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Abstract

Multi-view algorithms, such as co-training
and co-EM, utilize unlabeled data when the
available attributes can be split into inde-
pendent and compatible subsets. Co-EM
outperforms co-training for many problems,
but it requires the underlying learner to es-
timate class probabilities, and to learn from
probabilistically labeled data. Therefore, co-
EM has so far only been studied with naive
Bayesian learners. We cast linear classifiers
into a probabilistic framework and develop
a co-EM version of the Support Vector Ma-
chine. We conduct experiments on text clas-
sification problems and compare the family
of semi-supervised support vector algorithms
under different conditions, including viola-
tions of the assumptions underlying multi-
view learning. For some problems, such as
course web page classification, we observe the
most accurate results reported so far.

1. Introduction

Semi-supervised learning algorithms utilize unlabeled
data to improve classification performance. The EM
approach in which a classifier labels unlabeled data,
and then learns from that data, is complemented by
the multi-view framework. Multi-view algorithms –
such as co-training (Blum & Mitchell, 1998) – split
the attributes into two independent subsets, each of
which has to be sufficient for learning. An example
of a domain that is suitable for multi-view learning is
web page classification: a page can be classified based
on its content as well as based on the anchor texts of
its inbound hyperlinks.

Multi-view algorithms learn two independent classi-
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fiers based on independent attribute subsets. These
classifiers then provide each other with labels for the
unlabeled data. The co-EM algorithm (Nigam &
Ghani, 2000) combines multi-view learning with the
probabilistic EM approach. This, however, requires
the learning algorithm to process probabilistically la-
beled training data and the classifier to output class
probabilities. Hence, the co-EM algorithm has so
far only been studied with naive Bayes as underlying
learner – even though the Support Vector Machine is
known to better fit the characteristics of many inter-
esting problems, such as text classification. We close
this gap by developing and studying a co-EM version
of the Support Vector Machine.

The rest of our paper is organized as follows. We dis-
cuss related work in Section 2. We formulate the prob-
lem setting and review known multi-view and semi-
supervised learning algorithms which are relevant for
our empirical studies in Section 3. In Section 4, we
develop the co-EM Support Vector algorithm and re-
port on our experimental results in Section 5. Section
6 concludes.

2. Related Work

Semi-supervised learning (Cooper & Freeman, 1970;
for an overview, see Seeger, 2001) has a long tradition
in statistics and machine learning; the Expectation
Maximization (EM) algorithm (Dempster et al., 1977)
is probably the most prominent approach to learning
from labeled and unlabeled data (McCallum & Nigam,
1998; Nigam & Ghani, 2000). The EM algorithm is
wrapped around learning algorithms that fit model pa-
rameters to probabilistically labeled data.

Linear separators, such as Support Vector Machines
(SVMs), cannot immediately be trained from proba-
bilistically labeled examples. The transductive SVM
– TSVM – (Vapnik, 1998; Bennett, 1999; Joachims,
1999b) still utilizes unlabeled data by EM-like self-
labeling and a modification of the optimization cri-
terion (see Section 3). The TSVM is motivated by



the idea that the test instances which are to be clas-
sified are often available (without class labels) during
training. Besides the transductive SVM, a transduc-
tive version of the k-NN algorithm (the spectral graph
partitioning algorithm; Joachims, 2003) has been stud-
ied.

The co-training algorithm (Blum & Mitchell, 1998)
learns two decision functions on independent attribute
subsets but does not operate with class probabilities
– which makes it easily applicable for support vec-
tor learning. The co-EM algorithm (Nigam & Ghani,
2000; Ghani, 2002) combines multi-view learning with
EM. Co-EM (with naive Bayes as underlying classi-
fier) has been found to outperform co-training in some
cases (Nigam & Ghani, 2000); in particular, when the
compatibility and independence assumptions (see Sec-
tion 3) are not violated (Muslea et al., 2002a).

Applications of co-training that have been studied in-
clude classification of web pages (Blum & Mitchell,
1998), named entity recognition (Collins & Singer,
1999), text classification (e.g., Denis et al., 2003),
wrapper induction (Muslea et al., 2002b), classification
of emails (Kiritchenko & Matwin, 2002; Kockelkorn
et al., 2003), and word form normalization (Mladenic,
2002). For text classification, experiments have clearly
shown that the co-trained Support Vector Machine
(in fact, even the “vanilla” Support Vector Machine)
substantially outperforms co-trained naive Bayes (Kir-
itchenko & Matwin, 2002; Kockelkorn et al., 2003).
Together with the observation that co-EM outper-
forms co-training for problems with compatible and
independent views, this raises the question whether
there is a co-EM version of the Support Vector Ma-
chine, and whether this is possibly the most effective
classifier for text classification problems with compat-
ible views.

However, it should be noted that semi-supervised
learning does not necessarily lead to better results
than supervised learning. When the target distribu-
tion is not in the assumed model class, then the best
approximation of the unlabeled data can sometimes
lie further away from the optimal classifier than the
best approximation of (even few) labeled data (Coz-
man et al., 2003). While additional unlabeled data
have often been observed to improve classifier perfor-
mance (Baluja, 1998; Collins & Singer, 1999; Nigam
et al., 2000; Mladenic, 2002), there are some cases in
which they have been found to deteriorate performance
– often, but not always, when the labeled sample is
large (Shahshahani & Landgrebe, 1994; Baluja, 1998;
Nigam et al., 2000; Kockelkorn et al., 2003).

3. Semi-Supervised and Multi-View
Learning

We focus on the semi-supervised learning setting in
which labeled data Dl = 〈(x1, y1), . . . , (xml

, yml
)〉, yi ∈

{+1,−1} and unlabeled data Du = 〈x∗
1, . . . , x

∗
mu

〉 are
available. Our goal is to learn a decision function f(x)
which assigns high values to positive and low values
to negative examples. The ability of a decision func-
tion to discriminate positives against negatives is nat-
urally characterized by the receiver operating charac-
teristic (ROC) analysis (Bradley, 1997; Provost et al.,
1998). The ROC curve displays the number of true
positives against the number of false positives for the
range of decision function values. The area under the
ROC curve, called the AUC performance, is equal to
the probability that, when we draw one positive and
one negative example at random, the decision func-
tion assigns a higher value to the positive than to the
negative example. Depending on the application at
hand, the decision function may itself be the learning
result, or it may be thresholded to yield a classifier
h(x) = sign(f(x) − θ), where θ is adjusted to mini-
mize the application-specific cost function.

In the multi-view setting that we discuss, the avail-
able attributes V are split into disjoint sets V1 and V2.
A labeled instance (x, y) is decomposed and viewed
as (x1, x2, y), where x1 and x2 are vectors over the
attributes V1 and V2, respectively. These views have
to satisfy the independence and compatibility assump-
tions.

Definition 1 Views V1 and V2 are independent when
∀x1 ∈ V1, x2 ∈ V2 : p(x1, x2|y) = p(x1|y)p(x2|y).

Definition 2 Views V1 and V2 are compatible with
target concept t : x �→ y when there are hypotheses
h1 : V1 → {−1, +1} and h2 : V2 → {−1, +1} such
that, for all x = (x1, x2), f1(x1) = f2(x2) = t(x).

Table 1 shows the semi-supervised learning algorithms
in our discourse area, EM, TSVM, co-training, and co-
EM. Let us briefly review these methods. In the EM
algorithm, one single hypothesis iteratively labels the
unlabeled data probabilistically, and then adapts its
parameters to the data.

The TSVM algorithm has a similar structure but does
not operate with class probabilities. Instead, the la-
beling of the unlabeled data is changed when, by
switching a pair of labels, the optimization function
of the current separator fi is improved. The TSVM
optimization problem is defined as follows (Joachims,
1999b).



Table 1. Semi-supervised learning algorithms.

Input: Labeled data Dl, unlabeled data Du, parameters.

Semi-supervised learning with EM.

1. Train f0 on labeled data Dl.

2. For i = 1 . . . T :

(a) Estimate class probabilities p̂(y|x∗
j ) for x∗

j ∈
Du, based on hypothesis fi−1.

(b) Train fi using Dl, Du, and the p̂(y|x∗
j ).

Transductive Support Vector Learning.

1. Train f0 on labeled data Dl.

2. Let CS be some small number.

3. Use f0 to label unlabeled data Du, restore fixed ratio
of positives to negatives.

4. For i = 1 . . . T

(a) Find fi by minimizing Equation 5 subject to
constraints 2, 3, and 4. +-

(b) While the margin can be improved by switch-
ing labels of a pair of examples in Du, switch
labels, retrain fi.

(c) Let CS = min{2 × CS, C∗}.

Co-training.

1. Train f1
0 and f2

0 on Dl using attribute sets V1 and
V2, respectively.

2. For i = 1 . . . T until Du = ∅:
(a) For v=1 . . . 2: Remove np elements with great-

est fv
i−1(x

∗
j ), from Du and add (x∗

j , +1) to Dl.

(b) For v = 1 . . . 2: Remove nn elements with
smallest fv

i−1(x
∗
j ), from Du, add (x∗

j ,−1) to Dl.

(c) Train f1
i and f2

i on Dl using attribute sets V1

and V2, respectively.

Co-EM.

1. Train f2
0 on labeled data Dl with attributes V2.

2. For i = 1 . . . T ; For v = 1 . . . 2:

(a) Estimate class probabilities p̂(y|x∗
j ) based on

peer hypothesis f v̄
i−1 with complementary view

Vv̄.

(b) Train fv
i using attribute set Vv, labeled data

Dl and probabilistically labeled data Du with
label probabilities p̂(y|x∗

j ).

Return: single-view: fT ; multi-view: 1
2
(f1

T + f2
T ).

Definition 3 Given labeled data Dl, unlabeled data
Du, and parameters C and C∗, the TSVM optimiza-
tion problem is to minimize Equation 1 over all pos-
sible values of w, b, y∗

1 , . . . , y∗
mu

, ξ1, . . . , ξml
, and

ξ∗1 , . . . , ξ∗mu
subject to the constraints 2, 3, and 4.

minw,b,ξ,ξ∗,y∗
1
2
|w|2 + C

ml∑
j=1

ξj + C∗
mu∑
j=1

ξ∗j (1)

∀ml

j=1yj(wxj + b) ≥ 1 − ξj (2)
∀mu

j=1y
∗
j (wxj + b) ≥ 1 − ξ∗j (3)

∀ml

j=1ξj > 0, ∀mu

j=1ξ
∗
j > 0, (4)

In order to avoid local optima, the TSVM algorithm
minimizes a smooth approximation of Equation 1; the
contribution of the unlabeled data is weighted with a
smoothing factor CS that is doubled in each iteration
until it reaches one. In order to obtain a desired ratio
p̂(y) of positive and negative labels for the unlabeled
data, the contributions of positive and negative slack
values are weighted accordingly (Equation 5).

minw,b,ξ,ξ∗,y∗
1
2
|w|2 + C

ml∑
j=1

ξj + CS p̂(y=−1)
∑

j:y∗
j =+1

ξ∗j

+CS p̂(y=1)
∑

j:y∗
j =−1

ξ∗j (5)

In each iteration of the co-training algorithm (Table 1,
top right), each of the two decision functions commits
to class labels for (at least) one positive and one nega-
tive example – the ones that are most confidently rated
positive and negative. In contrast to EM and TSVM,
co-training never revises conjectured labels for unla-
beled data. The co-training algorithm has a favorable
theoretical property: because of their independence,
the two decision functions can provide each other with
labels for the unlabeled data in a way that is essentially
equivalent to drawing (slightly noisy) labeled examples
at random (Blum & Mitchell, 1998). A co-training
step improves the classifier performance when one clas-
sifier errs for an unlabeled instance, whereas the peer
classifier is very confident and adds the correct class
label to the labeled data. The independence of the
views reduces the chance of both hypotheses agreeing
on an erroneous label of an unlabeled instance.



The co-EM algorithm (Table 1, bottom right) com-
bines the two paradigms. Unlike co-training, the co-
EM algorithm does not commit to the generated class
labels but rather re-estimates class probabilities after
each iteration. The key difference to the self-training
strategy of EM is that each decision function produces
labels that are used to train the independent peer hy-
pothesis.

4. Co-EM Support Vector Learning

In this section, we present the co-EM Support Vector
Machine. We have to address two principal difficulties:
The co-EM algorithm requires each classifier to yield
class probability estimates for the unlabeled data. Ad-
ditionally, we have to construct a learning algorithm
that utilizes data which have been labeled with class
probabilities for training.

Let us first address the problem of estimating class
probabilities. A linear classifier f gives us an uncal-
ibrated decision function f(x) = wx, but we need to
have an estimate of the class posterior p(y|x). We as-
sume a parametric model: the decision function values
for a class, p(f(x)|y), are assumed to be governed by
a normal distribution N [µ, σ2]. We estimate the pa-
rameters µ and σ2 during training; given labeled and
unlabeled training data and a decision function f , we
proceed as follows.

Firstly, we estimate the prior probabilities p̂(y) from
the labeled data. We split the unlabeled data into pos-
itives D+

u and negatives D−
u according to the fixed ra-

tio p̂(y); the unlabeled instances x∗
j with highest f(x∗

j )
are selected into D+

u . Secondly, we estimate the mean
decision function values µ+ and µ− (Equation 6) and
corresponding variances σ2

+ and σ2− (Equation 7).

µy =
1

|Dy
l | + |Dy

u|

⎛
⎝ ∑

(x,y)∈Dl

f(x) +
∑

x∈Dy
u

f(x)

⎞
⎠ (6)

σ2
y =

1
|Dy

l | + |Dy
u|

⎛
⎝ ∑

(x,y)∈Dl;x∈Dy
u

(f(x) − µy)2

⎞
⎠ (7)

From the priors p̂(y) and Gaussian likelihoods with
parameters µ+, µ−, σ2

+, and σ2
−, we can now infer the

desired class probabilities p̂(y|x∗
j ) (Equation 8).

p̂(y|x∗
j )=

N [µy , σ2
y](f(x∗

j ))p̂(y)

N [µy , σ2
y](f(x∗

j ))p̂(y)+N [µȳ , σ2
ȳ2 ](f(x∗

j ))p̂(ȳ)
(8)

Now we address the second problem: Given labeled
data Dl, and unlabeled data Du with class probability
estimates p̂(y|x∗

j ), how can we train a support vector
classifier? Intuitively, if p̂(y|x∗

j ) = 1 for some instance

x, then that instance is essentially a labeled example
and should contribute to the optimization criterion ac-
cordingly. On the other hand, p̂(y|x∗

j ) = 1/2 indicates
a lack of information about the class label of x∗

j ; the
optimization criterion should not be influenced by the
class label it assigns to such an x∗

j .

We introduce an individual weight for each example
into the optimization criterion analogously to Brefeld
et al. (2003); we define the weight such that we
achieve a smooth transition from full contribution
for p̂(y|x∗

j ) = 1 to no contribution for p̂(y|x∗
j ) =

1/2. We label an unlabeled instance x∗
j with y =

argmaxy p̂(y|x∗
j ) and define its weight to be cx∗

j
=

maxy′ p̂(y′|x∗
j ) − miny′ p̂(y′|x∗

j ).

Table 2. The co-EM SVM algorithm.

Co-EM SVM. Input: Labeled data Dl, unlabeled
data Du, slack parameter C, number of iterations T .

1. Initialize smoothing factor CS = 1
2T

2. Train initial support vector machine f2
0 on labeled

data Dl using the attributes in V2.

3. Estimate p̂(y) using the labeled data Dl.

4. For i = 1 . . . T : For v = 1 . . . 2:

(a) Let D+
u be the p̂(y=1)|Du| many unlabeled

examples with highest decision function val-
ues f v̄

i−1(x
∗
j ) (use decision function with com-

plementary view v̄); Let D−
u = Du \ D+

u .
(b) Estimate µ+, µ−, σ2

+, and σ2
− from Dl and

Du according to Equations 6 and 7.
(c) For all unlabeled data x∗

j , estimate p̂(y|x∗
j )

according to Equation 8, based on f v̄
i−1.

(d) Train Support Vector Machine fv
i by solving

the optimization problem of Definition 4 with
smoothing factor CS ; that is, minimize Equa-
tion 13 subject to the constraints 10, 11, and
12, using the attributes in Vv.

(e) End For v; Let CS = 2CS ; End For i.

5. Return the combined function 1
2 (f1

T + f2
T ).

Definition 4 Given labeled data Dl and unlabeled
data Du = 〈x∗

1, . . . , x
∗
m〉 with label probabilities p̂(y|x∗

j ),
the probabilistic SVM optimization problem is to
minimize Equation 9 over all possible values of w,
b, ξ1, . . . , ξml

, and ξ∗1 , . . . , ξ∗mu
, subject to the con-

straints 10, 11, and 12, where cxj∗ = (maxy p̂(y|x∗
j ) −

miny p̂(y|x∗
j )).



minw,b,ξ,ξ∗
1
2
|w|2 + C

⎛
⎝

ml∑
j=1

ξj +
mu∑
j=1

cx∗
j
ξ∗j

⎞
⎠ (9)

∀ml

j=1yj(wxj + b) ≥ 1 − ξj (10)
∀mu

j=1(argmaxyp̂(y|x∗
j ))(wx∗

j + b) ≥ 1 − ξ∗j (11)
∀ml

j=1ξj > 0, ∀mu

j=1ξ
∗
j > 0 (12)

In order to reduce the risk of finding local minima, we
copy the smoothing strategy of the TSVM and multi-
ply the contributions of the unlabeled data to Equa-
tion 9 by an initially small number CS which is dou-
bled in each iteration until it reaches one (Equation
13). The resulting algorithm is shown in Table 2.

minw,b,ξ,ξ∗
1
2
|w|2 + C

⎛
⎝

ml∑
j=1

ξj + CS

mu∑
j=1

cx∗
j
ξ∗j

⎞
⎠ (13)

We can trivially extend the co-EM SVM to non-linear
functions by moving from the primal to the dual rep-
resentation of the optimization criterion and replac-
ing the inner products by kernel functions. As a
by-product, we obtain another semi-supervised single-
view algorithm: the EM SVM algorithm is a self-
training strategy that is just the co-EM SVM algo-
rithm with V1 = V2.

How does co-EM improve the performance of a Sup-
port Vector Machine? Intuitively, when x is a large
margin example for f1, then f1 has a small error prob-
ability for x. When V1 and V2 are truly independent,
then the projection of x into V2 is a randomly drawn
instance in V2; x may be a support vector in V2 even
though it is a large-margin example in V1. The co-EM
SVM labels each unlabeled example in V2 with the
class label assigned by f1. Co-EM assigns a weight
to the example that is derived from the probability
that this class label is in fact correct. This only holds
for independent views; in the other extreme of equal
views, co-EM training becomes EM self-training.

5. Empirical Studies

Our experiments are based on the course data set
(Blum & Mitchell, 1998; Nigam & Ghani, 2000), and
the well-known Reuters-21578 and 20-newsgroups data
sets. In the course data set, the task is to decide
whether a web page is a course home page, based on
its content (V1) as well as on the anchor texts of in-
bound links (V2); the split of attributes into V1 and V2

is explicit for the data set.

All curves that we present in this section are aver-
ages of 20 runs of the focused algorithm, with distinct,

randomly drawn samples. Our implementation of the
co-EM algorithm is built into SV M light (Joachims,
1999a). We use the default parameters of SV M light

and linear kernels for all experiments. We want to
shed light on the following list of questions.

How fast does co-EM SVM converge? The
curves for the co-EM SVM in Figure 1 (for the course
data set), third column, show a sharp increase in the
second iteration, and another increase (in few cases,
a decrease) towards the end of the training process.
The increase after the first iteration is caused by the
unlabeled data which are first perceived in the second
round. The change towards the end of the training
process is caused by the smoothing factor which expo-
nentially approaches one in the last round. The flat
region in between indicates that the chosen 30 iter-
ations are more than sufficient. In many cases, the
maximal AUC value is reached for a smoothing weight
CS of less than one. This implies that we could im-
prove the performance of the co-EM SVM by adjusting
the maximal CS as a learning parameter. However, we
refrain from adjusting any parameters and report on
results for a maximal smoothing parameter of 1.

How does the relative benefit of semi-
supervised support vector algorithms depend
on the number of available labeled data? We
vary the number of labeled examples and observe ROC
curves over the co-training and EM iterations. Figure
1, top row, compares the curves for co-training, co-EM
SVM, and EM SVM. The right-most curve in the top
row summarizes these results and compares them to
the performance of the “vanilla” SVM and the TSVM.
For all labeled sample sizes, the co-EM SVM outper-
forms all other variants.

How does the relative benefit of semi-
supervised support vector algorithms depend
on the number of available unlabeled data? The
second row of Figure 1 shows the results for 2 positive
and 8 negative and various unlabeled sample sizes, the
third row for 4 positive and 16 negative labeled ex-
amples and various unlabeled sample sizes. The right-
most diagrams summarize the results and present the
baselines SVM and TSVM.

The performance of all variants scales down linearly as
we reduce the amount of unlabeled data. Except for
2 positive and 8 negative examples using 12.5% of the
unlabeled data, co-EM SVM is most effective. The
former case is dominated by EM SVM that is least
affected by the amount of unlabeled data. Here, co-
training behaves brittly and the performance decreases
over the iterations. This decrease becomes stronger as
we reduce the amount of unlabeled data.
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Figure 1. Semi-supervised support vector learning for the course data set.

How does the relative benefit of semi-
supervised support vector algorithms depend
on the compatibility of the views? In order to
add controlled amounts of incompatibility and depen-
dence into the experiment, we adapt an experimental
setting of Nigam and Ghani (2000) and Muslea et al.
(2002a). We use four of the 20 newsgroups: rec.autos,
comp.graphics, sci.space, and talk.politics.misc.

After building tfidf vectors, we generate positive ex-
amples by concatenating vectors x1 from rec.auto
with randomly drawn vectors x2 from sci.space to
construct multi-view examples (x1, x2). We gener-
ate negative examples by concatenating vectors from
comp.graphics with vectors from talk.politics.misc.
This procedure generates views which are perfectly
independent (peers are selected randomly) and com-
patible (either group can be discriminated from the
other).

In each run we choose 5 positive and 5 negative la-
beled examples and add noise and dependencies, re-
spectively, at random. Figure 2, top row, shows the re-
sults for increasingly large incompatibility (percentage
of labels flipped). With up to 20% noise, both co-EM
and co-training learn extremely accurate separators
(both achieve AUC values of 1). As we add increas-
ingly much noise, the performance of co-training dete-

riorates faster than the performance of co-EM SVM.

How does the relative benefit of semi-
supervised support vector algorithms depend
on the independence of the views? In order to
add dependencies into the data set we proceed as fol-
lows. Each vector is a concatenation of attributes
x1, . . . , xk (view V1), and xk+1, . . . , x2k (view V2). For
each vector, each attribute k + i assumes the value
of attribute i (as opposed to its original value) with
probability pdep. For pdep = 0, the views V1 and V2

are perfectly independent. For pdep = 1, the projec-
tions of each instance into either view are equal; the
views are totally dependent. This procedure allows
to add much stronger dependencies than the related
procedure proposed by Muslea et al. (2002a)

Figure 2, bottom row, shows the curves for varying
levels of dependency. The performance of the co-EM
SVM deteriorates faster than the performance of co-
training as we add strong dependencies. As expected,
the SVM shows only marginal deteriorations and out-
performs all other variants for stronger dependencies.

So, how does the co-EM SVM algorithm com-
pare to results of co-training and co-EM with
naive Bayes? We focus on the course data set for
which several results are published that are based on
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Figure 2. Semi-supervised support vector learning for the semi-artificial 20 newsgroups data set.

Table 3. Results for the course problem.

Method Error rate
naive Bayes 13.0%
co-trained NB 5.0%
co-EM NB (65 labeled ex.) 5.08 ± 0.7%
SVM 10.39%± 0.7%
TSVM 8.35%± 0.7%
EM SVM 8.02%± 1.0%
co-trained SVM 4.45%± 0.9%
co-EM SVM 0.99% ± 1.3%

naive Bayes (Blum & Mitchell, 1998; Nigam & Ghani,
2000; Muslea et al., 2002a).

Table 3 summarizes the results. After 100 rounds, the
co-trained SVM achieves an error of 4.45% while the
co-EM SVM outperforms all other support vector algo-
rithms significantly with an error rate of 0.99%. Since
3 positive and 9 negative examples do not reflect the
true prior distribution we used the natural ratio of 2
positive and 8 negative examples for shifting the deci-
sion hyperplane.

Do the obtained results hold for larger data
sets? We conduct another set of experiments in which
we discriminate each of the seven most frequent classes
of the Reuters-21587 data set from all other classes.
In each of the seven binary classification problems we
draw 190 labeled examples (1% of the data) at ran-
dom – the positive/negative ratio varies due to differ-
ent class sizes – and obtain 18853 unlabeled examples
that we use as hold out set as well. In each trial we
randomly split the available attributes into two sub-
sets; we average over 20 distinct samples and attribute

splits. The results are shown in Figure 3.

Analogously to the course data set experiment, the
multi-view algorithms outperform all other variants of
supervised and semi-supervised support vector algo-
rithms that we studied. Here, co-training beats the
baseline SVM significantly in four out of six cases fol-
lowed by the co-EM SVM with three out of five signif-
icant improvements.
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Figure 3. Results for the Reuters-21587 data set.

6. Conclusion

We developed a co-EM version of the Support Vector
Machine. The co-EM SVM algorithm utilizes unla-
beled data when the available attributes can be split
into two independent subsets each of which has to
be sufficient for learning. We observed that the co-
EM SVM outperforms all other variations of semi-
supervised SVM algorithms for the course problem, in
most trials with the 20 newsgroups data set, and per-
forms second-best for the Reuters data set. When we



reduce the amount of unlabeled data, the performance
of the co-EM SVM deteriorates less severely than the
performance of co-training. The single-view counter-
part of the co-EM SVM behaves similar to the trans-
ductive SVM. Furthermore, we found that multi-view
learning improves the performance on the Reuters data
set even though the views are generated by splitting
the attributes at random.
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