-over configuration; the coil spring surrounds
the damper and they share the same axis. The model presented
here is derived from [41]. See also [42] and [43] for alterna-
tive spring design optimization formulations. The independent
spring design variables here are the helix diameter D, wire diam-
eter d, spring pitch p, and the number of active coils Na, which
is relaxed to a continuous variable. These are components of the
complete vector of plant design variables xp, along with other
variables yet to be discussed. The formula for stiffness and a
collection of spring design constraints are presented below.

L0

p

D

d

Ls

Fs

Figure 5: Helical compression spring with squared ground ends.

The free length of the spring is L0 = pNa +2d, and the solid
height is Ls = d(Na + Q− 1), where Q = 1.75 for squared and
ground ends. Fs is the axial force at the solid height, and the
spring constant is:

ks =
d4G

8D3Na

(
1+ 1

2C2

) (12)

where G is the shear modulus (ASTM A401, G = 77.2 MPa),
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and C = D/d is the spring index. Springs with C < 4 are difficult
to form, and springs with C > 12 can tangle. These requirements
provide our first two plant design constraints:

g1(xp) = 4−C ≤ 0 (13)
g2(xp) = C−12≤ 0 (14)

The following constraint prevents buckling:

g3(xp) = L0−5.26D≤ 0 (15)

The uncompressed spring must fit within the specified pocket
length (L0max = 0.40 m) for the vehicle:

g4(xp) = L0−L0max ≤ 0 (16)

The outer spring diameter must not exceed Domax = 0.25 m to
prevent interference with vehicle components:

g5(xp) = d +D−Domax ≤ 0 (17)

The spring inner diameter must be large enough to fit around the
damper with at least δdc = 9.0 mm clearance:

g6(xp) = d−D+Dp +2(δdc + td)≤ 0 (18)

where Dp is the damper piston diameter and td = 2.0 mm is the
damper wall thickness.

While suspension rattlespace (permissible peak-to-peak dis-
placement [34]) is often treated as an objective function [35,37],
it is natural to formulate it as a constraint. Here peak displace-
ment δmax is calculated using a ramp input (road grade of 25% at
a speed of 10 m/s) to check for maximum rattlespace violation:

g7(xp) = δmax−L0 +Ls +LB +δg ≤ 0 (19)

This test requires specification of damper design, discussed in the
next section. LB is bumpstop thickness (0.02 m), and δg = ms/4ks
is static suspension deflection.

Spring shear stress τ at maximum deflection must not ex-
ceed shear yield stress Ssy. The following model of shear stress
incorporates the Bergsträsser augmentation factor:

τ =
(

4C +2
4C−2

)
8FsD
πd3

where the axial force at the spring solid height is calculated using
Fs = ks(L0−Ls). The scaled constraint is:

g8(xp) = (τnd−Ssy)/Ssy ≤ 0 (20)

with a design factor of nd = 1.2. The shear yield strength is as-
sumed proportional to the ultimate tensile strength for the spring
material: Ssy = 0.65Sut , where Sut = A · 106/(dm), A = 1974
MPa·mmm, and m = 0.108. To ensure spring linearity and va-
lidity of Eqn. (11), the following constraint must be satisfied:

g9(xp) = 0.15+1− L0−Ls

δg +1.1δmax f
(21)

where δmax f is the maximum deflection during a simulation of
the quarter-car over a rough road (IRI = 7.37) [36, 44] at v =
20 m/s. Under these rough road conditions the maximum axial

spring force is Fmax = ks(δmax f +δg), and the minimum force is
Fmin = ks(δg−δmax f ). The mean axial force and force amplitude
are Fm = (Fmax +Fmin)/2 and Fa = (Fmax−Fmin)/2, respectively.
The shear stress mean and amplitude are:

τm =
(

4C +2
4C−2

)
8FmD
πd3 ,τa =

(
4C +2
4C−2

)
8FaD
πd3

Soderberg and Zimmerli fatigue criterion are applied here:

g10(xp) =
τa

Se2
+

τm

Ssy
−1≤ 0, where Se2 = 0.24Sut/nd (22)

g11(xp) =
τand−241 ·106

241 ·106 ≤ 0 (23)

3.2 Damper Design
Equation (11) assumes linear damping, i.e., the damping

force FD is proportional to damper piston velocity ξ̇3. Real sus-
pension dampers are highly nonlinear due to both design intent
and limitations of practical physical implementations (Fig. 6).
Here we explore an approach to constructing a linear damper.

FD

vD

Extension VelocityCompression Velocity

Damping Force

Figure 6: Typical nonlinear damping curve.

Figure 7 illustrates a single tube telescopic damper. On
jounce (compression) hydraulic fluid flows from the compres-
sion chamber to the extension chamber through the compression
valve, and on rebound (extension) fluid flows through the exten-
sion valve in the reverse direction. The pressurized gas cham-
ber, separated from the hydraulic fluid by a floating piston, com-
pensates for volume change from rod movement. Here we ne-
glect the effect of the foot valve, and assume the piston valves
are spring-biased spool valves, as shown in Fig. 8. Other valve
types exist and are in common use, including disc, rod, and shim
valves [45]. As the damper is compressed, the compression valve
opens and fluid flows through ports in the side of the spool valve.

3.2.1 Damping Properties Exposed port area (Av)
variation with valve lift (xv) is a key design element that controls
damping curve shape. Under standard assumptions, the damper
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Floating Piston
Gas Chamber

Working Piston

Piston Compression Valve Piston Extension Valve

Foot Chamber

Foot Valve

Compression Chamber

Extension Chamber

Rod

Pressure tube

Figure 7: Sectional view of a single-tube telescopic damper.

Fluid Flow

Working Piston

Return Spring

Valve Ports

xv

D0

Figure 8: Sectional view of the piston compression valve.

will be linear if either Av ∝
√

xv or xv ∝
√

Fv, where Fv is the
valve spring axial force. The latter relationship requires a non-
linear valve spring. The former relationship (used here) requires
that the valve port shape is designed such that Av increases pro-
portionately with

√
xv. More precisely, the ideal valve port area

function is:

Ãv(xv) = C2C0
√

xv (24)

where C2 is the damper valve coefficient, and C0 = πD0 is the
outer circumference of the spool valve. Port shape can be char-
acterized by the arc length exposed by the ports at the top of the
working piston as a function of valve lift: Ce(xv). The ideal valve

port area function can be re-written as:

Ãv(xv) =
Z xv

0
Ce(τ)dτ (25)

Solving Eqns. (24) and (25) for Ce(xv) reveals that linear damp-
ing requires the following exposed arc function:

C̃e(xv) =
d

dxv
Ãv(xv) =

1
2

C2C0x−
1/2

v (26)

Unfortunately as xv→ 0, C̃e(xv)→ ∞, which is physically unre-
alizable; Ce(xv) must remain less than the spool valve outer cir-
cumference C0. Several candidate functions for approximating
C̃e(xv) were evaluated using a least squares approach with the re-
quirement Ce(xv)≤ ηC0 for all xv ≥ 0. The coefficient 0 < η < 1
defines the upper limit of the proportion of C0 that may be ex-
posed (η = 0.9 here). The following exposed arc function was
selected:

Ce(xv) = a1
(
xv +a2

1
)−1/2

(27)

where a1 = C3(xm −C3)−1/2, xm = A0Pm/kv is the maximum
valve lift at the maximum allowed damper pressure Pm, kv is
the spool valve spring constant, A0 = πD2

0/4 is the spool valve
frontal area, and

C3 =
C2D0

2η

√
πPm

kv

The damper valve coefficient is defined here as C2 = ηA f
√

xm,
where A f is an area factor that can be used to tune port shape.
Here A f = 0.1. Decreasing A f brings Ce(xv) closer to ideal for
linear damping, but increases the valve diameter required to de-
liver a particular suspension damping coefficient cs, which is cal-
culated using:

cs =
D4

p

8CdC2D2
0

√
πkvρ1

2
(28)

where Dp is the working piston diameter, ρ1 is the damper fluid
density (850 kg/m3), and Cd is the discharge coefficient (≈ 0.7
for spool valves). Damper stroke (total axial displacement) Ds
is chosen here as an independent design variable. The complete
plant design vector can now be defined:

xp = [d,D, p,Na,Do,Dp,Ds]

3.2.2 Thermal Properties Fluid temperature increase
due to energy dissipation is an important consideration in damper
design as it can induce damper fade. Heat generation in the
damper is calculated based on the damper coefficient and sus-
pension stroke velocity, i.e., qgen = csξ

2
2. The same rough road

profile is used that was specified for the spring fatigue calcula-
tions.

Figure 9 illustrates the thermal model for the damper, simi-
lar to the model found in [46], except here constant viscosity is
assumed. Heat is generated in the damper fluid, which has heat
capacity cp1 (2500 J/kgK), density ρ1, and volume v1. Heat is
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conducted through the steel damper tube (with conduction coef-
ficient k2 = 60.5 W/mK) to the atmosphere at a constant temper-
ature T4 = 300 K. The convection coefficient between the damper
and the atmosphere is h. Heat capacity in the steel shell is small
compared to that of the damper fluid (cp1), and is assumed to be
zero here, so T2 = T3.

Damper Fluid Steel Ambient Air

qo

qgen

cp1, ρ1, v1

r1

r2

T1 T2 T3 T4

qc

hk2

Figure 9: Damper heat transfer model.

Heat flow from the damper fluid through the shell is:

q0 = qgen−ρ1v1cp1
∂T1

∂t
=

2πL2k2

ln r2/r1
(T1−T3) = hA4(T3−T4)

where v1 is the fluid volume, r1 and r2 are the inner and outer
shell radii, L2 is the shell height, and A4 = 2πr2L2 is the external
surface area of the shell. This DAE can be converted to a single
ordinary differential equation via substitution. For convenience
we can rewrite this system as:

qgen−b1Ṫ1 = b2(T1−T3) = b3(T3−T4)

where the appropriate constants are replaced with b1, b2, and b3.
Choosing T1 as the state variable, the resulting ODE is:

Ṫ1 =− b2b3

b1b2 +b1b3
T1 +

b2b3

b1b2 +b1b3
T4 +

qgen

b1
(29)

which can be simulated using the time history of ξ2 as input to
predict the resulting damper fluid temperature T1(t).

3.2.3 Damper Constraints

g12(xp) = L0−Ls−Ds ≤ 0 (30)

ensures adequate damper range of motion.

g13(xp) = 2Ds + `d1 + `d2−L0max ≤ 0 (31)

requires the damper to fit within the pocket length L0max = 0.4
m; `d1 = 0.02 m and `d2 = 0.04 m quantify the space required for
damper components above and below the working piston range,
respectively. The damper fluid temperature constraint prevents
fade and seal damage:

g14(xp) = T1max−T1allow ≤ 0 (32)

where T1max is the maximum damper temperature achieved

across all vehicle simulations and T1allow = 390 K.

g15(xp) = Pmax−Pallow ≤ 0 (33)

ensures the maximum damper pressure achieved during simula-
tion (Pmax) does not exceed the seal maximum pressure (Pallow =
4.75 ·106 Pa).

g16(xp) = ξ̇3max− ξ̇3allow ≤ 0 (34)

protects damper components from excessive velocity (ξ̇3allow =
5.0 m/s). The following is a clearance requirement for the maxi-
mum amount of spool valve lift, where xvallow = 0.01 m:

g17(xp) = xvmax− xvallow ≤ 0 (35)

3.3 Active Suspension Co-Design

The control input to the quarter-car active suspension system
is an active force added between the sprung mass and unsprung
masses. Refer to [30] for a detailed model of the control system.
The active suspension model with the control input is described
as:

ξ̇ξξ = Aξξξ+


−1
4ct
mus
0
0

 ż0 +


0
− 1

mus
0
1

ms

u (36)

where u is the control input.

The objective function incorporates handling, comfort, and con-
trol cost:

J =
Z t f

0
(r1(zus− z0)2 + r2z̈2

s + r3u2)dt

where the weights are r1 = 3×104, r2 = 3×104 and r3 = 10−6.
The plant design variable bounds xp ≤ xp ≤ xp used here are:

xp = [0.005,0.05,0.05,3,0.005,0.03,0.1]

xp = [0.02,0.4,0.5,12,0.008,0.06,0.3]

An initial simulation of the open-loop system is performed
to determine the time steps hi used in solving Eqn. (10) using DT.
A large-scale interior-point algorithm from the MATLAB R© opti-
mization toolbox was used, taking advantage of problem struc-
ture by using sparse Hessian and Jacobian matrices and analyti-
cal derivatives. The trapezoidal ODE solver is used here to form
defect constraints. As a comparison Fathy’s nested co-design ap-
proach was used as well, where xp was managed in the outer
loop, and the inner loop solved the control design problem (with
fixed xp) using algebraic Ricatti equations [12] with the infinite-
horizon linear quadratic regulator as the control law. Because
LQR in the MATLAB control system toolbox solves algebraic
Ricattis equation, which is much simpler than the finite horizon
Ricatti equations, comparison of computational expense between
these two methods cannot be made directly.
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3.3.1 Active Suspension Co-Design: Ramp Input
For illustration the co-design problem is solved first with ramp
road input only using DT (no thermal or fatigue constraints) to
validate DT as a solution approach against LQR. The optimal
plant design is:

xp∗ = [0.0184,0.1432,0.0537,3.2979,0.0057,0.0538,0.1560]

When using the nested method, the outer optimization loop
often terminates at an inferior local optimum with respect to xp
compared to the DT solution. Figure 10 compares system re-
sponse of the DT and LQR control designs, using the DT result
for plant design. For ramp input, LQR is the optimal solution to
the infinite horizon control problem, which is usually very close
to the finite horizon optimum. The DT response is nearly identi-
cal to LQR, indicating it is an accurate solution approach.
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(a) Total distance of the sprung mass
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(b) Control input

Figure 10: Comparison of open-loop and closed-loop system responses
for the ramp road input

The objective function value for DT and LQR con-
trol solutions (with the same plant design) are compared
against the objective for the optimal passive suspension
below. Both techniques improve the objective signifi-
cantly, and arrive at similar cost values. DT solution
requires 733 SQP iterations and 738 function evaluations.

No active control DT LQR
442.4556 25.9698 26.3486

3.3.2 Combined Active Suspension Co-Design
The active suspension problem was also solved using the com-
plete road input (both ramp and rough road). The objective func-
tion is scaled differently for these two inputs: J = 1× 10−2 ·
Jramp + Jrough. The DT plant design results are:

xp∗ = [0.0168,0.168,0.0536,3.3317,0.0066,0.0415,0.1577]

Figure 11 compares system response for DT and LQR con-
trol solutions, again using the plant design produced by DT in
both cases. The objective function values are:

No active control DT LQR
Jramp 460.1687 34.6450 34.0477
Jrough 2.4673 0.9399 1.6023

DT produces an accurate result over the ramp input portion us-
ing the LQR solution as a benchmark. For the rough road input,
LQR gives a reasonable performance improvement compared to
the passive case, while DT produces the best design. This is as
expected as DT implements an open-loop controller that incor-
porates more system input detail. The DT solution requires 1180
SQP iterations and 1218 function evaluations.

0 0.5 1 1.5 2 2.5 3
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

z s −
 z

0

t

 

 

Open−loop (no control)
DT
LQR

(a) Sprung mass response to ramp
road input
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Figure 11: Comparison of open-loop and closed-loop system responses

4 Conclusion
Direct transcription was reviewed, and an extension of DT

to co-design problems was introduced and demonstrated using
an active suspension design problem. The case study built upon
existing active suspension design problems by incorporating de-
tailed physical system design considerations and physically in-
dependent design variables. The system model maintains linear-
ity of the differential equations, making it suitable for a range
of other co-design studies. While DT results in large problem
dimension, it is arithmetically consistent, enables fine-grained
parallelism and the use of higher-order implicit methods, and
can be applied to challenging design problems that are otherwise
unsolvable (e.g., inequality path constraints, open-loop instabil-
ities). The case study illustrates that DT can be advantageous
compared to the nested co-design approach. DT offers a path
forward for solving especially difficult co-design problems. The
large size and density of the DT optimization problem remains
a challenge for its applicability in co-design. The new problem
structure in some cases makes efficient DT implementation dif-
ficult, at least with currently known techniques. Solution can
also be complicated when the range of plant design variables
can cause both stiff and non-stiff dynamics. Exploration of this
new problem structure and development of more efficient DT
co-design solution implementations are opportunities for further
contribution to the design of modern engineering systems.
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