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Co-evolutionary particle swarm
optimization algorithm for two-sided
robotic assembly line balancing
problem
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Nielsen2

Abstract
Industries utilize two-sided assembly lines for producing large-sized volume products such as cars and trucks. By employ-
ing robots, industries achieve a high level of automation in the assembly process. Robots help to replace human labor
and execute tasks efficiently at each workstation in the assembly line. From the literature, it is concluded that not much
work has been conducted on two two-sided robotic assembly line balancing problems. This article addresses the two-
sided robotic assembly line balancing problem with the objective of minimizing the cycle time. A mixed-integer program-
ming model of the proposed problem is developed which is solved by the CPLEX solver for small-sized problems. Due
to the problems in non-polynomial- -hard nature, a co-evolutionary particle swarm optimization algorithm is developed
to solve it. The co-evolutionary particle swarm optimization utilizes local search on the global best individual to enhance
intensification, modification of global best to emphasize exploration, and restart mechanism to escape from local optima.
The performances of the proposed co-evolutionary particle swarm optimization are evaluated on the modified seven
well-known two-sided assembly line balancing problems available in the literature. The proposed algorithm is compared
with five other well-known metaheuristics, and computational and statistical results demonstrate that the proposed co-
evolutionary particle swarm optimization outperforms most of the other metaheuristics for majority of the problems
considered in the study.
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Introduction

Manufacturing companies extensively use assembly
lines and the assembly process is considered to be one
of the critical processes in manufacturing systems.1,2

Different layout types (traditional straight line, U-
shaped, two-sided, and parallel) have been widely
utilized in industries based on the size and type of
products.3 For assembly of large-sized volume prod-
ucts, for example, cars, trucks, and buses utilize two-
sided assembly lines. When compared with traditional
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straight assembly lines, two-sided assembly line pro-
vides several advantages such as shorter assembly line
length, reduced throughput time, less material handling,
and lower cost of tools and fixtures.4 In a two-sided
assembly line, different assembly tasks are performed
on the same product item in parallel at both (left and
right) sides of the line.5

Assembly lines can be of manually operated, auto-
mated, or of mixed design. Due to the tedious and
repetitive nature of tasks performed in assembly lines,
robots have replaced human labor and this helps in
improving both the speed of assembly and quality of
the products assembled.6 Robots can be programmed
to employ them for performing different types of tasks
in assembly systems and these are called robotic assem-
bly lines. Balancing assembly lines have, due to their
prevalence in industry, become a critical process that
aims at allocating work (task) to the workstations in
such a manner that all workstations have an equal
amount of task assigned to them. Most existing
research is devoted to solving simple assembly line bal-
ancing (SALB) problems with different objective func-
tions.7,8 In the case of robotic assembly lines, an
efficient balanced assembly line is very necessary since
the investments in such assembly line are high and are
typically based on long-term strategic decision.9

Robotic assembly line balancing (RALB) problems are
an extension of SALB problems.6 RALB aims mainly
at assigning tasks to the workstations and allocating
the best fit robot to each workstation in such a way the
productivity is improved. The two main types of
RALB problems addressed by researchers are as fol-
lows: type-I RALB and type-II RALB.6 Type-I RALB
mainly aims at minimizing the number of workstations
in an assembly line when cycle time is fixed and type-II
RALB mainly aims at minimizing the cycle time when
the number of workstations is fixed.2

Researchers have classified assembly line balancing
(ALB) problem in the category of non-polynomial
(NP) hard.10 Due to this nature of the problem,
researchers have over the years proposed different tech-
niques to solve ALB problems. A detailed literature
overview of different techniques used to solve two-sided
ALB and RALB is given in the following. The two-
sided ALB problem is initially proposed by Bartholdi.4

Since then different techniques such as exact methods,
heuristic, and metaheuristics methods have been pro-
posed to solve this type of problem. Wu et al.11 develop
a branch-and-bound algorithm to optimize the two-
sided ALB and test the proposed model on well-known
problems from the literature. Xiaofeng et al.12 develop
a branch-and-bound algorithm to solve the two-sided
ALB problem with an objective of minimizing the
length of the assembly line. A heuristic procedure
named group assignment is proposed by Lee et al.13 to
maximize the work relatedness and the work slackness

with little or any loss in cycle time and the number of
workstations. Different metaheuristics have been pro-
posed to solve the balancing problem in two-sided
assembly lines. Kim et al.5 propose a genetic algorithm
(GA) to solve this type of problem. Tabu search algo-
rithm, simulated annealing (SA) algorithm, particle
swarm optimization (PSO), and bee algorithm have
been proposed to solve different objectives in two-sided
ALB problems.14–17 The literature mentioned so far
mainly deals with single model problems. A few
researchers have focused on mixed and multi-model
two-sided ALB problems and used metaheuristics to
solve these problems.18,19

The RALB problem is first addressed by Rubinovitz
and Bukchin20 who later proposed a branch-and-bound
algorithm21 to balance the robotic assembly line.
Levitin et al.6 propose to use GAs to solve RALB
problem with the objective of minimizing the cycle time
(type-II RALB). Gao et al.9 develop a 0-1 integer pro-
gramming problem for solving type-II RALB problem
and also propose a hybrid genetic algorithm (hGA) to
solve the proposed problem. Yoosefelahi et al.22 pro-
pose a multi-objective model for RALB to minimize
the cycle time, robot setup costs, and robot costs. They
propose a new mixed-integer linear programming
model to solve the problem and also propose three ver-
sions of multi-objective evolution strategies (MOES).
Recently, Nilakantan et al.2 and Nilakantan and
Ponnambalam23 use PSO algorithm to solve two types
of layout of RALB problems and test the models on
benchmark problems. In the case of two-sided assem-
bly line with robotic systems with a mixed model,
Aghajani et al.24 propose a SA-based approach with an
objective of minimizing the cycle time.

Although researchers have focused on two-sided
ALB problems and RALB problems, the literature
review suggests that very limited number of researchers
focus on the two-sided robotic assembly line balancing
problem (TRALB). Note that TRALB problems with
the objective of minimizing cycle time as these types of
assembly lines are widely used in a number of industries
and optimizing this objective is a very critical process.
Hence, the main focus of this article is to optimize cycle
time of a TRALB problem. This article mainly presents
four contributions to this research field: (1) A new
TRALB (type-II TRALB) problem is proposed and a
set of benchmark problems are generated. (2) A mathe-
matical model for the proposed problem is presented
and CPLEX solver is applied to obtain the optimal
solutions for small-sized problems. (3) Co-evolutionary
particle swarm optimization (C-PSO) as a metaheuristic
method is developed to solve the proposed problem due
to its NP-hard nature. The proposed C-PSO utilizes
local search on the global best individual, modification
of global best, and restart mechanism to emphasize
intensification and exploration. (4) Solutions obtained
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using the proposed metaheuristic are compared with
other well-known metaheuristic algorithms. From this
study, it could be seen that the proposed metaheuristic
algorithm performs better than other metaheuristic
algorithms for most of the problems.

The remainder of this article is organized as follows.
Section ‘‘Problem description and mathematical model
for TRALB’’ presents the mathematical model and
assumptions considered. In section ‘‘C-PSO algorithm,’’
a detailed implementation of the proposed metaheuris-
tic algorithm is presented. Section ‘‘Computational
results’’ presents the comparative study of the compu-
tational results and in section ‘‘Managerial implications
and conclusion,’’ the findings of this research are
concluded.

Problem description and mathematical
model for TRALB

In this section, problem is described along with the
assumptions considered in this study. Mathematical
model of the addressed TRALB problem is discussed
in detail.

Problem description and assumptions

Two-sided robotic assembly lines are usually utilized to
produce high volume products, in which robots rather
than human beings perform the tasks. This line has
great ramifications in industry, such as car assembly,
since it has larger flexibility in the face of diverse cus-
tomers’ demands by pre-programming the robots. This
line can also preserve the quality of the assembled prod-
ucts since the robots can perform the tasks continually
without the worries of fatigue.

In this line, the mated-stations are connected
together with a material handling system and each
mated-station comprises two facing workstations. A
two-sided robotic assembly line is illustrated in
Figure 1. In the given figure, there are four robots and
eight tasks assigned to two stations in the two-sided
assembly line. There are three types of assembly tasks
which are to be performed at each workstation (L-type
tasks, R-type tasks, and E-type tasks). L-type (R-type)
tasks must be allocated to the left (right) side of a
mated-station, whereas E-type tasks can be allocated to
either side. Each workstation is allocated with a robot
to perform the assigned tasks.

TRALB consists of two sub-problems: ALB and
robot allocation. In the ALB, all the tasks must be
assigned to workstations while satisfying the prece-
dence relationship constraint, direction constraint, and
cycle time constraint. In robot allocation, the best fit
robot is allocated to each workstation to perform the

assigned tasks optimizing one criterion. The assump-
tions considered for the proposed problem are listed as
follows:

1. The assembly line is designed for a unique
model of a single product.

2. The operation time of a task depends on the
type of the assigned robot and it is deterministic.

3. Each workstation is allocated with one robot
and the number of workstations is equal to the
number of available robots.

4. Each task can be performed by any robot and
each robot can be allocated to any workstation.

5. The setup times between tasks are ignored.
6. No work-in-process inventory is considered.

Notations

The following notations are used for the proposed
problem.

Indices

i, h, p: Tasks
j, g: Mated-stations
k, l: A side of the line; k = 1, left side

2, right side

n
(j, k): Station of mated-station j at side k
R: Robot type

Parameters
nt: Number of tasks
nm: Number of mated-stations
nr: Number of robots
I: Set of tasks, I={1, 2,. ,i,. ,nt)
J: Set of mated-stations, J= {1, 2,. ,j,. ,nm)
R: Set of robot types, r={1, 2,. ,j,. ,nm}
tir: Processing time of task i by robot r.
AL: Set of tasks with left direction, AL 4 I
AR: Set of tasks with right direction, AR 4 I
AE: Set of tasks either direction, AE 4 I
P0: Set of tasks that have no immediate

predecessors
P(i): Set of immediate predecessors of the task i
Pa(i): Set of all predecessors of the task i
Sa(i): Set of successors of tasks i
S(i): Set of immediate successors of the task i
c: Large positive number
C(i): Set of tasks whose operation directions are

opposite to that of task i

C(i)=
AL if i 2 AR

AR if i 2 AL

u if i 2 AE

8<
:

K(i): Set of integers that indicate the preferred
directions of the task i
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K(i)=
f1g if i 2 AL

f2g if i 2 AR

f1, 2g if i 2 AE

8<
:

PC: Set of pairs of tasks and predetermined sta-
tions for positional constraint

PZ: Set of pairs of tasks for positive zoning
constraint

NZ: Set of pairs of tasks for negative zoning
constraint

SC: Set of pair of tasks for synchronism
constraint

Decision variables
CT: Cycle time
xijk: 1, if task i is assigned to mated-station j at

side k; 0, otherwise
yrjk: 1, if robot r is assigned to mated-station j at

side k; 0, otherwise
t

f
i : Finishing time of task i

Indicator variables
zip: 1, if task i is assigned earlier than task p in

the same station; 0, otherwise

Mathematical formulation of TRALB

A mathematical model for TRALB problem with an
objective of minimizing cycle time is developed below
with the objective of minimizing the cycle time based
on the notations and the considered assumptions

MinCT ð1ÞX
j2J

X
k2K(i)

xijk = 1 8i 2 I ð2Þ

X
g2J

X
k2K(h)

g � xhgk �
X
j2J

X
k2K(i)

j � xijk 8i 2 I�P0, h 2 P(i)

ð3Þ

t
f

i �CT 8i 2 I ð4Þ

t
f

i � t
f

h +c(1� xijk)+c 1�
X

l2K(h)

xhjl

 !
�
Xnr

r = 1

tiryrjk

8i 2 I�P0, h 2 P(i), j 2 J , k 2 K(i) ð5Þ

t f
p � t

f
i +c(1� xijk)+c(1� xpjk)

+c(1� zip) �
Xnr

r= 1

tpr � yrjk
8i 2 I

p 2 frjr 2 I � (Pa(i) [ Sa(i) [ C(i)) and

i\rg, j 2 J , k 2 K(i) \ K(p)

ð6Þ

t
f

i � t f
p +c(1�xijk)+c(1� xpjk)+c � zip

�
Xnr

r= 1

tir � yrjk
8i 2 I

p 2 frjr 2 I � (Pa(i) [ Sa(i) [ C(i)) and i\rg,
j 2 J , k 2 K(i) \ K(p)

ð7Þ

t
f

i +c(1� xijk) �
Xnr

r= 1

tir � yrjk
8i 2 I , j 2 J , k 2 K(i) ð8Þ

Xnr

r = 1

yrjk
8j 2 J , k = 1, 2 ð9Þ

Xnm

j= 1

X2

k = 1

yrjk
= 1 8r 2 R ð10Þ

xijk = 1 8(i, (j, k)) 2 PC), k 2 K(i) ð11Þ

xijk � xhjk = 0 8(i, h) 2 PZ, k 2 K(i) \ K(h) ð12Þ

Figure 1. Two-sided robotic assembly line.
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X
k2K(i)

xijk +
X

k2K(h)

xhjk � 1 8(i, h) 2 NZ ð13Þ

xijf � xhjk = 0 8(i, h) 2 SC, k 2 K(h), f 2 K(i), k 6¼ f

ð14Þ

t
f

i � ti = t
f

h � t h 8(i, h) 2 SC ð15Þ

The objective function (1) minimizes the cycle time.
Constraint (2) ensures that each task is allocated
exactly a side of one mated-station. Constraint (3) is
the precedence constraint and constraint (4) is the cycle
time constraint. Constraints (5)–(7) control the
sequence-dependent finishing time. For a pair of task i
and h, if h is an immediate predecessor of i on a same
mated-station, then constraint (5) becomes active and it
is reduced to t

f
i � t

f
h �

Pnr
r= 1 tir � yrjk. If a pair of task i

and task h has no precedence relations and they are
allocated to one same station, then constraints (6)
and (7) become active. If task i is assigned earlier than
task p, then constraint (6) becomes active and it is
reduced to t f

p � t
f

i �
Pnr

r = 1 tpr � yrjk . Otherwise, con-
straint (7) becomes active and it is reduced to
t

f
i � t f

p �
Pnr

r = 1 tir � yrjk. Constraint (8) ensures that the
finishing time of task i is larger than or equal to the
operation time of task i. Constraint (9) guarantees that
only one robot is allocated to each station and con-
straint (10) enforces that each robot can be assigned to
only one station. Constraint (11) handles the positional
constraint. Constraints (12) and (13) deal with the posi-
tive zoning constraint and the negative zoning con-
straint, respectively. Constraints (14) and (15) enforce
that each pair of tasks in the synchronism constraint is
allocated to the opposite sides of a same mated-station
with the same starting time.

C-PSO algorithm

The ALB problem is a well-known NP-hard problem.
The proposed problem also falls under this category
due to additional constraints. Hence, a metaheuristic
based on PSO is proposed to solve them. Researchers
have extensively implemented PSO algorithm (a
population-based stochastic optimization technique
developed by Kennedy and Eberhart25 to solve ALB
problems). The social behavior of bird flocking and
fish schooling when they are in search of food serves
as inspiration for the development of PSO. The major
advantages of using PSO26 compared to other meta-
heuristics are as follows: ease of implementation,
robustness, and very few parameters to be fine-tuned
for achieving the results. However, PSO algorithm
may easily get trapped in a local optimum when tack-
ling complex problems.27 In this article, concept of
co-evolution is incorporated to the standard PSO to
suit the problem and is termed as C-PSO algorithm

that is used to evaluate the problem addressed in
this article.

The proposed C-PSO consists of two sub-swarms
and each sub-swarm tackles one sub-problem. The two
sub-swarms evolve alternately and only one sub-swarm
evolves each time, while the other is kept fixed. To eval-
uate the individuals of a sub-swarm, the best individual
of the other sub-swarm is taken as the context vector
and then a solution can be constructed. The fitness of
the individual and the context vector is regarded with
the fitness of these individuals. Once each objective is
calculated, the population can proceed with the evolu-
tion mechanism of PSO. Cooperative mechanisms of
co-evolutionary algorithms are used and three improve-
ment strategies are proposed: local search for the global
best solution, modification of global best, and restart
mechanism. Detailed implementations of the strategies
are presented in the following section.

Solution representation

Nilakantan et al.2 develop a task permutation-oriented
encoding and decoding procedure for the robotic
assembly line, and the robot which can finish the tasks
with smallest time is selected. This method is practic-
able only for one-sided assembly line problems and this
method will be very complex to be used in solving two-
sided ALB problems. This is due to the fact that in
two-sided assembly line, there is an interference of the
tasks on two sides of mated-station which cannot be
ignored and the robots that can finish the tasks with
smallest time need to be decided as a pair of two robots.
Therefore, it is complex to obtain the best combina-
tions for robots on each mated-station.

Hence, in this article, a new way of representing the
solution is presented and it is described as follows: tak-
ing the first mated-station as example, 2nm 3

(2nm2 1) combinations should be checked before
selecting the best combination with smallest operation
time. Therefore, two vectors mp and lp are utilized for
task permutation and robot assignment, respectively,
where p(p 2 f1, 2, . . . ,PSg) is a solution in the popula-
tion. An example for a 12-task problem with initial
cycle time of 8 time units is depicted in Figure 2.

The vector lp determines the assignment of robots
and each element represents a station. For instance, the
number in the first position is 3 and thus, robot 3 is
allocated to the first station (the left side of the first
mated-station). The vector mp determines the task per-
mutation and each element indicates a task. Task 3 is
in the first position, and therefore, task 3 has highest
priority and is allocated first. Once the two vectors are
determined, the detail assignment of all the tasks is
done using a decoding procedure which is explained as
follows. Note that the cycle time constraint in Step 1
can be violated for the last mated-station so as to
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obtain a feasible solution and the largest finishing time
of mated-stations is taken as current cycle time:

Step 1: Decide whether assignable task exists and a
task is assignable while satisfying constraints (2–8).
Step 2: If no assignable task exists, this procedure
ends. Otherwise, execute Step 3.
//Station selection mechanism
Step 3: Obtain assignable task set for both sides and
then execute Step 4.
Step 4: If only one side has an assignable task, this
side is selected and go to Step 6. Otherwise, execute
Step 5.
Step 5: Select the side with smaller ending time or
select the left side by default when the capacities of
both sides are equal. Then, execute Step 6.
//Task selection mechanism
Step 6: Delete tasks which result in idle times when
there are tasks which can be operated at the earliest
start time of the current station.
Step 7: Select the assignable task which is the former
position of task permutation and then execute Step 1.

The improved decoding has mainly two features: sta-
tion selection mechanism and task selection mechan-
ism. The station selection mechanism selects the side
with large capacity, which can lead to better balance of
the two sides. The selection of the left side by default
can reduce the search space to a large extent. The task
selection mechanism deals with sequence-dependent
idle times and guarantees that the tasks are assigned
without generating idle times being selected at first.

Population evolution

Due to the discrete attribute of the ALB problem, the
original PSO which is designed for continuous

optimization problem cannot be applied directly. A
transformation is necessary, and there are many meth-
ods published, including the random key method in
Bean28 and the method used by Nilakantan et al.2 This
article develops a simple population updating mechan-
ism, which is described with the following two expres-
sions for task permutation and robot assignment,
respectively

mp =
g(h(mp),mGBest), if Rand()� c

g(h(mp),mLBest)

�
ð16Þ

lp =
g(h(lp), lGBest), if Rand()� c

g(h(lp), lLBest)

�
ð17Þ

where h(mp) or h(lp) means the self-modification,
g(h(mp),mGBest) or g(h(lp), lGBest) means updating posi-
tions to global best solution, g(h(mp),mLBest) or
g(h(lp), lLBest) indicates updating positions to local best
solution. These three operations respond to the initial
velocity, moving to global best and moving to local
best, respectively. Rand() is a random number between
0 and 1, and c is an acceleration coefficient within (0,1).
h (*) is achieved with swap operator or insert operator
and g (*, *) can be realized with crossover operator.

In this article, the insert operator, swap operator,
and two-point crossover operator are applied to h(mp),

h(lp), and g (*,*), respectively, after testing insert oper-

ator, swap operator, one-point crossover operator, and

two-point crossover operator. An example of two-point

crossover operator for task permutation is depicted in

Figure 3. After executing positions update, the greedy

acceptance is applied to preserve the better one between

new solution and incumbent one. This greedy accep-

tance is helpful to overcome prematurity and preserve

the diversity of the population.

Figure 2. Solution representation for 12-task problem.
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Local search for the global best

It is clear that the two sub-swarms interact through the
global best, and the quality of global best affects the
quality of the final solution to a large extent. Thus, a
strong local search method is developed and it is exe-
cuted only when a new global best is obtained. This
local search permits the variation of only task permuta-
tion or robot assignment and also allows the variation
of both task permutation and robot assignment. This
allowance of modification of two vectors simultane-
ously can increase the search space to a large extent.
The termination criterion is set as an iteration time
fixed to the square of the number of tasks so that there
is a large possibility for each task being allocated to all
the possible positions. The procedure for the local
search is presented in Figure 4.

Modification of global best and restart mechanism

The C-PSO algorithm is easily trapped into local
optima if the current global best remains unchanged.
To obtain a new global best, other particle in the popu-
lation or a restart mechanism must be employed. This
article develops two methods, called modification of
global best and restart mechanism.

In the modification of global best, an individual in
one sub-swarm cooperates with a neighborhood of

the best individual of the other sub-swarm. For vector
mp, a new solution is obtained by cooperating with
m0GBest applied with a swap operator. After all the indi-
viduals in this sub-swarm for task permutation are
tested, an individual in the other sub-swarm coop-
erates with m0GBest applied with the insert operator.
This procedure can further explore the neighborhood
of global best solution and the search space of other
solutions. In fact, the similarity of global best and
other individuals grows with each iteration and the
above procedure can expand the search space. The
modification of global best is applied when the global
best has not been improved in ‘‘u’’ iterations and it
continues only when a new global best solution is
obtained.

If the modification of global best cannot further
improve the global best, restart mechanism is utilized.
It consists of two steps: replacing the repeated indi-
vidual with a random generated vector and selecting
the best combination (mp, lp) 8p 2 f1, 2, . . . ,PSg as
the current global best. After involution, some
repeated individuals may arise and thus, these indi-
viduals are replaced with a random generated vector.
For the new global best, all combinations (mp, lp) are
tested and the best one is selected, which guarantees
the quality of new global best. After generating a new
global best, the local search in section ‘‘Local search
for the global best’’ can be applied to further improve
the quality of the global best. The restart mechanism
is utilized only when global best has not been
improved in u0 iterations.

Overall procedure of the C-PSO

The proposed C-PSO is improved to solve the investi-
gated problem with the incorporation of a restart
mechanism and the modification of the best solution.
The procedure of the C-PSO is depicted in Appendix 1.
Here, PS is the size of each sub-swarm, u is the number
of iterations before carrying out restart mechanism
procedure, and u is the number of iterations before
executing modification on the best solution.

Computational results

This section aims at testing the performance of the pro-
posed co-evolutionary algorithm and carries out a com-
prehensive comparison with different methods. First,
the details of the benchmark problems and the meta-
heuristic algorithms are explained. In the later part of
this section, details of the parameter calibration are
presented. Then, the experimental results are described
in detail and the performance of the proposed algo-
rithm is compared with other algorithms using statisti-
cal techniques.

Figure 3. Two-point crossover operator for task permutation.

Procedure Local search for global best 
Iter=0; 
While (Iter<nt*nt) do         
   Iter: =Iter+1; 
   If (Rand () <0.5) 
     Apply insert operator to task permutation once; 
     If (Rand () <0.5) 
       Apply swap operator to robot assignment once;  
     Endif 
   else 
      Apply swap operator to robot assignment once;  
      If (Rand () <0.5) 
       Apply insert operator to task permutation once; 
      Endif 

Apply greedy acceptance  

Figure 4. Local search for global best.
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Experimental design

Since there is limited literature dealing with two-sided
robotic assembly lines, a set of benchmark cases are
generated based on the well-known benchmark prob-
lems of two-sided ALB problems. Seven problems are
modified from the original TRALB problems to suit
the proposed problem. The details of the seven prob-
lems used are presented in Table 1.

P9, P12, and P16 are classified as small-sized prob-
lems and P24, P65, P148, and P205 are categorized as
large-sized problems. The seven problems cover all the
benchmark problems on two-sided ALB problem and
there are several cases with different numbers of mated-
station for each problem. The precedence diagrams and
the preferred directions of tasks are taken from the lit-
erature directly. To fit to the proposed problem in the
article, the operation time of task i by robot r is ran-
domly generated between [ti 3 0.8, ti 3 1.2], where ti is
the original published operation time in the above-
mentioned literature. Due to space constraints, the
operation times of tasks by robots are not presented
and they are available upon request.

To test the performance of the proposed C-PSO, five
other competitive algorithms are selected, including
PSO algorithm, a GA,29 artificial bee colony (ABC)
algorithm,30 SA algorithm,31 and a co-evolutionary
genetic algorithm (C-GA).29 PSO algorithm shares the
same procedure as the C-PSO except for utilizing best
individual of the other sub-swarm, and PSO has only
one swarm. GA and ABC also have only one swarm,
while C-GA has two sub-swarms and utilizes the best
individual of the other sub-swarm for population evolu-
tion. GA, ABC, SA, and C-GA are selected since they
have been applied to solve ALB problems, and they
have been utilized to solve the problem with two sub-
problems, namely ALB and sequencing problems. All
the algorithms are carefully re-implemented and a test
campaign among them is carried out with three differ-
ent stopping times (t = nt 3 nt 3 rms, r= 10, 20, 30)
on the seven problems. The termination criteria are set
based on the computational time for decoding once
which can be with multiple nt3 nt approximately. This
expression guarantees that the times of decoding are

similar for different cases and three different termina-
tion criteria can make the result comparison more rea-
sonable. All the algorithms are coded in C++
programming language on the platform of Microsoft
Visual Studio 2012. The proposed algorithms are tested
on computers with Intel(R) Core2(TM) CPU 2.33GHZ
and 3.036GB RAM. All the programming is available
upon request from readers.

Calibration of the algorithms

This section determines the best combination of para-
meters and shows the effectiveness of the improvement
strategies in section ‘‘C-PSO algorithm,’’ including the
local search for the global best solution, modification
of global best, and restart mechanism. The C-PSO has
five more parameters: the particle number in each
swarm, the number of swarms, the acceleration coeffi-
cient (c), the consecutive iterations for modification of
global best (u), and the consecutive iterations for restart
mechanism (u). Based on preliminary experiments, the
possible values of parameters are set as follows: particle
number in each swarm with three levels (20, 40,
and 60); number of swarms at three levels (4, 6, and 8);
c at four levels (0.4, 0.5, 0.6, and 0.7); u at four levels
(20, 50, 100, and 200); and u at four levels (20, 40, 60,
and 80). All these levels result in a total of
33 33 43 43 4=576 different configurations and
more configurations arise if three improvement strate-
gies are considered.

To avoid tremendous computational time, other fac-
tors are fixed first and three improvements are tested:
with or without utilization of the local search, with or
without utilization of modification of global best, and
with or without application of restart mechanism. To
avoid over-calibration, one case of the largest problem
(P205 with six mated-stations) is selected and each
combination tests this case five times. Note that the
combination of parameters for the largest case can be
applied to the small-sized problem with the cost of
large computational times. In the experiments, the
algorithms with different parameters can obtain similar
results for small-sized problems with the computational
time increasing. Once these experiments are finished,
the relative percentage increase (RPI) is applied to
transfer the experimental data. The expression
RPI= (Solsome � Solbest)=Solbest 3 100 is utilized to cal-
culate the RPI, where Solsome is the solution by an algo-
rithm for one case and Solbest is the best solution
among all the algorithms for the same tested case. The
multifactor analysis of variance (ANOVA) technique32

is proposed to analyze these RPI values and select the
best parameter combination after checking three
hypotheses (independence of the residuals, homogene-
ity of variance, and normality of the residuals). As for
the ANOVA results, the p value is an important factor

Table 1. Details of datasets.

Problem Category Number of tasks Source

P9 Small-sized 9 Kim et al.5

P12 Small-sized 12 Kim et al.5

P16 Small-sized 16 Lee et al.13

P24 Small-sized 24 Kim et al.5

P65 Large-sized 65 Lee et al.13

P148 Large-sized 148 Bartholdi4

P205 Large-sized 205 Lee et al.13
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and the effect of different levels is significantly different
statistically if the p value is less than a predetermined
number (0.05 is set in this article).

All the p values for three improvements are less than
0.05, and thus, they have important effect on the
improved C-PSO. Based on the ANOVA results, the
local search has the smallest p value, which suggests the
local search has the most important effect on the final
fitness. The mean plot of local search is depicted in
Figure 5(a) with 95% Tukey’s honest significant differ-
ence (HSD) confidence intervals. The mean plot sug-
gests that the C-PSO with local search performs better
than the one without local search. The mean plot of
restart mechanism which achieves the second smallest
p values is also plotted in Figure 5(b).

It is observed that the restart mechanism can
improve the performance of C-PSO statistically.
Consecutively, the modification of the global best can
also improve the performance of C-PSO. All the experi-
mental results demonstrate the efficiency of the three
improvements for C-PSO.

More experiments are carried out to select the best
combination for five more parameters, and ANOVA
technique is also applied to analyze the final results.
The final combination used in this article is as follows:
particle number in each swarm is 40, swarm number
is 6, c=0.5, u=40, and u=50.

Comparison of computational results among
algorithms

This section details the campaign of experiments and
analyzes the computational results. A total of 39 cases of
the 7 problems are solved by each algorithm, and a total
of 20 independent runs are performed for each case. The

proposed problem is tested on the well-known metaheur-
istics such as GA, ABC, SA, and PSO. The proposed
model is also tested on CPLEX optimization solver and
it could be seen that optimal solution could be achieved
only for the small-sized problems (P9, P12, and P16) and
in the case of large-sized problems, CPLEX could not
solve them due to longer computational time. The RPI
(RPI= (Solsome � Solbest)= Solbest 3 100) is applied to
transfer the computational results obtained through these
metaheuristics and CPLEX. For small-sized problems,
results obtained using the CPLEX solver are taken as
Solbest. For large-sized problems, Solbest is the best solu-
tion among all algorithms within 20 times’ run when
r= 30 since there is no optimal solution available using
CPLEX solver. The average RPI values of each problem
for 20 runs are reported in Table 2, and the results for
three termination criteria are all reported.

From Table 2, it is observed that the C-PSO per-
forms well for all the cases regarding to the overall RPI
values and it outperforms the others under all three ter-
mination criteria. If one focuses on the computational
results with at r= 10, it can be seen that the first smal-
lest overall RPI value belongs to C-PSO which is only
1.47% at r= 10, the second smallest RPI value belongs
to PSO which is 1.52%, and the third smallest one cor-
responds to C-GA which is 2.52%. C-PSO obtains the
smallest RPI values for the three small cases and
largest-size case. GA, ABC, and SA show much worse
overall RPI values, and the cooperative method C-GA
obtains better results, which demonstrate the effective-
ness of the cooperation for TRALB problems.

For other two termination criteria, r= 20, 30, it can
be seen that all the algorithms can improve their results
with more computational time, but SA as a local search
method can improve only a little. The proposed C-PSO

Figure 5. Means plots and 95% Tukey’s HSD confidence intervals of two improvements of C-PSO: (a) mean plot for the local
search and (b) mean plot for the restart mechanism.
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again achieves better overall RPI value than the other
four methods. Based on the results in Table 2, it is rea-
sonable to state that the proposed C-PSO method is a
highly effective method for solving TRALB problems.

In order to show the interaction between the compu-
tational time and algorithms, a multifactor ANOVA
test is carried out. The CPU times and the algorithms
are set as two factors. To have a better picture, impor-
tant four algorithms are compared; PSO, GA, C-GA,
and C-PSO, and ANOVA results show that there is a
significant difference among the two factors. The mean
plots of the interaction of the two factors are plotted in
Figure 6. It can be observed that the C-PSO outper-
forms the other three methods clearly for all three ter-
mination criteria.

The best results obtained by all metaheuristics for all
the problem cases are reported and compared. Detailed
results obtained for different cases for each problem
are presented in Table 3. Table 3 also reports the opti-
mal solutions (OPT) by CPLEX and the best results by
algorithms at nt3 nt3 30ms. In the case of the small-
sized problems, all metaheuristic algorithms can obtain
optimal solutions and they utilize much less

computational time. However, CPLEX is not able to
solve the large-sized problems while the near-optimal
results obtained using the metaheuristic within accepta-
ble computational time are presented.

The proposed C-PSO obtains the best results for
almost all problems. In addition, the C-PSO obtains
best results for almost all large-sized cases. Specifically,
the C-PSO obtains best results for 22 cases of P65,
P148, and P205, and C-GA obtains best results for one
case of P65, P148, and P205. If the C-PSO is removed,
PSO ranks second in the number of cases obtaining
best result and the C-GA ranks third. The above com-
parison further demonstrates the exploration capacity
of the C-PSO, PSO, and C-GA and also proves the
superiority of the C-PSO over other methods regarding
to the best cycle time.

To explain the superiority of the C-PSO, a detailed
comparison is carried out on the evolution process on
P205 with six mated-stations. Note that the restart
mechanism for PSO and C-PSO is not employed in this
case.

To obtain a better picture, parts of the algorithms
are reported in Figure 7(a) and (b). Figure 7(a) depicts

Table 2. Average RPI values for algorithms.

Problem nm Average relative percentage increase CPU time (s)

PSO GA ABC SA C-GA C-PSO

r= 10:00
P9 2, 3 0.00 0.00 0.00 0.00 0.00 0.00 0.81
P12 2, 3, 4, 5 0.00 0.00 0.00 0.00 2.19 0.00 1.44
P16 2, 3, 4, 5 0.00 0.00 0.00 3.23 0.00 0.00 2.56
P24 2, 3, 4, 5 1.06 2.18 1.08 3.49 2.24 1.19 5.76
P65 4, 5, 6, 7, 8 2.49 4.33 3.33 5.03 3.37 2.14 42.25
P148 4, 5, 6, 7, 8, 9, 10, 11, 12 1.93 3.87 3.11 4.34 2.68 2.04 219.04
P205 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 2.29 4.60 4.65 4.27 3.58 2.15 420.25
Average RPI for all cases 1.52 2.97 2.57 3.54 2.52 1.47 –
r= 20:00
P9 2, 3 0.00 0.00 0.00 0.00 0.00 0.00 1.62
P12 2, 3, 4, 5 0.00 0.00 0.00 0.00 0.62 0.00 2.88
P16 2, 3, 4, 5 0.00 0.00 0.00 3.23 0.00 0.00 5.12
P24 2, 3, 4, 5 0.91 2.18 0.91 3.44 1.62 0.83 11.52
P65 4, 5, 6, 7, 8 2.28 3.86 2.77 4.98 2.84 1.53 84.50
P148 4, 5, 6, 7, 8, 9, 10, 11, 12 1.45 3.57 2.70 4.24 2.27 1.44 438.08
P205 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 1.56 4.13 4.13 4.15 3.10 1.23 840.50
Average RPI for all cases 1.16 2.71 2.23 3.47 1.99 0.96 –
r= 30:00
P9 2, 3 0.00 0.00 0.00 0.00 0.00 0.00 2.43
P12 2, 3, 4, 5 0.00 0.00 0.00 0.00 0.00 0.00 4.32
P16 2, 3, 4, 5 0.00 0.00 0.00 3.23 0.00 0.00 7.68
P24 2, 3, 4, 5 0.85 1.80 0.80 3.44 1.48 0.74 17.28
P65 4, 5, 6, 7, 8 2.06 3.52 2.47 4.95 2.62 1.24 126.75
P148 4, 5, 6, 7, 8, 9, 10, 11, 12 1.25 3.40 2.47 4.13 2.05 1.13 657.12
P205 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 1.31 3.84 3.90 4.11 2.85 0.84 1260.75
Average RPI for all cases 1.01 2.50 2.07 3.43 1.76 0.73 –

RPI: relative percentage increase; CPU: central processing unit; PSO: particle swarm optimization; GA: genetic algorithm; ABC: artificial bee colony;

SA: simulated annealing; C-GA: co-evolutionary genetic algorithm; C-PSO: co-evolutionary particle swarm optimization.

Best solution is presented in bold.
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the best cycle time, and Figure 7(b) depicts the average
results of the population. In Figure 7(a), it is observed
that C-PSO outperforms the others from the beginning
to the end of 1400 s and it can obtain better results with
increasing computational time. The C-GA can also find
better best solution, whereas the GA and ABC can
improve a little or not improve after reaching 600 s.
These results prove that the C-PSO has stronger capac-
ity of finding a new best solution. In Figure 7(b), it
seems that the PSO and ABC can converge fast,
whereas there are also large deviations of the average
results for GA, C-GA, and C-PSO. Nevertheless, this
conclusion can be criticized due to the co-evolutionary

mechanism for the C-GA and C-PSO. As mentioned in
section ‘‘C-PSO algorithm,’’ the best individual of one
sub-swarm is taken as the context vector to evaluate
the individuals of the other sub-swarm. Once a new
best individual is obtained, the best individual for one
sub-swarm is updated and the combination of this new
best individual of one sub-swarm and most of the indi-
viduals from the other sub-swarm may have poor per-
formance resulting in a large average cycle time.
However, if the best individual is fixed, the C-PSO can
convergence within 300 s (0–300 s) for the first time,
within 100 s (300 s–400 s) for the second time, etc. The
PSO, on the contrary, takes more than 400 s (0–400 s)

Table 3. Result comparison among algorithms.

Problem nm CPLEX PSO GA ABC SA C-GA C-PSO

CT CPU time (s)

P9 2 4 0.21 4 4 4 4 4 4
3 3 0.18 3 3 3 3 3 3

P12 2 6 0.38 6 6 6 6 6 6
3 4 0.36 4 4 4 4 4 4
4 4 1.45 4 4 4 4 4 4
5 3 1.33 3 3 3 3 3 3

P16 2 21 1.57 21 21 21 21 21 21
3 14 0.92 14 14 14 14 14 14
4 13 412.15 13 13 13 13 13 13
5 9 2.38 9 9 9 9 9 9

P24 2 34 .3600 34 34 34 34 34 34
3 N/A N/A 22 22 22 22 22 22
4 N/A N/A 17 17 17 17 17 17
5 N/A N/A 14 14 14 14 14 14

P65 4 N/A N/A 583 583 587 592 585 577
5 N/A N/A 459 458 459 465 457 455
6 N/A N/A 383 383 386 388 382 379
7 N/A N/A 330 336 335 338 334 330
8 N/A N/A 290 298 293 294 291 291

P148 4 N/A N/A 581 584 585 588 582 579
5 N/A N/A 469 471 472 472 469 464
6 N/A N/A 388 398 394 395 389 386
7 N/A N/A 334 338 337 338 336 333
8 N/A N/A 292 294 294 296 293 291
9 N/A N/A 259 262 264 261 260 260
10 N/A N/A 236 238 237 238 233 235
11 N/A N/A 215 219 218 218 215 215
12 N/A N/A 197 203 199 202 196 196

P205 4 N/A N/A 2747 2763 2752 2750 2748 2726
5 N/A N/A 2222 2233 2221 2242 2232 2197
6 N/A N/A 1826 1839 1841 1852 1838 1806
7 N/A N/A 1560 1573 1584 1575 1556 1549
8 N/A N/A 1367 1372 1390 1384 1369 1357
9 N/A N/A 1214 1223 1241 1229 1211 1201
10 N/A N/A 1088 1106 1115 1097 1095 1085
11 N/A N/A 992 1019 1027 996 1013 984
12 N/A N/A 920 956 939 933 938 917
13 N/A N/A 843 868 865 857 861 832
14 N/A N/A 789 823 818 811 802 786

CPU: central processing unit; CT: cycle time; N/A: not available; PSO: particle swarm optimization; GA: genetic algorithm; ABC: artificial bee colony;

SA: simulated annealing; C-GA: co-evolutionary genetic algorithm; C-PSO: co-evolutionary particle swarm optimization.

Best solution is presented in bold.
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for convergence. Based on the results, it can be con-
cluded that the C-PSO can converge fast once the new
global best solution is found.

As a matter of fact, the high efficiency of C-PSO
results from two aspects: co-evolutionary mechanism
and three improvements especially designed for
TRALB on the C-PSO. This article utilizes two vectors,
task permutation vector and robot assignment vector,
to obtain a feasible solution. The co-evolutionary algo-
rithm is more practical for optimizing several vectors
simultaneously, and thus, the C-PSO outperforms the
PSO. This conclusion is further proved by the advan-
tage of C-GA over original GA. The C-PSO

outperforms the C-GA in three aspects, namely the
local search for the global best solution, modification
of global best, and restart mechanism. The perfor-
mance of C-PSO mainly depends on the quality of glo-
bal best individual, and thus, the local search is
developed to emphasize the intensification and obtain a
high-quality global best solution. The modification of
global best further explores the neighborhoods of the
global best solution and the main feature is that an
individual in one sub-swarm cooperates with a neigh-
borhood of the best individual resulting in a much
larger search space. The restart mechanism is utilized
to avoid this algorithm trapped into local optima.
These three improvements lead to the higher perfor-
mance of the C-PSO over the C-GA.

Managerial implications and conclusion

Robotic assembly lines are being extensively used by
industries due to the benefits such as flexibility and
quality of the product. Two-sided assembly lines are
being used mainly in automobile industries where large
quantities of the same products are assembled.
Optimizing cycle time is an important task in assembly
lines and to the author’s knowledge, there has been no
work reported on optimizing cycle time for two-sided
robotic assembly lines. This article presents a new type
of TRALB problem with an objective of minimizing
the cycle time. Optimizing cycle time is an important
problem in manufacturing and industry would like to
minimize the cycle time to improve productivity and
reduce the production cost and throughput time. The
proposed model in this article has significant manage-
rial implications. Since the implementation of two-

(a) (b)

Figure 7. Best cycle time and average cycle time during evolution process: (a) best cycle time with computational times and
(b) average cycle time with computational times.

Figure 6. Mean plots for interactions between CPU time and
algorithms (p = 10, 20, 30).
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sided robotic assembly line is a cost-intensive process,
usage of this proposed model can help the managers or
decision-makers at the industries to estimate the
resources required for this type of assembly line config-
uration and their corresponding performance. This
study will also help in balancing the resources required
and performance of the TRALB. This proposed model
can also help for better planning and control of activi-
ties in different scenarios.

Since this proposed problem falls in the category
of NP-hard problem, a metaheuristic algorithm based
on PSO approach is proposed. Co-evolution concept
is incorporated to the standard PSO and new strate-
gies to suit the problem are presented. Simulation
experiments are conducted on seven modified bench-
mark data and the obtained results are compared
with other well-known metaheuristic algorithms such
as GA, PSO, and ant bee colony optimization. From
the experimental study, it can be concluded that the
proposed C-PSO algorithm obtains better solutions in
terms of cycle time and computation time for most of
the cases. Results obtained by CPLEX solver are also
presented and it could be seen that the CPLEX could
find optimal solutions for small-sized problems and
the results obtained using C-PSO approach achieve
optimal or near-optimal solutions for most of the
problems.

In future work, realistic problems can be addressed
to eliminate the gap between scientific research and
practical implementations by considering more con-
straints in real application. New methods are also inter-
esting to solve the multi-objective two-sided robotic
assembly balancing problem, and the multi-objective
cooperative co-evolutionary algorithm may be a good
choice. The two-sided robotic assembly line with mixed
and multi-models can also be proposed. Another
research avenue is the ALB with both robotics and
human beings which have great ramifications in
industry.
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15. Özcan U. Balancing stochastic two-sided assembly lines:

a chance-constrained, piecewise-linear, mixed integer pro-

gram and a simulated annealing algorithm. Eur J Oper

Res 2010; 205: 81–97.
16. Chiang W-C, Urban TL and Luo C. Balancing stochastic

two-sided assembly lines. Int J Prod Res 2015; 54:

6232–6250.
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Appendix 1

The procedure of improved C-PSO.

Algorithm The C-PSO algorithm
Input: RTALB data, C-PSO parameters,
Output: Best solution so far
Begin:

Initial the two sub-swarms for task permutation,{m1, m2, . , mPS}, and robot assignment {l1, l2, . ,lPS}
Select the best individual as the global best solution (mGBest, lGBest) by testing (mp, lp) "p2 {1,2, . ,PS}
Execute local search on the global best solution

While (Termination criterion is not met) do
//Update task permutation
Obtain population with global best robot assignment lBest and their own task permutation mp

Calculate the fitness and determine the local best solutions
For i = 1,2, . ,PS do

Obtain new task permutation mp
0

Decode with mp
0 and lGBest

Apply the greedy acceptance
//Update robot assignment
Obtain population with global best task permutation mGBest and their own robot assignment lp

Calculate the fitness and determine the local best solutions
For i = 1,2, . ,PS do

Obtain new robot assignment lp
0

Decode with mGBest and lp
0

Apply the greedy acceptance
Update global best solution if necessary and execute local search on the new global best solution
//Modification of global best
Execute modification of global best if the global best has not been improved in u0 iterations
//Restart mechanism
Execute restart mechanism and local search if the global best has not been improved in f0 iterations
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