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Abstract

Background: Endemic presence of Klebsiella pneumoniae resistant to carbapenem in Italy has been due principally
to the clonal expansion of CC258 isolates; however, recent studies suggest an ongoing epidemiological change in
this geographical area.

Methods: 50 K. pneumoniae strains, 25 carbapenem-resistant (CR-Kp) and 25 susceptible (CS-Kp), collected from
march 2014 to march 2016 at the Laboratory of Bacteriology of the Paolo Giaccone Polyclinic University hospital of
Palermo, Italy, were characterized for antibiotic susceptibility and fully sequenced by next generation sequencing
(NGS) for the in silico analysis of resistome, virulome, multi-locus sequence typing (MLST) and core single
nucleotide polymorphism (SNP) genotypes

Results: MLST in silico analysis of CR-Kp showed that 52% of isolates belonged to CC258, followed by ST395 (12%),
ST307 (12%), ST392 (8%), ST348 (8%), ST405 (4%) and ST101 (4%). In the CS-Kp group, the most represented isolate
was ST405 (20%), followed by ST392 and ST15 (12%), ST395, ST307 and ST1727 (8%). The in silico β-lactamase
analysis of the CR-Kp group showed that the most detected gene was blaSHV (100%), followed by blaTEM (92%),
blaKPC (88%), blaOXA (88%) and blaCTX-M (32%). The virulome analysis detected mrk operon in all studied isolates,
and wzi-2 was found in three CR-Kp isolates (12%). Furthermore, the distribution of virulence genes encoding for
the yersiniabactin system, its receptor fyuA and the aerobactin system did not show significant distribution
differences between CR-Kp and CS-Kp, whereas the Klebsiella ferrous iron uptake system (kfuA, kfuB and kfuC genes),
the two-component system kvgAS and the microcin E495 were significantly (p < 0.05) prevalent in the CS-Kp group
compared to the CR-Kp group.
Core SNP genotyping, correlating with the MLST data, allowed greater strain tracking and discrimination than MLST
analysis.

Conclusions: Our data support the idea that an epidemiological change is ongoing in the Palermo area (Sicily,
Italy). In addition, our analysis revealed the co-existence of antibiotic resistance and virulence factors in CR-Kp
isolates; this characteristic should be considered for future genomic surveillance studies.
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Background
The World Health Organization (WHO), the US Centers

for Disease Control and Prevention (CDC) and the UK

Department of Health have indicated Klebsiella pneumo-

niae as one of the multi drug resistant (MDR) microor-

ganisms constituting an immediate threat for human

health [1–3]. K. pneumoniae, an opportunistic pathogen,

has emerged not only thanks to its ability to accumulate

multiclass antibiotic resistance determinants over time

[1] but also, as widely reported, to its adeptness in caus-

ing severe community- and hospital-associated infec-

tions [4–6].

K. pneumoniae “permeability” to mobile genetic ele-

ments is a key factor for its dissemination not only with

respect to the possibility of becoming resistant to antibi-

otics, but also of evolving towards more virulent pheno-

types thanks to genes that may provide a survival benefit

to microorganisms [7, 8]. However, in K. pneumoniae the

relation between resistance and virulence is a complex

issue since a systematic understanding of its population

structure is still lacking [4, 9]. This makes it difficult to

perceive the emergence of new clones, what instead could

be an advantageous approach to develop epidemiological

surveillance programs and avoid outbreaks, particularly of

strains which have become resistant to carbapenem (car-

bapenem-resistant K. pneumoniae, CR-Kp) [9–11].

The existing body of research on carbapenem-

resistance mechanisms suggests that the production of

K. pneumoniae carbapenemase (KPC) encoded by the

plasmidic gene blaKPC is the most common one and

its rapid dissemination has typically been caused by

the clonal expansion of clonal complex (CC) 258

strains, including ST258 and ST512 [12–16]. In Italy,

the first KPC-positive K. pneumoniae, belonging to

ST258, was isolated in Florence in 2008 [17]. Since

then, the diffusion of these strains has been evident.

In fact, the last European Antimicrobial Resistance

Surveillance Network report has confirmed an average

prevalence of CR-Kp of up to 33.9%, percentages that

make Italy an endemic country for this microorgan-

ism [18, 19].

To date, although some research has been carried out

on the diffusion and genetic characteristics of KPC-

positive K. pneumoniae in our region (Sicily, Italy), no sin-

gle study exists which has comprehensively described

these strains considering all of the Hospital’s Departments

for a period longer than 1 year [20–24].

In this study, we fully sequenced 50 K. pneumoniae

strains, both carbapenem resistant and -susceptible, col-

lected from March 2014 to March 2016 at the Labora-

tory of Bacteriology of the Department of Sciences for

Health Promotion and Mother-Child Care “G. D’Ales-

sandro” (Paolo Giaccone Polyclinic University Hospital,

University of Palermo, Italy).

The primary aim of this study was to take a current

snapshot of the distribution of K. pneumoniae in our

geographic area by: 1) characterizing the virulome and

resistome of CR-Kp clones; 2) assessing the extent to

which virulence determinants were carried by CR-Kp

and CS-Kp (carbapenem susceptible K. pneumoniae); 3)

investigating the phylogenetic correlations among sam-

ples by Multilocus sequence typing (MLST) in silico and

the analysis of core single nucleotide polymorphisms

(SNPs).

Methods
Bacterial strains and antimicrobial susceptibility testing

Species and antimicrobial susceptibility were determined

using the Becton- Dickinson Phoenix™ automated system

(Becton Dickinson, Sparks, MD, USA). Resistance to car-

bapenem was established by interpreting the results of

the antimicrobial susceptibility test on the basis of the

breakpoint criteria of the European Committee on Anti-

microbial Susceptibility Testing [25]. On the base of car-

bapenem susceptibility the 50 strains were divided in 25

isolates resistant (CR-Kp) and 25 sensitive (CS-Kp).

Table 1 shows the entire clinical sample and the depart-

ments of isolation.

DNA isolation

The template DNA was prepared from bacterial colonies

grown for 18 h on Blood Agar plates. Colonies were

picked and suspended in 500 μl of ultra-pure DNase-free

water. The suspension was harvested at 14000 rpm for

10min. The supernatants were discarded while DNA

from the pellets were extracted using the QIAmp® DNA

Mini kit Qiagen (QIAGEN; Hilden, Germany), the quan-

tity and purity of the DNA were determined using

NanoDrop 8000 spectrophotometer (Thermo Fisher Sci-

entific, Waltham).

Whole-genome sequencing

Isolate’s genomes were fully sequenced at the Scientific

Department, Army Medical Center, Military Polyclinic

of Rome (Italy) using the next-generation sequencing on

the Illumina MiSeq platform (San Diego, CA, USA) as

recommended by the manufacturer. The library sizes

had peaks centered from 900 to 1000 bp.

The reads were de novo assembled into contigs using

AByss, version 1.5.2 (k parameter = 63) [22]. Contigs lon-

ger than 500 bp were selected using an ad hoc script and

kept for further analysis. The final assembly ranged from

44 to 414 (median: 143) contigs per sample (N50: 335,

064–64,441; median: 111,289). Contigs were merged

through the Minimus2 software (Sommer et al., 2007)

and resulting DNA sequences were analysed for similar-

ity using the database sequences by the Standard Nu-

cleotide BLAST program (http://blast.ncbi.nlm.nih.gov/
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Table 1 K. pneumoniae CR and CS isolates, department of isolations, host disease, host age and clinical sample

CR-
Kp
ID

Department host disease host
age

Sample CS-
Kp
ID

Department host disease host
age

Sample

1 R General surgeries
emergencies

sepsi 70 Blood PVC 1 S Endocrinology and
Metabolic diseases

ICU 75 Urine

2 R Anaesthesia and
resuscitation

sepsi 46 Blood CVC 2 S Surgical Oncology ICU 81 Urine

3 R Anaesthesia and
resuscitation

sepsi 59 Blood PVC 3 S Nephrology and
Hypertension

ICU 70 Urine

4 R Anaesthesia and
resuscitation

pneumoniae 60 Bronchoalveolar
lavage

4 S Clinical Respiratory Medicine ICU 64 Urine

5 R General surgeries
emergencies

sepsi 36 Intra-abdominal
fluid

5 S General and Thoracic
Surgery

ICU 52 Wound swab

6 R Internal Medicine
Cardioangiology

sepsi 36 Blood PVC 6 S Geriatric medicine infected
wound

21 Urine

7 R Cardiac surgery sepsi 53 Blood CVC 7 S Geriatric medicine ICU 82 Ulcer swab

8 R Clinical Respiratory
Medicine

ICU 77 Urine 8 S Plastic surgery infected
wound

82 Tissue

9 R Internal Medicine ICU 49 Urine 9 S Clinical Respiratory Medicine infected
wound

74 Urine

10 R Clinical Respiratory
Medicine

ICU 79 Urine 10 S Internal Medicine
Cardioangiology

ICU 76 Sputum

11 R Geriatric medicine ICU 90 Urine 11 S Infectious disease pneumoniae 77 Sputum

12 R Endocrinology and
Metabolic diseases

ICU 84 Urine 12 S Clinical Respiratory Medicine pneumoniae 22 Bronchoalveolar
lavage

13 R Anaesthesia and
resuscitation

sepsi 70 Blood PVC 13 S NICU pneumoniae 81 Endotracheal
tube

14 R Internal Medicine
Cardioangiology

sepsi 54 CVC 14 S Haematology and Bone
Marrow Transplantation

pneumoniae 15
days

Sputum

15 R Cardiac surgery pneumoniae 72 Bronchoalveolar
lavage

15 S Rheumatology pneumoniae 83 Urine

16 R Anaesthesia and
resuscitation

ICU 60 Urine 16 S Internal Medicine ICU 73 Sputum

17 R Internal Medicine
Cardioangiology

infected
wound

38 Ulcer swab 17 S Geriatric medicine pneumoniae 76 Urine

18 R Internal Medicine
Cardioangiology

pneumoniae 77 Sputum 18 S Rheumatology ICU 36 Urine

19R Cardiac surgery infected
wound

71 Wound swab 19 S Clinical Respiratory Medicine ICU 91 Sputum

20 R Clinical Respiratory
Medicine

ICU 80 Urine 20 S General surgeries
emergencies

pneumoniae 63 Liquor

21 R General surgeries
emergencies

bile
infections

65 Bile 21 S Internal Medicine
Cardioangiology

Meningitidis 92 Urine

22 R Anaesthesia and
resuscitation

sepsi 70 Blood CVC 22 S Anaesthesia and resuscitation ICU 82 Urine

23 R Cardiac surgery pneumoniae 62 Sputum 23 S Haematology and Bone
Marrow Transplantation

ICU 70 Cutaneous swab

24R General surgeries
emergencies

sepsi 72 Intra-abdominal
fluid

24 S Tourism and Migration infected
wound

81 Urine

25 R General surgeries
emergencies

sepsi 54 Abscess fluid 25 S Internal Medicine
Cardioangiology

ICU 71 Urine

CVC: central venous catheter, ICU: intensive care unit, NICU: neonatal intensive care unit, PVC: Peripheral venous catheter
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Blast.cgi). Illumina-generated sequence data for the

whole data set of this study have been deposited at NCBI

(BioProject id: PRJNA515715 and accession number

SUB5047324).

Analysis of virulome and resistome

Virulome of all K. pneumoniae sample was analysed using

the VirulenceFinder-1.4 tool and the Pasteur K. pneumo-

niae database. The resistome of carbapenem-resistant K.

pneumoniae was analysed using the ResFinder-2.1 soft-

ware (default identity thresholds [ID] 98%) which was pro-

vided by the Center for Genomic Epidemiology (http://

www.genomicepidemiology.org) and the resources of the

Pasteur MLST K. pneumoniae database.

Multilocus sequence typing (MLST) in silico

he in silico MLST analysis was made by comparing

the whole-genome sequences against the K. pneumo-

niae alleles profiles available at http://www.pasteur.

fr/mlst (Genotyping of Pathogens and Public Health,

Institute Pasteur, Paris, France).

Core single-nucleotide polymorphisms (SNPs)

Phylogenetic analysis based on genome-wide single nu-

cleotide polymorphisms (SNPs) were conducted detecting

SNPs through the kSNP v2.1.2 program (k-mer = 21),

which defines a SNP locus as an oligo of length k sur-

rounding a central SNP allele [26]. Maximum likelihood

tree based on the 57,766 core SNPs identified by kSNP

program was visualised using the Dendroscope v3.2.10

software [27]. Strain 8S, K. pseudopneumoniae, was used

as outgroup to root the tree.

Statistical analysis

Data were expressed as absolute numbers or percentages.

The Chi-squared test was used to compare proportions (as

appropriate). Values of p < 0.05 were considered statistically

significant. The statistical analysis were performed with Med-

Calc Statistical software version 16.8 (MedCalc Software

bvba, Ostend, Belgium; https://www.medcalc.org; 2016).

Results
CR-Kp were mainly isolated from blood and urinary

samples (28% for both) (Fig. 1), while the ward from

which CR-Kp was primarily isolated was the Anaes-

thesia and Resuscitation Department (24%) (Table 1).

Regarding CS-Kp, urines were the major isolation

sample (52%) (Fig. 1), while the ward from which

CS-Kp was primarily isolated was the Respiratory

Department (52%) (Table 1).

Antibiotic resistance

The percentages of antibiotic resistance among K. pneumo-

niae carbapenem-resistant and carbapenem-susceptible

strains are reported in Table 2. As shown, the CR-Kp group

displayed a higher percentage of resistance for all tested an-

tibiotics compared to the susceptible group. Statistical sig-

nificance was calculated where applicable. In particular,

20% of CR-Kp and 4% of CS-Kp were colistin-resistant.

Complete antibiotic resistance profile of CR-Kp are shown

in Additional file 1.

MLST analysis and Core single-nucleotide polymorphisms

(SNPs) phylogenetic analysis

MLST in silico analysis of CR-Kp revealed that 52%

belonged to CC258. In particular, 5 strains were ST258

(20%) and 8 were ST512 (32%). The remaining 12 strains

Fig. 1 Samples from where isolated the strains
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Table 2 Percentage of antibiotic resistance in carbapenem resistant and susceptible K. pneumoniae

Class Antibiotics K. pneumoniae CR % K. pneumoniae CS % P value

Aminoglicosydes Gentamycin 64 48 0.022

Carbapenems Imipenem 100 0 NA

Meropenem 100 0 NA

Ertapenem 100 0 NA

Monobactams Aztreonam 100 60 NA

Fluoroquinolones Ciprofloxacin 100 64 NA

Sulfonamides-
Trimethoprim

Trimethoprim-sulfamethoxazole 76 60 0.015

Penicillin Amoxicillin/ clavulanic acid 100 56 NA

Piperacillin/tazobactam 100 44 NA

Cephalosporin Cefotaxime 100 60 NA

Cefuroxime 100 60 NA

Cefepime 88 56 0

Ceftazidime 100 60 NA

Fosfomycin c/G6P 36 16 0.001

Tetracyclin Tigecyclin 8 4 0.233

Colistin 20 4 0

NA: chi-squared test not applicable

Fig. 2 Percentage of ST found
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were distributed as follows: 3 were ST395 (12%), 3 were

ST307 (12%), 2 were ST392 (8%), 2 were ST348 (8%), 1

was ST405 (4%) and 1 was ST101 (4%). Among CS-Kp’s

we detected 14 different STs. ST405 was the most repre-

sented (5 strains, 20%), followed by ST392 and ST15 (3

strains, 12%), ST395, ST307 and ST1727 (2 strains, 8%),

and one strain each for all other STs. Figure 2 shows ST

distribution across the entire sample.

The core-SNP phylogenetic analysis showed that

strains belonging to the same ST clustered in the same

groups, without regard to CR susceptibility or resistance

(see Additional file 3). Moreover, the SNP analysis allows

distinguishing each different strain.

Virulome: CR-Kp group versus CS-Kp group

Virulence factors distribution in CR-Kp and CS-Kp is

detailed in Table 3. The mrk operon, which encodes type

3 fimbriae, was detected in all isolates. The wzi gene, in-

volved in the capsule attachment to the host cell surface

and used for the prediction of capsular (K) antigen type,

was found in all CR-Kp isolates (100%), in particular, 3

strains carried the wzi-2 allele (see Additional file 4). Re-

garding the iron acquisition systems, the distribution of

genes encoding for the yersiniabactin system (ybt), its re-

ceptor fyuA and the aerobactin system did not show sig-

nificant differences between CR-Kp and CS-Kp (Table

3). Klebsiella ferrous iron uptake system (kfuA, kfuB and

kfuC genes), the two-component system kvgAS and the

microcin E495 were significantly (p < 0.05) prevalent in

the CS-Kp group (28%) compared to the CR-Kp one

(4%) (Table 3).

Table 4 displays the comparative analysis of virulence

determinants between CR-Kp and CS-Kp belonging to

the same ST. All strains belonging to ST405, regardless

of their resistance profile, had the same determinants

(mrk, wzi-143, ybt, microcin E495 and kvgAS. Regarding

the strains belonging to ST307, both CR-Kp and CS-Kp

strains had the mrk operon, wzi-173 and ybt operon,

with the exception of the 5R isolate, lacking ybt genes

(Table 4).

Virulome subanalysis by STs across the CR-Kp group

CR-Kp isolates belonging to ST512, ST258 did not carry

virulence determinants other than mrk and wzi (Table

4). The three strains belonging to ST395 carried four

virulence determinants: mrk, fyuA/irp2, iucABCD and

wzi type 2. wzi gene type 27 was found in the two ST392

isolates together with the mrk operon. Strains belonging

to ST348 carried the mrk operon, ybt operon and wzi-94

gene, whereas the ST101 strain exhibited mrk, ybt op-

eron, wzi type 17 and the kfuABC system. The ST405

isolate was the only one that carried the kvgAS operon

and the microcin E495, together with the mrk operon,

ybt operon and the wzi-143.

Resistome analysis across the CR-Kp group

The in silico β-lactamase characterisation of CR-Kp isolates

showed that the most frequent carbapenemase-producing

gene was blaSHV (100%). In particular, SHV variant 182

was detected in 16 out of 25 isolates (64%), while variant 28

in four strains (16%), three ST307 and the only ST101 iso-

late. blaKPC was identified in 88% of isolates and the most

common variant was blaKPC-3 (90.9%). blaTEM was

found in 23 isolates (92%), all of which were variant 1 and

blaCTX-M (variant 15) was found in 8 isolates (32%).

blaOXA was found in 22 isolates (88%), 14 of these were

Table 3 Distribution of virulence factors in carbapenem resistant and susceptible K. pneumoniae strains

Virulence factors Locus-Genes K. pneumoniae CR
n (%)

K. pneumoniae CS
n (%)

P value

Type 3 fimbries mrk operon 25 (100%) 25 (100%) 1.000

Capsule wzi 25 (100%) 23 (92%) 0.552

Iron acquisition
systems

ybt operon 10 (40%) 15 (60%) 0.089

Aerobactin iron acquisition
siderophore
(iucABCD)

3 (12%) 3 (12%) 1.000

Klebsiella
Ferric ionic-uptake system
(kfuABC)

1 (4%) 7 (28%) 0.020

Two-component
system

kvgAS 1 (4%) 7 (28%) 0.020

Bacteriocin Microcin E492 1 (4%) 7 (28%) 0.020

Table 4 Distribution of virulence determinants in STs clone of K.
pneumoniae CR and CS

STs CR-Kp CS-Kp

ST395 mrk, wzi-2, ybt, yuc, mrk, wzi-2, ybt, yuc

ST307 mrk, wzi-173 ybt 1 mrk, wzi-173, ybt

ST392 mrk, wzi-187 mrk, wzi-187

ST405 mrk, wzi-143, ybt, kvgAS, E495 mrk, wzi-143, ybt, kvgAS, E495
1missing in one of the three CR isolates
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variant 9 (63.6%), 5 were variant 1 (22.72%) and 3 isolates

(13.63%) presented both variants, blaOXA-1 and blaOXA-

9. Five isolates, one belonging to ST395, two to ST307, one

to ST101 and one to ST405 owned all the five

carbapenemase-producing genes investigated (Table 5).

Complete data from the in silico analysis (e.g. encoding ef-

flux pumps, heavy metal resistance system, genes involved

in aminoglycoside and fluoroquinolone resistance) are

shown in Additional file 2.

Discussion
The epidemiology of CR-Kp in our geographic area (Pa-

lermo, Italy) has already been characterized in the late

2008 at the emergence of CR-Kp ST258 clones [20].

However, several reports have suggested an ongoing epi-

demiological change in the last years. In fact, whereas

CC258 (ST258 and ST512) is still prevalent, several

other STs are emerging and circulating [23, 24, 28].

This study set out with the aim of assessing the

current dissemination and genetic characteristics of K.

pneumoniae in Palermo. Even though a larger sample

may have allowed to gain more representative data, our

preliminary data reveal a complex situation character-

ized by: 1) high genome “plasticity” of both CR-Kp and

CS-Kp, due to the presence of several virulence and re-

sistance determinants carried by mobile genetic ele-

ments; 2) a CR-Kp group showing an important genetic

diversity of lineages, with 8 different STs identified; 3)

an overlapping of multi-drug resistance and hyper viru-

lence traits in the CR-Kp group.

Regarding STs, our comprehensive analysis indicates

that, although ST258 and ST512 remain the most repre-

sentative ones, other STs (e.g. ST307, ST395, ST392,

ST348, ST405 and ST101) have been detected in our

area. These results are consistent with the surveillance

data from other authors [20–24, 28]. Moreover, our

findings on β-lactamase characterisation showed that the

blaSHV gene was the most commonly found in our

sample, followed by blaTEM and blaKPC, deviating

from other studies [11, 29, 30], while respect to the

KPC-type enzyme our results are in line with those of

other studies - as the most commonly encountered is

Table 5 K. pneumoniae CR profile: colistin susceptibility, carbapenemase, ESBL and beta-lactamases genes

STs ID CS (mg/L) bla KPC bla SHV bla CTX-M bla TEM bla OXA

ST512 6 R <=1 3 182 – 1 9

7 R <=1 3 182 – 1 9

8 R <=1 3 182 – – –

11 R <=1 3 182 – 1 9

16 R <=1 3 182 – 1 9

19 R > 4 3 182 – – 1

22 R <=1 3 182 – 1 9

25 R <=1 3 182 – 1 9

ST258 12 R <=1 3 182 – 1 9

18 R <=1 3 182 – 1 9

21 R <=1 3 182 – 1 9

23 R > 4 3 182 – 1 9

24 R <=1 3 182 – 1 9

ST395 2 R <=1 3 182 – 1 –

4 R <=1 3 182 15 1 1

10 R <=1 3 182 – 1 –

ST307 5 R <=1 9 28 15 1 9

13 R <=1 3 28 15 1 1/9

20 R > 4 R 2 28 – 1 1/9

ST392 1 R <=1 3 67 15 1 9

3 R <=1 – 67 15 1 1

ST 348 15 R > 4 R – 81 15 1 1

17 R <=1 – 81 15 1 1

ST 101 9 R <=1 3 28 – 1 9

ST 405 14 R > 4 R 3 76 15 1 1/9
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blaKPC-3 [21, 23, 31–33]. Regarding STs, the most rep-

resented across the CR-Kp group were ST512 and

ST258. These isolates did not carry any distinguishing

virulence determinant (except for the mrk operon and

wzi gene, which were present in all the samples), sug-

gesting that the success of these clones may only depend

on the acquisition of the blaKPC gene [9, 15, 34].

Among the ST512 isolates, we found the 19R strain

profile to be particularly interesting. This colistin-

resistant strain was the only one in its ST group that

showed both the yersiniabactin system and its receptor,

which has been detected in several K. pneumoniae MDR

clones; despite of this, the clinical effect of the yersinia-

bactin system on CR-Kp infections has not been clearly

determined [4, 35, 36].

Our data also match those of reports suggesting the

recent spread of the well-known clone ST307. In fact,

in 2014, a CR-Kp ST307 clone carrying the blaKPC-3,

coproducing the blaCTX-M-15, has been isolated in

three Palermo’s Hospitals [23]. The virulome analysis of

our ST307 strains has revealed, that 5R isolate was the

only one missing the yersiniabactin locus in its ST

group. Furthermore, 13R and 5R isolates, two of the

three strains belonging to ST307, showed the co-

presence of all five carbapenem resistance genes ana-

lysed. The co-presence of the detected virulence factors

together with the MDR phenotype may explain the dif-

fusion of this clone and the severity of its infections,

which have been reported as characterised by higher

mortality rates (over 50%) compared to other clones

[37, 38]. Moreover, leaving aside specific considerations

about the clone ST307, the co-presence of five carba-

penem resistance genes that we detected in five strains

of our sample (20%) is in line with that of a study by

Ferreira et al., which has recently reported that 72% of

the K. pneumoniae isolated from a Brazilian Intensive

care Unite co-produced blaKPC, blaOXA, blaTEM,

blaSHV, and blaCTX-M [39].

Another emerging clone, already isolated by other au-

thors in Palermo and also detected in our CR-Kp sam-

ple, was the ST395 [40]. Strains belonging to this clone

presented the wzi2 allele, which encodes the type K2

capsular antigen that represents one of the most virulent

serotypes, thus defined “more virulent” [41, 42]. CR-Kp

ST395 strains also carried the yersiniabactin system and

its receptor and were the only resistant isolates to pos-

sess the aerobactin system (iucABCD). Two aspects of

these strains should be addressed here: i) 4R isolate

showed the co-presence of five carbapenem resistance

genes; ii) to the best of our knowledge, this is the first

time that a CR-Kp ST395 clone is reported as carrying a

type 2 capsule. This finding was unexpected and seems

to be in contrast with the concept that MDR and hyper

virulent clonal complexes do not normally overlap [42].

Moreover, our data confirm the spreading of the

ST392 clone. A recently published study by Di Mento

and colleagues has reported, for the first time, the isola-

tion of a K. pneumoniae strain ST392 blaKPC-3 carrying

the blaCTX-M-15, blaSHV-11 and blaTEM-1 genes

from a patient in Palermo who had undergone kidney-

pancreas transplantation [43]. In our CR-Kp ST392 sam-

ple, the 1R strain which was isolated from blood at the

General and Emergency Surgery Department in 2015,

showed the co-existence of blaKPC-3, blaSHV-67,

blaCTX-M-15, blaTEM-1 and blaOXA-9. This result is

interesting as the only other KPC-producing K. pneumo-

niae ST392 ever reported was isolated in China but with

a different isoform, KPC-2 [44]. However, it is important

to underline that the other ST392 strain (3R) in our CR-

Kp sample did not carry the blaKPC gene, suggesting

that the ST392 KPC-3 clone may have acquired the re-

sistance gene through horizontal transmission, as de-

scribed by other authors [43].

This study also revealed two MDR CR-Kps belonging

to ST348 and carrying the blaCTX-M-15, blaSHV-81,

blaTEM-1 and blaOXA-1 genes. Strains belonged to

ST348, but harboured the blaKPC-3, which had been

previously reported as responsible of several epidemic

events in Portugal [45]. Considering that one of our iso-

lates was colistin-resistant and the ease with which K.

pneumoniae acquires the blaKPC gene, we can consider

the MDR CR-Kp ST348 strains as possibly emerging

high-risk clones.

Three other important data that emerge from our re-

sults and complete the description of the CR-Kp epi-

demiological scene in Palermo are: firstly, the circulation

of strains belonging to ST101. This clone was previously

recognized worldwide as a high risk carbapenem-

producing clone [30] and has already been identified in

Palermo and in the North of Italy [46–48]. Our ST101

strain (9R) carried the blaKPC-3, blaSHV-28, blaTEM-1

and blaOXA-9 genes and the Klebsiella ferrous uptake

system, which is typically found in K. pneumoniae hyper-

virulent strains [49, 50]; secondly, the characteristic of the

strain belonging to ST405, which carried the blaKPC-3,

blaCTX-15, blaSHV-76, blaTEM-1 and blaOXA-1/9

genes, the aac6-Ib-cr and qnrB and was resistant to colis-

tin. Strains from ST405 have similarly caused an outbreak

in a Spanish Hospital neonatal unit [50] and have already

been isolated in Palermo [24]. It is important to underline

that the genes involved in microcin production and kvgA/

S system were detected in all isolates belonging to ST405,

both resistant and susceptible to carbapenem, possibly in-

dicating a stable and characteristic genetic pattern for

these clones; lastly to the best of our knowledge this is the

first study to report in Italy the isolation of five CR-Kp iso-

lates belonging to different STs showing the co-presence

of five carbapenem resistance genes.
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Conclusions
These results are significant in at least two major re-

spects. Overall, this study strengthens the idea that the

epidemiological frame in the Palermo area (Sicily, Italy)

is shifting and new MDR clones are emerging. However,

our analysis, which included the comparison of the viru-

lence degree of CS-Kp and CR-Kp isolates, has unex-

pectedly revealed that the latter are acquiring highly-

virulent determinants and the co-presence of more re-

sistance genes. Undoubtedly, since co-existence of anti-

biotic resistance and virulence factors may lead to life-

threatening untreatable and invasive K. pneumoniae in-

fections, this is an important issue to take into consider-

ation for future genomic surveillance studies.
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