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Reactive intermediates play a central role in modern chemistry.[1] Since 1900, and the
discovery by Gomberg of a stable radical,[2] many species that were thought to be too short-
lived for observation have been isolated. The availability of stable versions of reactive
intermediates has allowed for a superior control of their reactivity and a better understanding
of the mechanism of chemical reactions. Even more importantly, new applications of these
species have been found, for example, the successful use of stable carbenes as ligands for
transition-metal catalysts,[3] and even as organic catalysts.[4]

There are still several families of synthetically important reactive intermediates, the preparation
of which has been impeded by the belief that they are incapable of existence, or has eluded the
synthetic skills of investigators. Because of their very high reactivity, ketenes are key
intermediates in synthetic organic chemistry, and have even found industrial applications.[5–
7] Despite the isolation of diphenylketene as early as the beginning of the 20th century,[8]
most ketenes are intrinsically unstable and cannot be isolated.[5] Calculations have predicted
that σ-electron-withdrawing substituents, as well as π-donor groups destabilize ketenes.[9]
Accordingly, alkoxy ketenes have only been characterized at low temperature or by fast-
spectroscopic methods,[10] whereas amino ketenes have never been observed.[11]

Transient triplet carbenes, such as methylene, react with CO to give the corresponding ketenes.
[12] In contrast, although the carbonylation of singlet carbenes is spin-allowed, there are very
few examples of ketene formation using this route.[13] In 1994 it was claimed that the
imidazol-2-ylidene 1a reacts with carbon monoxide to give the stable diamino ketene 2a
(Scheme 1).[14] However, a year later Arduengo et al.[15] were not able to duplicate these
experimental results. They demonstrated computationally that the parent compound 2b is not
even a transition state, and found that there is no stable structure associated with the
combination of 1b and CO, other than “a non-bonded weakly interacting (van der Waals)
complex” 3b (scheme 1). Moreover, the calculations showed that the CO addition leading to
2b is not favored thermodynamically [ΔH(298 K) =+15.9 kcalmol−1].[15]
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Herein we report that, in marked contrast with cyclic diamino carbenes 1, stable acyclic 4a
[16] and 4b, and cyclic alkyl amino carbenes (CAACs) 6[17] react with CO to afford amino
ketenes 5a,b and 7, respectively (see Scheme 2), which are indefinitely stable at room
temperature both in solution and in the solid state. We show that the ring structure forces the
planarization of the amino fragment of 7, and therefore causes the destabilizing n–π donation
from the amino group. Consequently, the HOMO of the ketene 7 is raised and the singlet–
triplet gap considerably reduced, which induces unusual optical and NMR spectroscopic
properties.

According to calculations,[16] the singlet–triplet gap (26.7 kcalmol−1) and the HOMO (−4.3
eV) for acyclic alkyl amino carbenes 4 are much smaller and higher in energy, respectively,
than for NHCs 1 (79.6 kcalmol−1 and −5.4 eV).[18] Consequently, carbenes 4 are more
nucleophilic but also more electrophilic than NHCs 1, and are therefore better candidates for
a carbonylation reaction. Indeed, when carbon monoxide was bubbled at room temperature
through a THF solution of acyclic carbene 4a, a clean reaction occurred, and after evaporation
of the solvent under vacuum, ketene 5a was obtained in good yield as a pale yellow oil (Scheme
2). The IR spectrum of 5a shows a very strong C=C=O stretching vibration at 2066 cm−1, and
the 13C NMR signals for the ketene group appear at δ =213.95 (CCO) and 60.90 (CCO) ppm;
all these values are expected for a ketene bearing a σ-electron-withdrawing group.[9] Only one
set of NMR signals was observed for the isopropyl substituents, which suggests free rotation
around the N–CCO bond.

Starting from carbene 4b, which has cyclohexyl instead of isopropyl groups, ketene 5b was
isolated as pale yellow crystals (m.p.: <20°C) suitable for X-ray diffraction (Figure 1).[19]
Interestingly, the N–C1 bond (ca. 1.43 Å) is much longer than in carbene 4a (1.30 Å),
suggesting again the absence of interaction between the nitrogen lone pair and the CCO
fragment. Indeed, molecule 5b escapes the destabilizing n–π donation, by pyramidalization of
the amino group (sum of the angles: 347.7°), and by directing the nitrogen lone pair 180°away
from the CCO moiety. Consequently, the observed geometric parameters of the CCO fragment
of 5b are very similar to those calculated for the parent ketene H2CCO (Table 1).[20]

The next challenge was to synthesize an amino ketene in which the nitrogen lone pair would
be forced to stay parallel to the C=C π system. We have recently shown that despite the
reluctance of phosphorus to be planar (inversion barrier 35 kcalmol−1 for PH3 compared to 5
kcalmol−1 for NH3), its incorporation into a ring, in addition to the use of bulky substituents,
allowed us to force its planarization.[21,22] Applying the same concept, the CAAC 6 (Scheme
2)appeared to be the ideal precursor. As soon as carbon monoxide was bubbled at room
temperature through a THF solution of CAAC 6, a very deep blue color appeared. After
evaporation of the solvent under vacuum, ketene 7 crystallizes from hexane at −20°C as blue
crystals (65%, m.p.: 95–97°C) suitable for X-ray diffraction (Figure 2).[19] As expected, the
nitrogen atom is in a planar environment (sum of the angles: 357.3°), and the lone pair is
coplanar with the C=C π system. Although the N1a–C1 bond (ca. 1.40 Å) is much longer than
that of carbene 6(1.31 Å), it is similar to that observed for ketene 5b. Similarly, in the IR
spectrum, the C=C=O stretching vibration for 7 is at 2073 cm−1, very close to that observed
for 5 (Δν =7 cm−1). These results suggest only a weak interaction between the nitrogen lone
pair and the CCO fragment. However, compared to other ketenes, a dramatic red-shifted UV
absorption is observed (very intense band from 500 to 700 nm, λmax 598 nm), as well as a
spectacular downfield shift of the 13C NMR signal of the CCO carbon of 7 (δ ≈ 278 ppm; Table
1).

To gain further insight into the electronic structure of amino ketenes 5 and 7, density functional
theory (DFT) calculations at triple-zeta basis set quality[20] were performed on the parent
acyclic amino ketenes 5cpyr and 5cpla (Scheme 3), which feature a nitrogen atom in a pyramidal
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(pyr) and planar (pla) environment, respectively. The calculated geometry and NMR chemical
shifts for 5cpyr are similar to those observed experimentally for 5a,b (Table 1). Of particular
interest, the lone pair of 5cpyr is also directed 180° away from the CCO fragment. Forcing the
nitrogen to be in a planar geometry, with the lone pair parallel to the C=C π system, costs 6.8
kcalmol−1, and 5cpla is not even an energy minimum on the electronic hypersurface. In 5cpla
the π-conjugation of the amino group with the adjacent C=C π bond has a drastic effect on the
frontier orbitals. It raises the HOMO (π-C=C) while the LUMO (π*-C=O), is not affected. The
resulting smaller HOMO–LUMO gap is in line with the smaller value of the adiabatic singlet–
triplet energy separation, which decreases from 23.9 for 5cpyr to 17.0 kcalmol−1 for 5cpla. In
other words, forcing the π-conjugation with the adjacent amino substituent, as in the calculated
5cpla and observed ketenes 7, induces a biradical character. The reduction of the HOMO–
LUMO energy gap readily explains the red-shift of the π(C=C)-→ π*(C=O) optical transition.
The small singlet–triplet energy gap leads to the enhancement of the paramagnetic term, and
therefore the downfield shift of the 13C NMR signal of the CO carbon of 5cpla and 7.

In conclusion, cumulenes 5 and 7 are the first ketenes prepared from CO fixation to stable
carbenes. When compared to the parent ketene (H2CCO), the presence of a pyramidal amino
group as in 5 reduces the singlet–triplet energy gap by about 50%, and the planarization of the
amino group as in 7 induces another 30% reduction to reach 17 kcalmol−1. The small HOMO–
LUMO energy gap induces unusual optical and NMR spectroscopic properties.[26] The design
of ketenes featuring an even more pronounced diradical character is under active investigation.

Experimental Section

All manipulations were performed under an inert atmosphere of argon using standard Schlenk
techniques. Dry, oxygen-free solvents were employed. 1H and 13C NMR spectra were recorded
on Varian Inova 300, 500, and Bruker Avance 300 spectrometers.

5a,b and 7: Carbon monoxide was bubbled (30 min) at room temperature through a THF
solution (20 mL) of the appropriate carbene 4a,b and 6 (4.7 mmol). After evaporation of the
solvent under vacuum and extraction with hexane (10 mL), ketene 5a was obtained as a yellow
oil (82% yield), whereas 5b and 7 were isolated by crystallization in hexane at −20°C as yellow
(80% yield) and blue crystals (65% yield), respectively. 5a: 1H NMR (C6D6, 300 MHz, 25°
C): δ =3.08 (sept, 2H, CHCH3, J = 6.7 Hz), 1.01 (s, 9H, C(CH3)3), 0.99 ppm (d, 12H,
CHCH3, J =6.7 Hz); 13C NMR ([D8]THF, 100 MHz, 25°C): δ =213.95 (CCO), 60.90 (CCO),
53.02, 30.71, 29.00, 21.99 ppm; IR (CH2Cl2): ν̃ (CO) 2066 cm−1; UV (hexane): λmax 381 nm;
DCI-MS m/z 170 [carbene +H+]. 5b: m.p. <20°C; 1H NMR (C6D6, 500 MHz, 25 °C): δ =2.71
(m, 2H, CH), 1.02–1.90 (m, 20H, CH2), 1.05 ppm (s, 9H, C(CH3)3); 13C NMR (C6D6, 125
MHz, 25 °C): 214.68 (CCO), 63.64, 62.26 (CCO), 34.31, 31.80, 29.92, 27.38, 26.61 ppm; IR
(CH2Cl2): ν̃(CO) 2066 cm−1; UV (hexane): λmax 380 nm. 7: m.p. 95–97°C; 1H NMR (C6D6,
500 MHz, 25 °C): δ = 7.25–7.35 (m, 3H, Har), 3.92 (sept, 1H, CHCH3, J = 7.0 Hz), 3.88 (sept,
1H, CHCH3, J = 6.5 Hz), 2.74 (d, 1H, J = 13.0 Hz), 2.56 (d, 2H, J =13.0 Hz), 1.58–1.78 (m,
4H), 1.47 (d, 3H, CHCH3, J = 6.5 Hz), 1.46 (d, 3H, CHCH3, J = 7.0 Hz), 1.44 (3H, CHCH3,
J = 6.5 Hz), 1.35–1.42 (m, 12H), 1.24 (d, 3H, CHCH3, J = 7.0 Hz), 1.16 (d, 3H, CHCH3, J
=7.5 Hz), 1.07 (d, 3H, CHCH3, J = 6.5 Hz), 0.94 ppm (m, 1H); 13C NMR (C6D6, 125 MHz,
25 °C): 277.96 (CCO), 152.27, 151.97, 134.57, 128.93, 125.01, 124.94, 81.40 (CCO), 64.55,
55.04, 53.76, 49.89, 49.79, 35.17, 31.49, 30.99, 30.66, 29.17, 29.11, 28.36, 27.13, 26.49, 25.71,
24.87, 24.21, 23.80, 23.02, 18.65 ppm; IR (CH2Cl2): ν̃ (CO) 2073 cm −1; UV (hexane): λmax
598 nm; DCI-MS m/z 383 [carbene + H+].
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Figure 1.
Molecular view of the crystal structure of 5 b. Selected bond lengths [Å] and angles [°]: N–
C1 1.426(4), C1–C2 1.310(5), C2–O 1.174(4), C1–C3 1.517(4), N–C6a 1.417(7); N-C1-C3
122.6(3), C3-C1-C2 119.2(3), N-C1-C2 118.2(3), C6a-N-C1 127.7(3), C6a′-N-C1 127.7(3),
C6a′-N-C6a 92.3(5).
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Figure 2.
Molecular view of the crystal structure of 7. Selected bond lengths [Å] and angles [°]: N1a–
C1a 1.405(2), C1a–C2aa 1.334(5), C2aa–O1aa 1.186(5) C1a–C5a 1.524(2), N1a–C11a 1.437
(2); N1a-C1a-C5a 110.80(14), C5a-C1a-C2aa 125.6(2), N1a-C1a-C2aa 122.8(2), C11a-N1a-
C1a 119.27(13), C11a-N1a-C3a 125.63(14), C3a-N1a-C1a 112.41(13).
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Scheme 1.
N-heterocyclic carbenes (NHCs) do not react with CO; the structure of van der Waals complex
3 b.
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Scheme 2.
Addition of CO to carbenes 4 a,b and 6.
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Scheme 3.
Schematic representations of the calculated parent amino ketenes 5 cpyr and 5 cpla.
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