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Abstract

Generative adversarial networks (GANs) have been suc-

cessfully used for considerable computer vision tasks, espe-

cially the image-to-image translation. However, generators

in these networks are of complicated architectures with large

number of parameters and huge computational complexities.

Existing methods are mainly designed for compressing and

speeding-up deep neural networks in the classification task,

and cannot be directly applied on GANs for image transla-

tion, due to their different objectives and training procedures.

To this end, we develop a novel co-evolutionary approach for

reducing their memory usage and FLOPs simultaneously. In

practice, generators for two image domains are encoded as

two populations and synergistically optimized for investigat-

ing the most important convolution filters iteratively. Fitness

of each individual is calculated using the number of param-

eters, a discriminator-aware regularization, and the cycle

consistency. Extensive experiments conducted on bench-

mark datasets demonstrate the effectiveness of the proposed

method for obtaining compact and effective generators.

1. Introduction

Generative adversarial networks (GANs [7]) have

achieved impressive results in a wide variety of computer

vision tasks, such as super-resolution [18] and image edit-

ing [35], which are popular applications on mobile devices.

Many of these tasks can be considered as an image-to-image

translation problem [14, 30], where an image from one do-

main is mapped to a corresponding paired image in the other

domain. This task is further extended to the unsupervised

learning setting by [36, 15, 33], where no paired data are

required during training. However, launching such image-to-

image translation models on mobile devices requires consid-

erable memory and computation cost, which could challenge
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the hardware performance and would influence users’ experi-

ence. For instance, it takes about 43MB and 1×1010 FLOPs

(floating-number operations) to process one image of size

224× 224 using a generator network in the CycleGAN [36],

which requires more resources than some modern CNNs

for large-scale image classification (e.g. ResNet [10] and

MobileNet [12]).

Recently, a number of algorithms have been proposed

for compressing and speeding-up deep neural networks. For

instance, Han et al. [8] proposed to remove subtle weighs in

pre-trained neural networks and rely on some encoding tech-

niques to obtain the compressed models. Wang et al. [32]

further tackled this problem from the perspective of DCT fre-

quency domain to achieve higher compression ratios. Luo et

al. [22] pruned filters based on statistics information from

the next layer. Hu et al. [13] iteratively pruned the net-

work by removing less important neurons according to the

magnitude of feature maps. In addition, there are also sev-

eral methods proposed for learning portable deep neural

networks with different techniques, e.g. matrix/tensor de-

composition [5], quantization and binarization [3, 23, 29],

knowledge distillation [11, 26, 27] and efficient convolution

blocks design [12, 34].

Although the aforementioned methods have made tremen-

dous progress in reducing redundancy in deep neural net-

works, most of them are designed for recognition tasks such

as image classification or object detection. For recognition

tasks, neurons with large activation contribute more to the

final classification accuracy. Therefore, neurons with weak

activation are often eliminated or approximately represented

using low-bit data through low-rank decomposition or clus-

tering without obviously degrading the original performance.

In contrast, the generative adversarial networks for image

translation tasks are usually composed of a generator and a

discriminator, which are updated alternatively with a two-

player competition strategy. The training of GANs is thus,

more difficult than those of conventional neural networks.

It is therefore meaningful to investigate the redundancy in
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Figure 1. The diagram of the proposed co-evolutionary method for learning efficient generators. Wherein, filters in generators are represented

as binary strings, and two populations are maintained for iteratively eliminating redundant convolution filters in each generator. The portable

generator will be reconstructed from the best individual (red rectangle) in each population.

GANs and explore an effective approach for learning effi-

cient generators of fewer parameters and calculations.

To this end, we develop a co-evolutionary algorithm to

learn efficient architectures for both generators in a syn-

ergistic environment as illustrated in Figure 1. Wherein,

convolution filters in pre-trained GANs are encoded as a

binary string, so that compression and speed-up task can be

converted into a binary programming problem. Generators

in an image to image translation task could have different

redundancies, e.g. the generator for converting cityscape im-

ages to pixel images would have more redundant than that

of the generator for converting pixel images to cityscape

images. Two populations are therefore maintained for these

two generator networks in the unpaired image translation

task, respectively. The fitness of each individual is calculated

in terms of the model size and a discriminator-aware loss

from GANs. These two populations are updated alternatively

by exploiting the best individuals in the previous iteration

for obtaining portable architectures of satisfactory perfor-

mance. Extensive experiments on benchmark datasets show

that the proposed co-evolutionary algorithm can effectively

compress two generators simultaneously while preserving

the quality of transformed images. The compressed gener-

ator has less than 1/4 parameters compared to the original

one while maintaining the image translation performance.

The rest of this paper is organized as follows. Section 2

investigates related works on GANs and model compression

methods. Section 3 proposes the co-evolutionary approach

for removing redundant filters in pre-trained GANs. Sec-

tion 4 shows the experimental results conducted on bench-

mark datasets and models, and Section 5 concludes the paper.

2. Related Works

Our goal is to reconstruct compact and efficient generators

for image translation based on pretrained generator networks.

There are a number of works proposed for image translation

with GANs and model compression for compact deep neural

networks, which will be reviewed respectively.

2.1. GANs for Image Translation

Generative adversarial networks have achieved impres-

sive performance on the image translation task by adopting

a discriminator network to refine the generator. Isola et

al. [14] introduced generative adversarial networks and L1

loss to address the issue of paired image translation. Wang et

al. [30] presented a coarse-to-fine generator and a multi-scale

discriminator to generate high-resolution images. Zhu et

al. [36] implemented the unpaired image-to-image transla-

tion by utilizing two opposite domain transfer generators

and a well-designed cycle loss. Similarly, Kim et al. [15]

and Yi et al. [33] also adopted the cycle strategy to solve the

unpaired image translation problem. Choi et al. [2] extended

the two-domain translation task to a multi-domain image

translation problem.

In fact, those carefully designed generator networks con-

tain tremendous parameters and demand huge computation

cost which cannot be efficiently launched on mobile devices,

e.g. phones and cameras. Thus, we are motivated to ex-

plore a compression method to reduce their parameters and
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computational complexities.

2.2. Model Compression

To learn compact and efficient networks from pretrained

models, Denton et al. [5] utilized singular value decom-

position (SVD) to achieve the low-rank approximation for

parameters in fully-connected layers. Chen et al. [1] used

a hash function and represented weights in the same hash

bucket with a single parameter. Han et al. [9] removed

unimportant parameters in pre-trained neural networks and

further [8] utilized quantization, Huffman encoding, and

sparse row format for obtaining extremely compact models.

Luo et al. [22] removed redundant filters and replaced the

fully-connected layers by global average pooling (GAP) lay-

ers. Vanhouche et al. [29] explored deep neural networks

with 8-bit integer values to replace original models with

32-bit floating values to achieve the compression and speed-

up directly. Courbariaux and Bengio [3] explored neural

networks with binary weights and activations. Restgari et

al. [23] further incorporated binary convolutions into the

modern neural architecture to achieve higher performance.

Although these aforementioned methods achieved con-

siderable speed-up and compression ratios on several bench-

mark models, most of them are developed for recognition

tasks such as image classification and object detection, which

cannot be straightforwardly applied for generator networks.

Actually, GANs consist of a generator and a discriminator,

whose outputs are images of high dimension and complex

structures. Therefore, we shall develop effective approach

for compressing GANs and preserving the visual quality of

generated images.

3. Co-Evolution for Efficient Generators

Here we first briefly introduce the CycleGAN [36] for

unpaired image-to-image translation, which is the state-of-

the-art method for learning the correspondence between two

distributions using unpaired data, and then propose a novel

co-evolutionary algorithm for simultaneously compressing

its two generators.

3.1. Modeling Redundancy in Generators

Formally, given the training dataset from two differ-

ent domains (e.g. Zebra and Horse) X = {xi}
m
i=1 and

Y = {yi}
n
i=1 with m and n images, respectively. The

data distributions of these two domains are denoted as

x ∼ pdata(x) and y ∼ pdata(y). The goal of CycleGAN

is to learn two mappings simultaneously, i.e. G1 : X → Y
and G2 : Y → X . For the first mapping G1 and its dis-

criminator D1, the corresponding objective function can be

mathematically formulated as

LGAN (G1,D1, X, Y ) = Ey∼pdata(y) [logD1(y)]

+ Ex∼pdata(x) [log(1−D1(G(x)))] ,
(1)

wherein, the functionality of the generator G1 is to generate

images G1(x) which looks similar to those from the other

domain Y . The discriminator network D1 is to distinguish

between images generated by G1 and real images in Y . The

generator G1 aims to minimize Eq. 1 while the discriminator

tries to maximize it, i.e.

min
G1

max
D1

LGAN (G1, D1, X, Y ), (2)

and the entire objective of the CycleGAN is

L(G1, G2, D1, D2) =LGAN (G1, D1, X, Y )+

LGAN (G2,D2, Y,X) + λLcyc(G1, G2),
(3)

where Lcyc is the cycle consistency loss, and λ is the hyper-

parameter for seeking the tradeoff between the generation

ability and the cycle consistency. It is obvious that, the

training of CycleGAN is a more complex procedure than

those of recognition tasks, e.g. classification [17, 28, 10] and

detection [25, 19].

In addition, although GANs perform well on image style

transfer, most of generators in these models are well de-

signed with considerable parameters and FLOPs, which are

usually unaffordable on mobile devices. In addition, by ana-

lyzing Eq. 3, we can find that there are two major differences

between the task for compressing image classification or de-

tection models and the task compressing generative networks

for image style transfer: 1) discriminator network will be

dropped after training the entire generative network, which

does not need to be compact; 2) output results of GANs are

of high-dimensional, and it is hard to quantitatively evaluate

the generated images. We aim to explore effective meth-

ods for discovering redundant parameters and compressing

original GANs to obtain efficient models.

A straightforward method for reducing complexities of

GANs can be directly borrowed from the conventional prun-

ing methods [8, 32] for minimizing the reconstruction error

on the output data, which can be formulated as a generator-

aware loss function, i.e.

LGenA =
1

m

m
∑

i=1

||G1(xi)− Ĝ1(xi)||
2
2, (4)

where || · ||2 is the conventional ℓ2-norm for calculating the

difference between generated images using generators before

and after compressing, and Ĝ1 is the compressed generator.

Admittedly, minimizing Eq. 4 can encourage images gen-

erated using Ĝ1 similar to those generated by G1, but it is not

closely related to the style transfer task. In fact, we cannot

use an appearance loss to accurately measure the difference

between two styles. For instance, a horse with eight or five

black and white stripes can be both considered as successful

transformations in the image translation task. Therefore,

optimizing Eq. 4 would not precisely excavate redundancy

in the generator network G1.
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Although the discriminator network D will be abandoned

after the training procedure of Eq. 2, it contains important in-

formation for distinguishing images from different domains.

Thus, we propose to minimize the following discriminator-

aware objective function for learning the compressed gener-

ator network:

LDisA =
1

m

m
∑

i=1

||D1(G1(xi))−D1(Ĝ1(xi))||
2
2, (5)

where D1 is the discriminator in the original network, which

captures the style information in the target domain w.r.t. the

training dataset Y . Compared with Eq. 4, the above function

does not force outputs of original generator and compressed

generator to be similar but measures the style discrepancy

of generated images through these two generators using the

pre-trained discriminator, which is a more appropriate goal

for efficient GANs. We will further investigate the difference

between Eq. 4 and Eq. 5 on performance of GANs in the

experiment part.

In addition, the cycle consistency should also be consid-

ered for maintaining the capacity of generators, i.e.

Lcyc =
1

m

m
∑

i=1

||G2(Ĝ1(xi))− xi||
2
2. (6)

Thus, the objective for compressing the first generator G1

(e.g., horse to zebra) in CycleGAN can be written as

Ĝ1 = argmin
G1

N (G1) + γ (LDisA + λLcyc) , (7)

where N (·) counts the number of parameters in neural net-

works, and γ is the hyper-parameter for balancing the per-

formance of Ĝ1 and the compression ratio.

Besides the objectives discussed above, there is another

important issue should be taken into consideration during the

compression procedure of GANs. In general, two generators

in the CycleGAN have the same architectures and numbers

of convolution filters with the similar capacity for conducting

the image-to-image translation task. Only minimizing one

generator will make the entire system of CycleGAN unstable,

and thus we propose to simultaneously compress these two

generators, i.e.

Ĝ1, Ĝ2 = arg min
G1,G2

N (G1) +N (G2)

+γ (LDisA(G1, D1) + λLcyc(G1, G2, X))

+γ (LDisA(G2, D2) + λLcyc(G2, G1, Y )) .

(8)

which can additionally provide two portable generators at

the same time for saving the computing resource.

3.2. Co­Evolutionary Compression

Considering that we cannot accurately estimate the im-

pact of each filter on the final loss according to its output

in the given convolutional layer, and functionalities of dif-

ferent filters are interacted, we apply the evolutionary al-

gorithm [24, 31] to encode all convolution filters as binary

codes. In addition, there are two variables in Eq. 8, i.e. G1

and G2, which have their own tasks for learning two differ-

ent mappings, we thus develop a co-evolutionary approach

utilizing Genetic Algorithm (GA [4]) for compressing Cy-

cleGAN. Note that, other evolutionary algorithms such as

simulated annealing [16] and PSO [6] can also been applied

similarly.

Updating G1: In practice, the filter pruning task will be

regarded as a binary programming problem and the generator

G1 will be correspondingly represented as a binary string, i.e.

individual p. Wherein, each bit is assigned to a convolution

filter in the given network, i.e.

B
(n,:,:,:)
l =

{

0, if pl(n) = 0,

1, otherwise ,
(9)

where pl denotes the state of convolution filters in the l-th
layer in G1. pl(n) = 0 means discarding the n-th filter in

the l-th convolutional layer, otherwise retaining. The number

of filters is about tens of thousands in conventional neural

networks [10, 36], and the length of p for l convolutional

layers is tolerable. Since convolution filters in different

layers are of various sizes, which has different memory usage

and computational complexities, we utilize the following

function to reformulate N (·) in Eq. 8:

N (p) =

∑L

l=1 (‖pl−1‖1 · ‖pl‖1 ·Hl ·Wl)
∑L

l=1(Nl · Cl ·Hl ·Wl)
, (10)

which assigns convolution filters of more weights with higher

importance. Wherein, ‖pl−1‖1 is the number of filters in the

l−1-th layer, i.e. the channel number in the l-th layer, Nl, Cl,

Hl and Wl are the number of filters, the number of channels

and height and width of filters in the l-th convolutional layer

in G1 respectively. Besides memory usage, Eq. 10 also

takes FLOPs into consideration since a convolution filter

with more weights, i.e. Cl ×Hl ×Wl usually involves more

multiplications in GANs.

Then, the fitness of an individual for compressing the

generator G1 is defined as

F(p) =
[

N (p) + γ
(

LDisA(Ĝ1, D1)

+ λLcyc(Ĝ1, G2, X)
)]

−1

,
(11)

where Ĝ1 is the compressed generator corresponding to the

given individual p.

After defining the calculation of fitness, GA is adopted

to find the fittest individual through several evolutions. For

each individual, the corresponding compressed network is
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Algorithm 1 Co-Evolutionary compression for GANs.

Require: Training set X = {xi}
m
i=1 and Y = {yi}

n
i=1.

The pre-trained GAN with two generators and discrim-

inators, G1, G2, D1, and D2, parameters: K, T , λ, γ,

and learning rates, etc.

1: Initialize two populations P0 and Q0 w.r.t. G1 and G2

with K individuals, respectively;

2: Select the best individuals p̂(0) and q̂
(0);

3: for t = 1 to T do

4: Calculate the fitness of each individual in Pt:

F(p(t))← [N (p(t)) + γ(LDisA(p
(t), D1, X)

+λLcyc(p
(t), q̂(t−1), X))]−1;

5: Calculate the fitness of each individual in Qt:

F(q(t))← [N (q(t)) + γ(LDisA(q
(t), D2, Y )

+λLcyc(q
(t), p̂(t−1), Y ))]−1;

6: Obtain selecting probabilities (Eq. 12);

7: Preserve the best individuals:

P
(1)
t ← p̂

(t−1), Q
(1)
t ← q̂

(t−1);

8: for k = 2 to K do

9: Generate a random value s ∼ [0, 1];
10: Conduct selection, crossover, and mutation for gen-

erating new individuals according to s;

11: end for

12: end for

13: Update fitnesses of individuals in Pt and Qt;

14: Establish two generator networks Ĝ1 and Ĝ2 by exploit-

ing to the best individual p̂(T ) and q̂
(T ), respectively;

Ensure: Portable generator Ĝ1 and Ĝ2 after fine-tuning

using the entire training set.

fine-tuned on a subset of the training data (e.g. 10% training

images randomly sampled) and take the fitness on validation

set as evaluation metric. Then a probability is assigned to

each individual by comparing its fitness among the individu-

als in the current population:

Pr(pj) = F(pj)

/

K
∑

k=1

F(pk) , (12)

where p
j is the j-th individual in the population and K is

the number of individuals in the population. The popula-

tion in each iteration are regarded as parents, and selected

according to Eq. 12. The selected parents breed another

population as offspring using the following operations: se-

lection, crossover, and mutation [4, 31].

Updating G2: Although architectures of two generators

in the CycleGAN are usually symmetrical with the same

amount of convolution filters, redundancy in G1 and G2 can

be significantly different. For instance, learning the mapping

from semantic maps to streetviews is harder than that of from

streetviews to semantic maps. Therefore, we utilize another

population to optimize the other generator in CycleGAN, i.e.

G2.

Similarly, we encode all convolution filters in G2 to for-

mulate a population with K individuals, i.e. q1, ...,qK , and

the corresponding fitness can be defined as

F(q) =
[

N (q) + γ
(

LDisA(Ĝ2, D2)

+ λLcyc(Ĝ2, G1, Y )
)]

−1

,
(13)

which can be also optimized during the evolutionary proce-

dure.

Moreover, it can be found in Eq. 11 and Eq. 13 that, the

calculation of cycle consistency of each generator involves

the other generator in the CycleGAN. Thus, two populations

are alternatively updated to simultaneously optimize G1 and

G2. In specific, for the t-th iteration, we first obtain the best

individual p(t) of G1 utilizing the best individual of G2 in

the previous iteration q
(t−1), and then utilize it to calculate

the fitness of G2. In addition, the best individual preserving

strategy is also adopted to increase the robustness of the

evolutionary algorithm. The detailed procedure for learning

portable GANs using the proposed method is summaries in

Algorithm 1.

4. Experiments

In this section, we qualitatively and quantitatively evalu-

ate the proposed discriminator aware compression method

on three benchmark unpaired image translation datasets, i.e.

horse2zebra, summer2winter, and cityscapes. The architec-

ture of CycleGAN is directly borrowed from their original

paper [36]. Each generator in the CycleGAN is sequentially

composed of one 7×7 stride-1 convolutional layer, two 3×3
stride-2 convolutional layers, nine residual blocks [10], two

3× 3 stride-2 transpose convolutional layers and one 7× 7
stride-1 convolutional layer. In addition, each discriminator

consists of 5 convolutional layers and one FCN [21] classi-

fication layer. We use the default setting in [36] to pretrain

and finetune the CycleGAN for having a fair comparison.

Impact of Parameters. Our goal is to learn efficient gen-

erative network for unpaired image-to-image style transfer.

As discussed in the Algorithm 1, the objective function Eq. 8

for compressing GANs will be converted as the fitness cal-

culation in the framework of the proposed co-evolutionary

approach. λ is the parameter for weighting the cycle con-

sistency term, which is set as 10 according to the original

CycleGAN [36]. In addition, the identity loss for maintain-

ing the information of each domain is also applied along

with the cycle consistency. The number of individuals K is

set as 32, and the maximum iteration number T is equal to

100, which refer to those in [31].

Then, we further investigate the trade-off between the

compression ratio and performance of compressed genera-

tive networks according to different hyper-parameter γ. It
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Input Images Original Results γ = 0.1 γ = 1 γ = 10

Model size 43.42MB 7.21MB 8.07MB 10.16MB

Model size 43.42MB 7.20MB 7.85MB 10.00MB

Figure 2. Images generated using the generator compressed by exploiting the proposed method with different hyper-parameters. The top line

and the bottom line show the results from horse to zebra, and results from zebra to horse, respectively. Two generators are compressed from

an entire CycleGAN. Model sizes of different generators are provided.

can be found in Figure 3.2 that, a larger γ brings a lower

compression ratio, i.e. the model size is much smaller than

that of the original model. However, the visual quality of the

resulting images will be better for a larger γ.

As a result, we set γ = 10 to obtain the compressed

model with an acceptable generative ability, images gen-

erated using the compressed network are similar to those

using the original model. The compression ratios of two

generators are 4.27× and 4.34×, respectively. In addition,

compression ratios of two generators are similar since the

difficulty for transferring horses to zebras is also similar to

that of transferring zebras to horses.

Ablation Study. After investigating the trade-off be-

tween the generative ability and model size of GANs, we

further conduct extensive ablation experiments to evaluate

the functionality of different components in the proposed

scheme.

A co-evolutionary approach for iteratively compressing

two generators in the CycleGAN was developed in Section 3,

which involves two populations for obtaining generative

models with higher performance. Thus, we first compare

the results using the evolutionary algorithm to compress

two generators separately and those from the proposed co-

evolutionary algorithm, as shown in Figure 3(b) and Fig-

ure 3(d), respectively.

In order to have a fair comparison, we tune the hyper-

parameter to obtain compressed network with the similar

model size, e.g. the generator using the proposed method

is 10.16MB on the horse2zebra task. It is clear that, the

proposed co-evolutionary approach obtained images with

higher visual quality, e.g. clear zebra pattern and more white

mountains, since the proposed method can simultaneously

investigate the redundancy in both two generators. In addi-

tion, we can obtain two efficient and effective generators at

the same time, which is much more flexible than the scheme

for compressing them separately.

We then compared the performance of the proposed two

loss functions for evaluating the capacity of compressed

GANs, i.e. the generator-aware loss and the discriminator-

aware loss. The results of compressed models under the

generator-aware constraint are shown in Figure 3(c). It is ob-

vious that, the generated images using the generator-aware

loss LGenA are worse than those using the discriminator-

aware loss, since the style information cannot be easily cap-

tured by the reconstruction error. For example, the differ-

ence between horses and zebras are only exist on the body

of horses, the overall difference between input images and

Figure 3(c) are not significant.

Comparison with Conventional Pruning Method. In

contrast to conventional method for pruning redundant con-

volution filters in pre-trained deep neural networks, the pro-

posed method introduces a discriminator aware loss, i.e.

Eq. 5 to recognize useless filters for conducting the im-

age style transfer task. Therefore, we then compare the

proposed method with the state-of-the-art filter pruning

method, namely, ThiNet [22], which minimizes the recon-

struction error of output features. Similarly, we also tuned

the hyper-parameters in ThiNet to ensure that the model size

(10.88MB) of resulting generator of ThiNet is similar to that

of using the proposed method.

It can be found in Figure 3(a), images generated through

a generator compressed by ThiNet for a similar amount of

parameters cannot capture the style information in the target

domain, e.g. the generated zebra images are fundamentally
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Input Images Original Results (a) (b) (c) (d)

Figure 3. The generated images on horse2zebra and summer2winter datasets using different methods and strategies. The first two columns

illustrate the input images and images generated by the original CycleGAN. Images in (a) are generated by by compressed generators using

the conventional ThiNet for filter pruning, while (b) by evolutionary approach for compressing two generators separately using LDisA, (c)

by co-evolutionary method using LGenA, (d) by co-evolutionary method using LDisA.

different to those of original model and compressed model

using the proposed method, as shown in Figure 3(d). In

fact, the conventional filter pruning method has the simi-

lar assumption to that of the generator-aware loss, which

obtained similar but worse results as those in Figure 3(c),

which is not suitable to conduct the compression task for the

unpaired image translation. In addition, we also compare the

proposed method with other filter pruning methods, namely,

network trimming [13] and slimming [20], which obtained

similar results to those of ThiNet and can be found in the

supplementary materials.

Filter Visualization. Since the evolutionary algorithm

can globally discover the most beneficial filters for given

task, it is necessary to see what filters are recognized as

redundant and what filters are essential for generator. Thus,

we visualize the first several filters in the first convolutional

layer of CycleGAN on the horse2zebra dataset as shown in

Figure 4. Interestingly, the discarded filters by our method

are not only with small norms but may also have big values,

which is significantly different from the results of the conven-

tional filter pruning method, i.e. ThiNet [22]. Actually, the

weights in filters for extracting color and texture information

can be very small.

It can be found in Figure 4, the proposed method retains

filters with more distinct structures, which are beneficial

for maintaining an acceptable performance of the generator

network. Furthermore, filters after fine-tuning do not have

significant changes, which demonstrates importance and

functionality of these convolution filters for conducting the

subsequent image-to-image translation task.

Table 1. Statistics of compressed generators.

Task Memory rc FLOPs rs

horse2zebra 10.16MB 4.27× 13, 448M 4.23×

zebra2horse 10.00MB 4.34× 13, 060M 4.35×

summer2winter 7.98MB 5.44× 11, 064M 5.14×

winter2summer 7.61MB 5.70× 10, 994M 5.17×

cityscapes-A2B 8.98MB 4.84× 12, 977M 4.38×

cityscapes-B2A 12.26MB 3.54× 16, 445M 3.46×

Detailed Compression results. Moreover, detailed re-

sults of the six generators trained on three datasets, i.e.

horse2zebra, summer2winter, and cityscapes, are illustrated

in Table 1, rc and rs are compression rates for model size

and FLOPs respectively. It is obvious that, the proposed

co-evolutionary method can effectively remove redundant

filters in pre-trained GANs and obtain efficient generators.
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Figure 4. Filter visualization results. From top to bottom: the original filters with red rectangles selecting the remained filters by the proposed

method, filters after fine-tuning, and the original filters with red rectangles selecting the filters remained by ThiNet.

Table 2. FCN scores of different generators calculated on the cityscapes dataset.

Method Memory Mean Pixel Acc Mean Class Acc. Mean class IoU

Original [36] 43.42MB 0.538 0.172 0.121

ThiNet [22] 10.88MB 0.218 0.089 0.054

Ours 12.26MB 0.542 0.212 0.131

Additionally, we can obtain two efficient generators from

CycleGAN [36] for conducting the unpaired image-to-image

translation task by simultaneously explore their redundancy.

Furthermore, there are some interesting phenomenons in

Table 1, i.e. the generator for more difficult transformation

task tend to have less redundancy. For instance, since the

task for transferring semantic map to streetview is more dif-

ficult than that of transferring streetview to semantic map.

The model size (12.26MB) of the second compressed gener-

ator (i.e. cityscapes-B2A) is much larger than that (8.98MB)

of the first generator (i.e. cityscapes-A2B) for transferring

streetview to semantic map, which demonstrates the supe-

riority of the proposed co-evolutionary approach for com-

pressing GANs and provides some guidance for designing

GANs for various tasks. In addition, detailed statics of two

generators in the compressed CycleGAN and more visu-

alization results on three benchmark datasets generated of

compressed models using the proposed method can be found

in the supplementary materials.

Runtime. The proposed method directly removes re-

dundant filters and produces efficient GANs. Thus, the

compressed model does not require other additional sup-

port (e.g. sparse matrices and Huffman encoding [8]) for

realizing the network speed-up. We then compared runtimes

for processing images using original and compressed mod-

els. In practice, the averaged runtime of the original model

for processing one image is about 2, 260ms using an Intel

Xeon E5-2690 CPU. In contrast, the runtime of the com-

pressed model with a 10.16MB model size (i.e. the first line

in Table 1) is about 730ms, which achieved an about 3.1×
speed-up, which is lower than that of the theoretical speed-up

ratio (4.23×) due to the costs of incurred by data transmis-

sion, ReLU, etc. The demo code for verifying the proposed

method can be found in our supplementary materials.

Quantitative Evaluation. Besides the above experi-

ments, we also conduct the quantitative evaluation of the pro-

posed method. In order to evaluate the quality of compressed

generators the “FCN-score” [14] is utilized on images gener-

ated from semantic maps to cityscape images. In practice, a

pre-trained FCN-8s network [21] on the cityscapes dataset

is exploited for conducting the semantic segmentation exper-

iments and detailed results are shown in Table 2. Measure-

ments for the segmentation experiment are per-pixel accu-

racy, per-class accuracy and mean class IOU. It is obvious

that, the proposed method obtained better results compared

with the conventional ThiNet [22] for pruning convolution

filters, which are slightly higher results than those of using

the original generator, since we can effectively remove use-

less filters to establish generative models perform well on

discriminator networks. In addition, the segmentation results

are shown in our supplementary materials.

On datasets of horse2zebra and summer2winter, Fréchet

Inception Distance (FID) is adopted to evaluate the results

of the proposed method as shown in Table 3. The results of

proposed method are close to the original CycleGAN[36],

obviously better than the weight based pruning method.

Table 3. Comparision of FID scores.

FID Original[36] ThiNet[22] Ours

horse2zebra 74.04 189.28 96.15

zebra2horse 148.81 184.88 157.90

summer2winter 79.12 81.06 78.58

winter2summer 73.31 80.17 79.16

5. Conclusion

This paper studies the model compression and speed-up

problem of generative networks for unpaired image-to-image

style translation. A novel co-evolutionary scheme is devel-

oped for simultaneously pruning redundant filters in both

two generators. Two portable generator networks will be

effectively obtained during the procedure of the genetic al-

gorithm. Experiments conducted on benchmark datasets

and generative models demonstrate that the proposed co-

evolutionary compression algorithm can fully excavate re-

dundancy in GANs and achieve considerable compression

and speed-up ratios. In addition, images generated using the

compressed generator also maintain the style information

with high visual quality, which can be directly applied on

any off-the-shelf platforms.
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