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Abstract

Motivation: In recent years, gene expression studies have increasingly made use of high-through-

put sequencing technology. In turn, research concerning the appropriate statistical methods for the

analysis of digital gene expression (DGE) has flourished, primarily in the context of normalization

and differential analysis.

Results: In this work, we focus on the question of clustering DGE profiles as a means to discover

groups of co-expressed genes. We propose a Poisson mixture model using a rigorous framework

for parameter estimation as well as the choice of the appropriate number of clusters. We illustrate

co-expression analyses using our approach on two real RNA-seq datasets. A set of simulation stud-

ies also compares the performance of the proposed model with that of several related approaches

developed to cluster RNA-seq or serial analysis of gene expression data.

Availability and and implementation: The proposed method is implemented in the open-source

R package HTSCluster, available on CRAN.

Contact: andrea.rau@jouy.inra.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The application of high-throughput sequencing (HTS) to the study of

gene expression has revolutionized the scope and depth of understand-

ing of the genome, epigenome and transcriptome of dozens of organ-

isms. In particular, the recent use of HTS technologies to sequence

ribonucleic acid content (RNA-seq), has rivaled the use of microarrays

for transcriptomic studies as it offers a way to quantify gene expression

without prior knowledge of the genome sequence by providing counts

of transcripts. Although both technologies seem to be complementary

(Naghavachari et al., 2012; SEQC/MAQC-III Consortium, 2014;

Wang et al., 2014), RNA-seq can provide information about the tran-

scriptome at a level of detail not possible with microarrays, including

allele-specific expression and transcript discovery.

Although a variety of different protocols exist for HTS studies,

the same broad preprocessing steps are followed. Namely, if an

appropriate genome sequence reference is available, reads are

mapped to the genome or transcriptome; otherwise, de novo assem-

bly may be used. After alignment or assembly, read coverage for a

given biological entity (e.g. a gene) is subsequently calculated.

The quantification of gene expression in RNA-seq data remains an
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active area of research (Trapnell et al., 2010), and in this work, we

focus on measures of digital gene expression (DGE) (counts). These

count-based measures of gene expression differ substantially from

data produced with microarrays. For example, RNA-seq data are

discrete, positive, and highly skewed, with a very large dynamic

range. In addition, due to the sampling nature of sequencing, low

precision tends to be observed for weakly to moderately expressed

genes (McIntyre et al., 2011). Finally, sequencing depth (i.e. the

library size) and coverage vary between experiments, and read

counts are known to be correlated with gene length (Łabaj et al.,

2011; Oshlack and Wakefield, 2009).

To date, most developments concerning the statistical analysis of

RNA-seq data have dealt with the issues of experimental design (Auer

and Doerge, 2010), normalization (Robinson and Oshlack, 2010) and

the analysis of differential expression (Anders and Huber, 2010; Auer

et al., 2012; Law et al., 2014; McCarthy et al., 2012; Zhou et al.,

2014). In this work, we focus on the question of co-expression

analyses for RNA-seq data. Identifying biological entities that share

similar profiles across several treatment conditions, such as co-

expressed genes, may help identify groups of genes that are involved

in the same biological processes (Eisen et al., 1998; Jiang et al., 2004).

Clustering analyses based on metric criteria, such as the K-means algo-

rithm (MacQueen, 1967) and hierarchical clustering (Ward, 1963),

have been used to cluster microarray-based measures of gene expres-

sion as they are rapid, simple and stable. However, such methods

require both the choice of metric and criterion to be optimized, as

well as the selection of the number of clusters. An alternative to such

methods are probabilistic clustering models, where the objects to be

classified (genes) are considered to be a sample of a random vector

and a clustering of the data is obtained by analyzing the density of this

vector (McLachlan et al., 2004; Yeung et al., 2001).

Presently, most proposals for clustering RNA-seq data have

focused on grouping together biological samples rather than biological

entities (e.g. genes). For example, Anders and Huber (2010) perform a

hierarchical clustering with a Euclidean distance of samples following

a variance-stabilizing transformation, and Severin et al. (2010) cluster

fourteen diverse tissues of soybean using hierarchical clustering with

Pearson correlation after normalizing the data using a variation of the

Reads Per Kilobase per Million mapped reads (RPKM) measure.

Witten (2011) discussed the clustering of samples using hierarchical

clustering with a modified loglikelihood ratio statistic as distance

measure based on a Poisson loglinear model; this model is similar to

that of Cai et al. (2004) for the clustering of Serial Analysis of Gene

Expression (SAGE) gene profiles using a K-means algorithm and a

Poisson loglinear model. More recently, Si et al. (2014) considered

Poisson and negative binomial mixture models to develop a model-

based hybrid-hierarchical clustering algorithm.

In this work, like Cai et al. (2004) and Si et al. (2014), we focus

on the use of Poisson loglinear models for the clustering of count-

based HTS expression profiles; however, rather than using such a

model to define a distance metric to be used in a K-means or

hierarchical clustering algorithm, we make use of finite mixtures of

Poisson loglinear models. This framework has the advantage of

providing a straightforward procedure for parameter estimation and

model selection, as well as a per-gene conditional probability of

belonging to each cluster.

2 Methods

Let Yijl be the random variable corresponding to the DGE measure

for biological entity i (i ¼ 1; . . . ; n) of condition j (j ¼ 1; . . . ;d) in

biological replicate l (l ¼ 1; . . . ; rj), with yijl being the corresponding

observed value of Yijl. Let q ¼
Xd

j¼1
rj be the total number of vari-

ables (all replicates in all conditions) in the data, such that y ¼ ðyijlÞ
is the n�q matrix of the DGE for all observations and variables,

and yi is the q-dimensional vector of DGE for all variables of obser-

vation i. We use dot notation to indicate summations in various dir-

ections, e.g. y�jl ¼
X

i

yijl; yi�� ¼
X

j

X

l

yijl, and so on.

2.1 Poisson mixture model
To cluster RNA-seq data, we consider a model-based clustering

procedure based on a mixture of Poisson distributions. The data y

are assumed to come from K distinct subpopulations (clusters), each

of which is modeled separately (McLachlan and Peel, 2000). The

overall population is thus distributed under the following mixture:

f ðy; K;WKÞ ¼
Yn

i¼1

XK

k¼1

pkfkðyi;uikÞ (1)

where WK ¼ ðp1; . . . ; pK�1; u
0Þ0; u0 contains all of the parameters

in fuikgi;k and p ¼ ðp1; . . . ; pKÞ0 are the mixing proportions, with

pk 2 ð0; 1Þ for all k and
XK

k¼1
pk ¼ 1.

Although a multivariate version of the Poisson distribution does

exist (Karlis, 2003), it is difficult to implement, particularly for data

with high dimensionality. For this reason, the samples are assumed

to be independent conditionally on the components:

fkðyi; uikÞ ¼
Yd

j¼1

Yrj

l¼1

Pðyijl; lijlkÞ;

where Pð�Þ denotes the standard Poisson probability mass function

and uik ¼ flijlkgj;l
. We note that the conditional independence of

components could be considered to be a rather strong assumption.

However, this assumption appears to be quite reasonable and is

often employed to analyze multivariate categorical data; for in-

stance, the latent class model is a reference model in model-based

cluster analysis of categorical data (McCutcheon, 1987). When this

conditional independence assumption is not expected to hold, in

practice it leads to a larger number of clusters and a more complex

mixture model that is still able to adequately fit the data. Moreover,

attempts to avoid this assumption are definitively inefficient in high

dimension settings.

Each mean lijlk is parameterized by

lijlk ¼ wisjlkjk (2)

where wi ¼ yi:: corresponds to the overall expression level of obser-

vation i (e.g. weakly to strongly expressed) as well as a proxy for

gene length, and sjl represents the normalized library size for

replicate l of condition j, such that
X

j;l
sjl ¼ 1. These normalization

factors take into account the fact that the number of reads expected

to map to a particular gene depends not only on its expression level,

but also on the library size (overall number of mapped reads) and

the overall composition of the RNA population being sampled

(Dillies et al., 2012). In particular, larger library sizes result in higher

counts for the entire sample. We note that fsjlgj;l
are estimated from

the data prior to fitting the model (see Section 2.3 for more details),

and like the overall expression levels wi, they are subsequently con-

sidered to be fixed in the Poisson mixture model. Note that under

these conditions, as the marginal sums are fixed for each gene, the

model in Equation (1) is in fact a multinomial mixture model.

Finally, the unknown parameter vector kk ¼ ðk1k; . . . ; kdkÞ corres-

ponds to the clustering parameters that define the profiles of the

genes in cluster k across all biological conditions.
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2.2 Inference
To estimate mixture parameters WK ¼ ðp; k1; . . . ; kKÞ by computing

the maximum likelihood estimate (MLE), an Expectation-

Maximization (EM) algorithm is considered (Dempster et al., 1977).

The mixture model in Equation (1) is thought of as an incomplete

data structure model, with complete data

ðy; zÞ ¼ ððy1; z1Þ; . . . ; ðyn; znÞÞ

where the missing data are z ¼ ðz1; . . . ; znÞ ¼
ðzik; i ¼ 1; . . . ; n; k ¼ 1; . . . ;KÞ, such that zik¼1 if observation i

arises from group k and 0 otherwise. The latent variable z thus de-

fines a partition P ¼ ðP1; . . . ;PKÞ of the observed data y with

Pk ¼ fi; zik ¼ 1g.
After initializing the parameters Wð0ÞK and zð0Þ by a so-called

small-EM strategy (Biernacki et al., 2003) (see Section 2.3 for more

details), the E-step at iteration b corresponds to computing the con-

ditional probability that an observation i arises from the kth compo-

nent for the current value of the mixture parameters:

t
ðbÞ
ik ¼

pðbÞk fkðyi; u
ðbÞ
ik Þ

XK

m¼1

pðbÞm fmðyi;u
ðbÞ
im Þ

(3)

where u
ðbÞ
ik ¼ fwisjlk

ðbÞ
jk gjl

. Then, in the M-step the mixture param-

eter estimates are updated to maximize the expected value of the

completed likelihood, which leads to weighting the observation i for

group k with the conditional probability t
ðbÞ
ik . Thus,

pðbþ1Þ
k ¼ 1

n

Xn

i¼1

t
ðbÞ
ik and kðbþ1Þ

jk ¼
Pn

i¼1 t
ðbÞ
ik yij�

sj�
Pn

i¼1 t
ðbÞ
ik yi��

;

since wi ¼ yi��. Note that at each iteration of the EM algorithm, we

obtain that
Pd

j¼1
kðbÞjk sj: ¼ 1. Thus kðbÞjk sj� can be interpreted as the pro-

portion of reads that are attributed to condition j in cluster k, after

accounting for differences due to library size; this proportion is

shared among the replicates of condition j according to their respect-

ive library sizes sjl.

For model selection (i.e. the choice of the number of clusters K),

a reference penalized likelihood criterion with a fixed penalty for

mixture models is the Bayesian Information Criterion (BIC)

(Schwarz, 1978):

BICðKÞ ¼ �log f ðy; K; ŴKÞ þ
�K

2
logðnÞ

where ŴK are the ML parameter estimates and �K ¼ ðK� 1Þ þ K

�d is the number of free parameters in the model with K clusters;

the use of the BIC is primarily motivated by asymptotic properties

that may not hold in practice. An alternative approach to model

selection is the use of the so-called slope heuristics (Birgé and

Massart, 2001, 2006), which is a data-driven method to calibrate

a penalized criterion that is known up to a multiplicative constant.

Briefly, in our context the penalty is assumed to be proportional to

the number of free parameters �K (i.e. the model dimension), such

that penðKÞ / j�K; we note that this assumption may be verified in

practice. The penalty is calibrated using the data-driven slope esti-

mation (DDSE) procedure available in the capushe R package

(Baudry et al., 2012). This procedure directly estimates the slope

of the expected linear relationship of the loglikelihood with respect

to the model dimension for the most complex models (here, models

with large K). Denoting the estimated slope ĵ, in our context the

slope heuristics consists of setting the penalty to be 2ĵ�K.

The number of selected clusters K̂ then corresponds to the value of

K minimizing the penalized criterion:

critðKÞ ¼ �log f ðy; K; ŴKÞ þ 2ĵ�K:

For more details, see Baudry et al. (2012).

Finally, based on ŴK̂ , each observation i is assigned to the

component maximizing the conditional probability t̂ ik (i.e. using the

so-called MAP rule).

2.3 HTSCluster R package
Our proposed clustering procedure based on a Poisson mixture

model is implemented in the R package HTSCluster, freely avail-

able on CRAN; in this section, we describe some of the options

available in this package.

2.3.1 Normalization factors

In the model described in Equation (2), the cluster-specific param-

eters kjk are assumed to be shared among replicates within the same

condition j; as such, our model assumes that differences in mean ex-

pression for a given gene among replicates within the same condition

may be explained by differences in library sizes. As described in

Section 2.1, these library size normalization factors sjl are estimated

from the data and considered to be fixed parameters in the Poisson

mixture model. Several options are available in HTSCluster to

provide estimates for these normalization factors, including the

Trimmed Mean of M-values (TMM) normalization (Robinson and

Oshlack, 2010) in the edgeR Bioconductor package (Robinson

et al., 2010) and the median ratio normalization developed in the

DESeq Bioconductor package (Anders and Huber, 2010). Although

Dillies et al. (2012) performed an evaluation of the impact of these

normalization factors in the context of differential analyses, such a

comparison remains an open research question for co-expression

analyses.

2.3.2 Parameter estimation and initialization

For parameter estimation in HTSCluster, in addition to the EM al-

gorithm described above, it is also possible to use the so-called CEM

(Clustering EM) algorithm (Celeux and Govaert, 1992). The CEM

algorithm estimates both the mixture parameters and the cluster

labels by maximizing the completed likelihood. In the E-step of the

algorithm, the conditional probabilities t
ðbÞ
ik are computed as in

Equation (3). In the C-step, the MAP rule is used to assign each

observation to a component. Finally, in the M-step, the mixture

parameter estimates are updated by maximizing the completed like-

lihood. Contrary to the EM algorithm, the CEM algorithm con-

verges in a finite number of iterations, although it does provide

biased estimates of the mixture parameters [see for instance

McLachlan and Peel (2000), Section 2.21]. Because it aims to

maximize the completed likelihood, where the component label of

each sample point is included in the data, the CEM may be seen as a

K-means-like algorithm.

To initialize parameter values for the EM algorithm, the default

option is a so-called small-EM strategy (Biernacki et al., 2003),

where the following procedure is used to obtain initial parameter

values: first, the data are partitioned into K clusters (ẑð0Þ) using

either a K-means algorithm (MacQueen, 1967) or the splitting ini-

tialization strategy of Papastamoulis et al. (2014), where the cluster

from the model with K – 1 clusters with the largest entropy is chosen

1422 A.Rau et al.
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to be split into two new clusters. Second, initial parameter values

pð0Þ and kð0Þ are calculated as follows:

pð0Þk ¼
1

n

Xn

i¼1

ẑ
ð0Þ
ik and kð0Þjk ¼

X

i

yij�ẑ
ð0Þ
ik

sj�
X

i

wiẑ
ð0Þ
ik

:

Third, 10 iterations of the EM algorithm are run. Finally, the par-

ameter estimates k̂ and p̂ are used initialize the subsequent full EM

algorithm.

2.3.3 Additional options

Finally, HTSCluster provides flexibility to the user through a var-

iety of graphical representations as well as a set of additional op-

tions, including the following: (i) cluster proportions p can be

variable (the default option) or fixed to be equal for all clusters; and

(ii) one or more clusters may be included with a fixed value for kk.

The latter option may be particularly useful in the context of differ-

ential analyses, where a group of genes may be assumed to have

identical expression across experimental conditions. We recently

proposed an approach and an associated R package HTSDiff that

make use of this particular functionality.

3 Results

3.1 Real data analysis
In the following, we illustrate the use of the HTSCluster package

for a co-expression analysis of two real RNA-seq datasets. We stress

that in both cases, it is not possible to compare the co-expression

results obtained using HTSCluster to a ‘true’ clustering of the

data, as such a classification does not generally exist. However, in

order to identify whether co-expressed genes appear to be implicated

in similar biological processes, we conduct functional enrichment

analyses of gene ontology (GO) terms for the clusters identified by

HTSCluster.

3.1.1 Dynamic expression of the transcriptome in embryonic flies

As part of the modENCODE project, which aims to provide func-

tional annotation of the Drosophila melanogaster genome, Graveley

et al. (2011) characterized the expression dynamics over 27 distinct

stages of development during the life cycle of the fly using RNA-seq.

In this work, we focus on a subset of these data from 12 embryonic

samples that were collected at 2-h intervals for 24 h, with one biolo-

gical replicate for each time point. The phenotype tables and raw

read counts for the 13 164 genes with at least one non-zero count

among the 12 time points were obtained from the ReCount online

resource (Frazee et al., 2011).

Over three independent runs, we used the HTSCluster pack-

age with default settings and the splitting small-EM initialization

strategy (described in Section 2.3.2) to fit a sequence of Poisson

mixture models with K ¼ 1; . . . ; 60 clusters; for each number of

clusters, the model corresponding to the largest loglikelihood

among the three runs was retained. To ensure that the collection of

models considered is large enough to apply the slope heuristics

model selection, one additional set of Poisson mixture models was

fit for K ¼ 65; . . . ; 95 (in steps of 5) and K ¼ 100; . . . ;130 (in steps

of 10). Using the slope heuristics, the number of clusters was deter-

mined to be K̂ ¼ 48; see the Supplementary Materials for more

detail.

Visualizing the results of a co-expression analysis for RNA-seq

data can be somewhat complicated by the extremely large dynamic

range of DGE and the fact that more highly expressed genes tend to

exhibit greater variability (though much smaller coefficients of vari-

ation) than weakly expressed genes. Two possibilities to avoid this

issue are to apply a logarithmic transformation to obtain pseudo-

counts (Robinson et al., 2010) or a variance-stabilizing transform-

ation (Anders and Huber, 2010) prior to graphical representation;

however, the choice of the data to be visualized (e.g. raw, scaled, or

transformed data) as well as the most appropriate manner in which

they should be graphically displayed are still an open matter of

research. For the purposes of co-expression, rather than directly vis-

ualizing the data themselves, we propose an alternative visualization

of the overall behavior of each cluster, as shown in Figure 1. In this

plot, bar widths correspond to the estimated proportion of genes in

each cluster (p̂k), and the proportion of reads attributed to each

developmental time point in each cluster k̂ jksj: are represented by the

colored segments within each bar. The advantage of such a visual-

ization is that it enables a straightforward comparison of typical

gene profiles among clusters. For instance, it can be seen that

clusters characterized by higher relative expression in the early

embryonic stages, such as Clusters 6 and 13 (composed of 70 and

Fig. 1. Visualization of overall cluster behavior for the Drosophila melanogaster developmental data. For each cluster, bar plots of k̂ jk sj� are drawn for each devel-

opmental time point, where the width of each bar corresponds to the estimated proportion p̂k
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60 genes, respectively) tend to be much smaller than those with

higher relative expression in later stages, e.g. Clusters 4, 18, 19 and

21 (composed of 567, 680, 485 and 475 genes, respectively).

A functional enrichment analysis of GO biological processes

revealed that of the 48 clusters identified by HTSCluster, 33 were

associated with at least one GO term. For example, cluster 39 was

found to be associated with terms pertaining to morphogenesis

(GO:0009653, GO:0048858) and cell development (GO:0048468),

while cluster 6 is associated with muscle attachment (GO:0016203).

As a comparison, we also fit the closely related Poisson and negative

binomial mixture models proposed by Si et al. (2014) for K¼48

clusters; for these models, a total of 22 and 25 clusters, respectively,

were associated with at least one GO term. Additional details may

be found in the Supplementary Materials.

3.1.2 Sex-specific expression using RNA-seq in human liver cells

High-throughput transcriptome RNA-seq data were obtained

(Sultan et al., 2008) from a human embryonic kidney (HEK293T)

and a Ramos B cell line, with two biological replicates in each

experimental condition. The raw read counts for 9010 genes and

phenotype tables were obtained from the ReCount online resource

(Frazee et al., 2011). Following filtering using the HTSFilter pack-

age (Rau et al., 2013) to remove weakly expressed genes across the

two conditions, 4956 were retained for the subsequent coexpression

analysis.

As for the previous dataset, we applied the HTSCluster pack-

age with default parameters and the splitting small-EM initialization

strategy over three independent runs to fit a sequence of Poisson

mixture models with K ¼ 1; . . . ; 50, where only the model with the

highest loglikelihood for each number of clusters was retained. One

additional set of models was fit for K ¼ 55; . . . ;75 (in steps of 5) to

ensure the applicability of the slope heuristics for model selection.

Using the slope heuristics, the number of clusters was determined to

be K̂ ¼ 15; additional details may be found in the Supplementary

Materials.

As before, a visualization of the overall behavior of genes belong-

ing to each cluster may be found in Figure 2. It can be noted that

Cluster 1 represents a fairly large number of genes (540) with

dominant expression in the HEK293T cell line, whereas the much

smaller Cluster 2 (192 genes) represents those genes primarily

expressed in the Ramos B cell line; on the other hand, Clusters

12–15 represent groups of genes (212, 546, 511 and 365 genes,

respectively) with largely balanced expression in the two cell lines.

We note that such a visualization may be useful as a complement to

a full differential expression analysis, as it enables a global charac-

terization of the differences that are present between the two

conditions.

A functional enrichment analysis of GO biological processes

revealed that, of the 15 clusters identified by HTSCluster, 11 were

associated with at least one GO term. For example, Cluster 4 is asso-

ciated with terms related to morphogenesis (GO:0048644,

GO:0055008) and mesenchyme tissue development (GO:0060485),

while Cluster 10 is associated with the negative regulation of action

potential, nitric oxide synthase activity, oxidoreductase activity and

leukocyte activity (GO:0045759, GO:0051001, GO:0051354,

GO:0002695). In comparison, the closely related Poisson and nega-

tive binomial mixture models proposed by Si et al. (2014) were also

estimated for K¼15 clusters; for these models, a total of 10 and 5

clusters, respectively, were associated with at least one GO term.

Additional details may be found in the Supplementary Materials.

3.2 Simulation study
In this section, we perform a set of simulation experiments in order

to compare the performance of the proposed Poisson mixture model

to that of several alternative related approaches, described below.

3.2.1 Description of alternative clustering approaches

• PoisL: Originally proposed for SAGE data, the PoisL approach

(Cai et al., 2004) assumes that, given the cluster k, genes follow a

Poisson distribution with mean lijk ¼ wikjk, under the constraint

that
X

j
kjk ¼ 1 for all k; the existence of replicates within each

condition is not taken into account in the original method. Using

this model, a K-means algorithm is proposed, where each

gene i is assigned to the cluster k at iteration b if

k ¼ argmink0 � log fk0 ðyi; fl
ðbÞ
ijk gj
Þ. This procedure is exactly

equivalent to the Poisson mixture model implemented in

HTSCluster with equiprobable Poisson mixtures (i.e. pk ¼ p
for all k), parameter estimation via the CEM algorithm, and

unreplicated data. For comparison with the other methods

described here, we also include normalization factors sjl in the

model as replicates are present.
• Witten: Witten (2011) recently considered the issue of clustering

samples, rather than genes, using RNA-seq data. After fitting a

Poisson loglinear model to the power-transformed data (Li et al.,

2012), complete linkage hierarchical clustering is applied to the

dissimilarity matrix calculated using a modified loglikelihood

ratio statistic to compare Poisson distributions. Although this

method was originally proposed to cluster samples, Witten

(2011) claims that it may also be used to cluster genes in RNA-

seq data. This procedure is available in the R package PoiClaClu.
• Si-Pois and Si-NB: Si et al. (2014) consider Poisson mixture mod-

els (Si-Pois) where logðlijlkÞ ¼ aijl þ ai þ bjk with the constraintX
j
bjk ¼ 0 for all k, where aijl is a normalization factor that

simultaneously accounts for the length of gene i and the library

size of replicate l in condition j. An EM algorithm and two

stochastic versions are proposed to estimate the remaining

parameters. Following parameter estimation, a model-based

hybrid-hierarchical clustering algorithm is developed to build a

hierarchical tree. In addition, Si et al. (2014) also consider nega-

tive binomial mixture models (Si-NB) parameterized by the same

mean as the Si-Pois method described above. A per-gene disper-

sion parameter is estimated by quasi-likelihood prior to fitting

Fig. 2. Visualization of overall cluster behavior for the human liver RNA-seq

data. For each cluster, bar plots of k̂ jk sj� are drawn for each experimental

condition, where the width of each bar corresponds to the estimated

proportion p̂k
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the model and considered to be fixed. The remainder of the

Si-NB procedure is similar to Si-Pois, and both may be imple-

mented using the R package MBCluster.Seq.
• K-means: As a comparison, we also consider a classic K-means

algorithm (MacQueen, 1967) with the usual Euclidian distance,

which is applied to the gene expression profiles ~y ¼ ð~y1; . . . ; ~ynÞ
such that ~y i ¼ fyijl=wigj;l

.

We note that model selection is not addressed by any of the

methods described above; for this purpose, we use the index

proposed by Caliński and Harabasz (1974) (Witten, Si-Pois, and

Si-NB), which is a pseudo F-statistic that compares between and

within-cluster dispersion, or the slope heuristics (PoisL) to select the

appropriate number of clusters and deduce a data clustering.

Although the slope heuristics could potentially be used for the

Si-Pois and Si-NB methods, the output provided by their implemen-

tation in the MBCluster.Seq package renders this calculation dif-

ficult in practice. In addition, we note that all methods (with the

exception of the Si-NB and classic K-means) are based on the use of

an underlying Poisson model.

3.2.2 Simulation strategy

Using the parameter estimates obtained by HTSCluster in the fly

and human liver RNA-seq datasets (described in Section 3.1), we

simulated 50 datasets for each setting under a Poisson mixture

model as in Equation (2) in the following manner.

For the simulations based on each real dataset (fly or human

liver), the numbers of conditions and replicates per condition were

fixed to be equivalent to the experimental design of each real data-

set. The number of clusters K was fixed to be equivalent to 15; for

the human liver data, this corresponds to the model selected via the

slope heuristics, while for the fly data, 15 clusters were randomly

chosen among the 48 estimated in the selected model. In addition,

normalization factors sjl, cluster proportions pk (renormalized to

sum to 1, in the case of the fly data), and cluster parameters kjk were

fixed to be their estimated values for each dataset, and overall

expression levels wi were fixed to be equal to the observed yi�� val-

ues. A total of n¼3000 genes were randomly sampled from the fly

or human liver data, weighted by their maximum conditional

probability from the selected HTSCluster model. For each

sampled gene i, we sampled from the appropriate Poisson distribu-

tion Yijl � PðlijlkÞ, where lijlk ¼ wisjlkjk if ẑ ik ¼ 1. In all datasets,

we verified that simulated data were indeed represented by K¼15

clusters.

3.2.3 Results

For each simulated dataset in the two settings (fly and human liver),

HTSCluster and the methods described in Section 3.2.1 were fit

over a range of possible numbers of clusters (K ¼ 1; . . . ;40), with

model selection performed using the slope heuristics (HTSCluster,

PoisL) or the CH index (Witten, Si-NB, Si-Pois). In addition, for all

competing approaches, the model with the true number of clusters

(K¼15) was also included. Models were subsequently compared

using the adjusted Rand index (ARI) (Hubert and Arabie, 1985) and

the estimated number of clusters K̂, shown in Tables 1 and 2,

respectively. The oracle ARI is also included for comparison, based

on the assignment of observations to components maximizing the

conditional probability using the true parameter values in the

Poisson mixture model.

In both simulation settings considered here, we note that a major

difficulty for the alternative methods is the choice of the number of

clusters to be included; the Witten, Si-Pois, and Si-NB methods all

exhibit significantly lower ARI values when model selection is per-

formed using the CH index as compared to when the true number of

clusters is fixed. This difficulty appears to be especially pronounced

for the Witten approach, where ARI values for the model selected

using the CH index is less than 0.2 in both simulation settings and

the selected number of clusters is significantly underestimated. For

the Si-Pois and Si-NB methods, the CH index also tends to under-

estimate the number of clusters present in the data, although this

trend is less marked than for the Witten approach, particularly in

the human simulated data. In the case of the PoisL approach, al-

though the slope heuristics approach appears to generally yield an

appropriate estimate of K in both simulation settings, the corres-

ponding ARI values tend to be lower than those attained by the

HTSCluster approach.

Even when the number of clusters is fixed to the true value, the

competiting methods tend to have equivalent or smaller ARI values

than the models selected via slope heuristics for the proposed

HTSCluster approach, in spite of the fact that all approaches

(with the exception of Si-NB and K-means) also make use of an

underlying Poisson model. In other words, if the true number of

clusters is known, the performance of the Si-Pois and Si-NB

approaches is quite good and very nearly attains that of the oracle

model; however, when the number of clusters must be estimated

from the data (as is typically the case in real applications),

HTSCluster has much stronger performance than the competing

methods on these simulated data. Model selection via the slope heur-

istics for the HTSCluster approach leads to a slight overestimation

of the number of clusters, but these slightly more complex models

have ARI values close to those found using the oracle Poisson mix-

ture model. Finally, we note that the clustering task in the human

liver setting (where only two conditions are present) appears to be

Table 1. Mean (SD) ARI for simulations with parameters based on

the fly and human liver

Method Model selection Fly Human

HTSCluster capushe 0.93 (0.05) 0.61 (0.02)

True K 0.84 (0.09) 0.60 (0.02)

PoisL capushe 0.79 (0.15) 0.53 (0.05)

True K 0.82 (0.05) 0.53 (0.04)

Witten CH index 0.15 (0.07) 0.11 (0.03)

True K 0.67 (0.09) 0.39 (0.04)

Si-Pois CH index 0.26 (0.17) 0.48 (0.04)

True K 0.95 (0.02) 0.61 (0.02)

Si-NB CH index 0.23 (0.16) 0.47 (0.04)

True K 0.94 (0.02) 0.60 (0.02)

K-means True K 0.79 (0.08) 0.42 (0.02)

Oracle True K 0.95 (0.01) 0.63 (0.01)

Note: The largest values in each simulation setting are highlighted in

bold font.

Table 2. Mean (SD) estimated number of clusters determined by

the slope heuristics (HTSCluster and PoisL) or the CH index

(Witten, Si-Pois, Si-NB) for simulations with parameters based on

the fly and human liver data

HTSCluster PoisL Witten Si-Pois Si-NB

Criterion capushe capushe CH CH CH

Fly 19.9 (5.3) 14.1 (5.1) 2.3 (0.6) 3.9 (2.4) 3.3 (1.9)

Human 21.2 (5.5) 15.9 (4.0) 2.8 (0.4) 8.4 (2.1) 8.4 (2.4)

Note: The true number of clusters for all simulations was fixed to K¼ 15.
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much more difficult for all methods considered here than in the fly

setting (where 12 unreplicated conditions are present), as evidenced

by the smaller oracle ARI value. This is perhaps unsurprising, as it is

more difficult to discern differing cluster profiles for only two

conditions than when multiple conditions are available; this can be

seen in the overall cluster behavior in the two real data analyses

(Figs 1 and 2).

4 Discussion

In this work, we have proposed a method and associated R package

HTSCluster to cluster count-based DGE profiles based on a

Poisson mixture model that enables the use of a rigorous framework

for parameter estimation (through the EM algorithm) and model se-

lection (through the slope heuristics). The model is parameterized to

account for several characteristics of RNA-seq data, including: (i) a

set of normalization factors (sjl) to account for systematic differences

in library size among biological replicates, (ii) a per-gene offset par-

ameter (wi) to account for differences among genes due to overall

expression level and (iii) a condition-specific cluster effect (kjk). As

the marginal sums of each gene are fixed in the model, variations in

expression among experimental conditions may be modeled

throughout the extremely large dynamic range of DGE typical of

RNA-seq data. In particular, this parameterization enables a

straightforward interpretation of the model, as kjksj� corresponds to

the proportion of reads attributed to condition j in cluster k. A

co-expression analysis on two sets of real RNA-seq data highlighted

the functionality of HTSCluster in practice, in particular with

respect to model selection and visualization of overall cluster behav-

ior. Finally, the processing time and memory requirements of

HTSCluster reflect the fact that parameter estimation must be per-

formed over a large set of models to enable model selection; one run

of HTSCluster (version 2.0.4) took about 50 minutes and used

about 450 MB of memory for the human liver data (K ¼ 1; . . . ;50),

and about 2 h with 1800 MB of memory for the fly developmental

data (K ¼ 1; . . . ; 60). (All analyses were run on a Dell Latitude

E6530 quad-core 2.70 GHz Intel(R) Core(TM) with 10GB RAM,

running a 64-bit version of Windows 7 Professional.)

As previously mentioned, HTSCluster shares some similarities

with other related approaches, although there are several key differ-

ences. First, we note that both PoisL (Cai et al., 2004) and Witten

(2011) also make use of an underlying Poisson model; however,

rather than using a finite mixture model, the former uses a K-means

algorithm based on the loglikelihood and the latter applies a

hierarchical clustering procedure based on a pairwise dissimilarity

matrix of dimension (n�n). On the other hand, Si et al. (2014) sug-

gest the construction of a hierarchical tree of either Poisson (Si-Pois)

or negative binomial (Si-NB) mixture models with an alternative

parameterization to that proposed here. Contrary to all of these

alternative related approaches, the HTSCluster approach provides

a straightforward and robust way to choose the number of clusters

present in a given dataset.

A set of simulation studies, with parameters selected based on

two real datasets, allowed a comparison of HTSCluster with the

aforementioned related approaches in a controlled scenario. These

simulations highlighted the importance of an appropriate procedure

to perform model selection, as well as the satisfactory performance

of HTSCluster in the objective of clustering and estimating the

number of clusters. In addition, even when the number of clusters

was fixed to the true value, we found that the alternative methods

were generally observed to have similar or lower ARI values than

HTSCluster. However, conclusions from these simulations should

be drawn with some caution, particularly as the data were simulated

based on a mixture of Poisson distributions. A great deal of discus-

sion has focused on the most appropriate way to simulate RNA-seq

data in the context of differential expression (Soneson and

Delorenzi, 2013), and for the time being this remains an open

question for co-expression analyses.

Finally, we note that in the context of differential expression

analyses, the scientific community has generally focused on the use

of negative binomial models due to the large variability typically

observed among replicates for a fixed gene. This so-called overdis-

persion is modeled via the inclusion of a common dispersion param-

eter / or a per-gene dispersion parameter /i, typically estimated

using a shrinkage approach (Robinson and Smyth, 2007) or a

parametric regression fit across all genes (Anders and Huber, 2010).

The Si-NB approach (Si et al., 2014) recently attempted to apply a

similar approach to the task of co-expression analysis through a

finite mixture of negative binomial models, where /i is estimated

from the data using a quasi-likelihood approach and treated as fixed

in the mixture. However, for co-expression analyses it is difficult to

estimate these per-gene dispersion parameters in practice due to the

small number of replicates typically available in experiments

concerning multiple conditions. A useful direction for future

research may be to define a mixture of negative binomial models in

which information about this dispersion parameter is shared among

genes belonging to the same cluster.
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Caliński,T. and Harabasz,J. (1974). A dendrite method for cluster analysis.

Commun. Stat. Theory Methods, 3, 1–27.

1426 A.Rau et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/9/1420/200490 by U
.S. D

epartm
ent of Justice user on 16 August 2022

1
2
,
3
-
(), 
ours
-
-


Celeux,G. and Govaert,G. (1992). A classification EM algorithm for clustering

and two stochastic versions. Comp. Stat. Data Anal., 14, 315–332.

Dempster,A. P. et al. (1977). Maximum likelihood from incomplete data via

the EM algorithm. J. Royal Stat. Soc. Series B (Methodological), 39, 1–38.

Dillies,M.-A. et al. (2013). A comprehensive evaluation of normalization

methods for Illumina high-throughput RNA sequencing data analysis. Brief.

Bioinform., 14, 671–83.

Eisen,M. B. et al. (1998). Cluster analysis and display of genome-wide expres-

sion patterns. PNAS, 95, 14863–14868.

Frazee,A.C. et al. (2011). ReCount: a multi-experiment resource of analysis-

ready RNA-seq gene count datasets. BMC Bioinformatics, 12.

Graveley,B.R. et al. (2011). The development transcriptome of Drosophila

melanogaster. Nature, 471, 473–479.

Hubert,L. and Arabie,P. (1985). Comparing partitions. J. Classif., 2,

193–218.

Jiang,D. et al. (2004). Cluster analysis for gene expression data: a survey.

IEEE Trans. Knowl. Data Eng., 16, 1370–1386.

Karlis,D. (2003). An EM algorithm for multivariate Poisson distribution and

related models. J. Appl. Stat., 30, 63–77.

Łabaj,P. P. et al. (2011). Characterization and improvement of RNA-Seq

precision in quantitative transcript expression profiling. Bioinformatics,

27(ISMB), i383–i391.

Law,C. et al. (2014). voom: precision weights unlock linear model analysis

tools for RNA-seq read counts. Genome Biol., 15.

Li,J. et al. (2012). Normalization, testing, and false discovery rate estimation

for RNA-sequencing data. Biostatistics, 13, 523–538.

MacQueen,J.B. (1967). Some methods for classification and analysis of multi-

variate observations. In: Proceedings of the 5th Berkeley Symposium on

Mathematical Statistics and Probability, p. 281–297. University of

California Press, Berkeley.

McCarthy,D. et al. (2012). Differential expression analysis of multifactor

RNA-Seq experiments with respect to biological variation. Nucleic Acids

Res., 40, 4288–4297.

McCutcheon,A.C. (1987). Latent Class Analysis. Sage Publications, Beverly

Hills.

McIntyre,L.M. et al. (2011). RNA-seq: technical variability and sampling.

BMC Genomics, 12.

McLachlan,G. et al. (2004). Analyzing Microarray Gene Expression Data.

Wiley-Interscience, Hoboken.

McLachlan,G. and Peel,D. (2000). Finite Mixture Models. Wiley-Interscience,

New York.

Naghavachari,N. et al. (2012). A systematic comparison and evaluation of

high density exon arrays and RNA-seq technology used to unravel the

peripheral blood transcriptome of sickle cell disease. BMC Medical

Genomics, 5,28.

Oshlack,A. and Wakefield,M.J. (2009). Transcript length bias in RNA-seq

data confounds systems biology. Biol. Direct, 4.

Papastamoulis, P. et al. (2014). On the estimation of mixtures of Poisson re-

gression models with large numbers of components. Comp. Stat. Data

Anal., doi:10.1016/j.csda.2014.07.005.

Rau, A. et al. (2013). Data-based filtering for replicated high-throughput tran-

scriptome sequencing experiments. Bioinformatics, 29, 2146–2152.

Robinson, M. D. et al. (2010). edgeR: a Bioconductor package for differential

expression analysis of digital gene expression data. Bioinformatics, 26,

139–140.

Robinson, M. D. and Oshlack, A. (2010). A scaling normalization method for

differential expression analysis of RNA-seq data. Genome Biol., 11,R25.

Robinson, M. D. and Smyth, G. K. (2007). Moderated statistical tests for as-

sessing differences in tag abundance. Bioinformatics, 23, 2881–2887.

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Stat., 6,

461–464.

SEQC/MAQC-III Consortium (2014). A comprehensive assessment of RNA-

seq accuracy, reproducibility and information content by the Sequencing

Quality Control Consortium. Nat. Biotechnol., 32, 903–914.

Severin, A. J. et al. (2010). RNA-Seq Atlas of Glycine max: a guide to the soy-

bean transcriptome. BMC Plant Biol., 10,160.

Si, Y. et al. (2014). Model-based clustering for RNA-seq data. Bioinformatics,

30, 197–205.

Soneson, C. and Delorenzi, M. (2013). A comparison of methods for differen-

tial expression analysis of RNA-seq data. BMC Bioinformatics, 14,91.

Sultan, M. et al. (2008). A global view of gene activity and alternative splicing

by deep sequencing of the human transcriptome. Science, 15, 956–60.

Trapnell, C. et al. (2010). Transcript assembly and quantification by RNA-Seq

reveals unannotated transcripts and isoform switching during cell differenti-

ation. Nat. Biotechnol., 28, 511–518.

Wang, C. et al. (2014). The concordance between RNA-seq and microarray

data depends on chemical treatment and transcript abundance. Nat.

Biotechnol., 32, 926–932.

Ward, J. H. (1963). Hierarchical grouping to optimize an objective function.

J. Am. Stat. Assoc., 58, 236–244.

Witten, D. M. (2011). Classification and clustering of sequencing data using a

Poisson model. Ann. Appl. Stat., 5, 2493–2518.

Yeung, K. Y. et al. (2001). Model-based clustering and data transformations

for gene expression data. Bioinformatics, 17, 977–987.

Zhou, X. et al. (2014). Robustly detecting differential expression in RNA

sequencing data using observation weights. Nucleic Acids Res., 42, e91.

Co-expression analysis of high-throughput transcriptome sequencing data 1427

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/31/9/1420/200490 by U
.S. D

epartm
ent of Justice user on 16 August 2022


	btu845-M1
	l
	btu845-M2
	btu845-M3
	btu845-TF1
	btu845-TF2

