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Abstract—We propose a multi-view learning approach called
co-labeling which is applicable for several machine learning
problems where the labels of training samples are uncertain,
including semi-supervised learning (SSL), multi-instance learn-
ing (MIL) and max-margin clustering (MMC). Particularly, we
first unify those problems into a general ambiguous problem
in which we simultaneously learn a robust classifier as well as
find the optimal training labels from a finite label candidate set.
To effectively utilize multiple views of data, we then develop
our co-labeling approach for the general multi-view ambiguous
problem. In our work, classifiers trained on different views can
teach each other by iteratively passing the predictions of train-
ing samples from one classifier to the others. The predictions
from one classifier are considered as label candidates for the
other classifiers. To train a classifier with a label candidate set
for each view, we adopt the Multiple Kernel Learning (MKL)
technique by constructing the base kernel through associating
the input kernel calculated from input features with one label
candidate. Compared with the traditional co-training method
which was specifically designed for SSL, the advantages of our
co-labeling are two-fold: 1) it can be applied to other ambiguous
problems such as MIL and MMC; 2) it is more robust by using
the MKL method to integrate multiple labeling candidates
obtained from different iterations and biases. Promising results
on several real-world multi-view data sets clearly demonstrate
the effectiveness of our proposed co-labeling for both MIL and
SSL.
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semi-supervised learning; multiple kernel learning; TBIR

I. INTRODUCTION

In many real world applications, it is generally difficult

to obtain a sufficient number of labeled samples to learn

robust classifiers. Therefore, researchers have been exploit-

ing various learning scenarios by learning from ambiguous

data whose labels are uncertain but under certain constraints.

Taking document classification as an example, it is usually

convenient to collect a large number of unlabeled docu-

ments; however, it is too costly to annotate all of them with

correct labels. A practical way is to train the classifier by

using only a small number of labeled documents together

with a large number of unlabeled documents, which is

also known as semi-supervised learning (SSL). Usually, the

unlabeled samples in SSL are associated with a balance

constraint to avoid biased solutions. Another example is the

text-based web image retrieval (TBIR) [16]. Given a textual

query, relevant images are retrieved based on the noisy

textual description associated with each image. However,

not all relevant images are truly positive with respect to the

semantic meaning of the textual query. Li et al. [16] grouped

relevant images into bags such that it is of high probability

that each bag contains some truly positive images. Based

on that, the TBIR task was modeled as a Multi-Instance

Learning (MIL) problem, in which only the label of each

bag is known and the labels of images in each bag remain

unknown. In the literature, other learning scenarios (such

as max-margin clustering (MMC) [26] and semi-supervised

multi-instance learning (SSMIL) [18]) have also been widely

studied to exploit ambiguous data. However, these existing

methods were specifically designed for a certain learning s-

cenario. In this paper, we generalize those learning scenarios

as a unified ambiguous problem to utilize the various kinds

of ambiguous data.

When multiple views of features are available, the in-

formation from different views can be effectively utilized

to improve the performance for the learning task. As one

pioneering work on multi-view learning, co-training [4] was

proposed to solve the two-view SSL problem by simulta-

neously learning two classifiers on the two-view training

data. Those two classifiers teach each other by iteratively

annotating a certain amount of unlabeled data and putting

them into the labeled training set. However, the co-training

was specifically designed for SSL. It is difficult to apply

to other learning problems such as MIL, since the sample

selection process may violate the bag constraints in MIL

(see Section III-A for a detailed discussion on co-training).

Other work on multi-view SSL or multi-view clustering can

also be found in [21], [15], [13], [14]. While those multi-

view learning methods have shown advantages of utilizing

multi-view information, they are all limited to a particular

learning scenario and cannot be used to solve the general

ambiguous problem with multi-view training data.

In this work, we address the general ambiguous problem

from a multi-view perspective. First, the ambiguous data

contain some samples with uncertain labels that satisfy some

constraints (for example the bag constraints in MIL and the

balance constraint in SSL), which means there are many

possible labelings for the training samples. Therefore, the

ambiguous learning problem can be treated as a task of

learning from the training samples associated with a labeling

set which contains many possible labelings. We call each

labeling as a label candidate and the labeling set as the



label candidate set. It can be verified that the traditional

SSL, MIL and MMC are special cases of our ambiguous

learning problem with different constraints on the labeling.

A comparison between the traditional supervised learning

and the ambiguous learning is illustrated in Figure 1.

In the multi-view scenario, we can also model the learning

problem of each view as an ambiguous problem. To have

different views teach and learn from each other, we propose

a “co-labeling” approach to solve the multi-view ambiguous

problem, in which the classifier on one view can help the

classifiers on the other views by sharing the labeling of

training samples. Specifically, we first train a classifier on

each view and obtain the predictions of training samples

using those classifiers. Then, those predictions are projected

into the feasible label candidate set to guarantee that the

constraints are satisfied. After that, the label candidate set

of each view is updated by merging the label candidates from

the predictions of the classifiers on the other views. We also

generate different predictions by varying the bias to enhance

the robustness. This process is repeated until the stop cri-

terion is reached. Compared with the co-training, in which

different views select and label the training samples to help

each other, the advantages of our co-labeling are twofold: 1)

By sharing label candidates instead of selecting samples, our

co-labeling can be applied to the general ambiguous problem

with various constraints on the training labels. 2) By using

the label candidates from different iterations and biases, our

co-labeling can cope with possible mistakes in labeling and

enhance robustness.

To learn from a label candidate set, we formulate a

max-margin based model and then relax it to an MKL

problem, which can be easily solved by existing MKL

solvers [19], [27]. We also give the convergence analysis and

the time complexity analysis. Finally, we conduct extensive

experiments for multi-view SSL and multi-view MIL as well

as some detailed experiential analysis.

Our main contributions are summarized as follows:

• From the perspective of label candidates, we formu-

late a general single-view ambiguous learning problem

which unifies the traditional SSL, MIL, MISSL and

clustering into one formulation.

• With the ambiguous learning formulation, we propose

a new multi-view approach called co-labeling to solve

the general multi-view ambiguous problem. To our

knowledge, this is the first work to study the general

multi-view ambiguous problem. An MKL solution is

also developed to instantiate the proposed co-labeling

approach.

• Taking the examples of SSL with its application on

webpage/document classification and MIL with its ap-

plication on text-based image retrieval, we demonstrate

the effectiveness of our proposed co-labeling and also

present extensive experimental analysis.

Figure 1. Illustration of the difference between supervised learning
and ambiguous learning. Yellow circles denote the training samples, red
crosses denote a positive label and blue strips denote a negative label. The
green dashed rectangles that include red crosses and blue strips denote the
labeling for training samples. Left: The labeling (green dashed rectangles)
of training samples (yellow circles) in supervised learning is fixed. Right: In
ambiguous learning, the labelings of training samples are uncertain, so the
task is to learn a robust classifier from the training samples ({x1, . . . ,xn})
and a set of label candidates ({y1, . . . ,yT }).

II. AMBIGUOUS LEARNING FROM LABEL CANDIDATES

PERSPECTIVE

In ambiguous learning, the training samples have un-

certain labels that satisfy some constraints (for example,

the bag constraints in MIL and the balance constraint in

SSL), and the learning task is to learn a classifier based on

those training samples as well as a label candidate set. In

this work, we focus on the binary classification problem.

Formally, let X = {xi|i = 1, . . . , n} be the set of training

samples where n is the total number of training samples.

We use y = [y1, . . . , yn]
′ to represent a possible labeling

(label candidate) where yi ∈ {+1,−1} is the label of the

i-th training sample. Then the label candidate set can be

represented as Y = {yt|t = 1, . . . , T} where yt is the

t-th label candidate and T = |Y| is the total number of

label candidates. We also use g = [g1, . . . , gn]
′ to represent

the unseen ground-truth label vector of the training samples

where gi ∈ {+1,−1} is the ground truth label of the i-th
training sample.

A comparison of supervised learning and ambiguous

learning is given in Figure 1. While in supervised learning

the labeling of training samples y is known (see the left

part of Figure 1), in ambiguous learning there are many

possibilities on the labeling of training samples and the

learning task is to learn a robust classifier from a set of

label candidates (see the right part of Figure 1)). Based on

the regularized empirical risk minimization principle [22],

we formulate the ambiguous learning task as follows:

min
f,y∈Y

∥f∥2 + C
n
∑

i=1

ℓ(f,xi, yi), (1)

where Y is the label candidate set, f is the target classifier,

and ℓ(·) is the loss function.



The major difference between the ambiguous learning and

the traditional supervised learning is that we need to infer

the underlying labels vector y for training samples while

learning the classifier. This is a non-trivial task since the

cardinality of the label candidate set (i.e. T ) is of a size

exponential in terms of n. However, in Section III, we

develop a simple but effective way to construct a small

label candidate set in the multi-view scenario instead of

using all possible label candidates. Then we give the detailed

form of f and ℓ(·) and formulate it as an MKL problem in

Section IV. Here we provide some examples to show that

several existing learning scenarios are actually special cases

of our ambiguous learning.

Multi-Instance Learning: In Multi-Instance Learning,

the training samples (instances) are organized into different

sets (bags). The label of each training bag is known but the

labels for the instances in the bag are unobserved. Usually

the constraints on training samples are that all instances in

the negative bags are negative and at least one instance

in each positive bag is positive. Let us use BI to denote

the I-th training bag and YI to denote the corresponding

bag label, then the constraints on the training samples can

be represented as
∑

xi∈BI
(yi + 1)/2 ≥ 1 ifYI = 1 and

yi = −1 otherwise [1]. In [16], more general constraints on

positive bags were proposed by requiring at least a portion of

each positive bag to contain positive instances. An iterative

approach was used in [1] to infer the labeling y and an

MKL formulation was used in [16] to learn the classifier by

optimizing the labeling in the label candidate set.

Semi-supervised Learning: In semi-supervised learning,

the training data include a limited number of labeled sam-

ples and a large number of unlabeled samples. Usually,

the unlabeled samples are required to satisfy a balance

constraint. It can also be formulated into our ambiguous

learning formulation. Formally, suppose there are l labeled

training samples and n− l unlabeled training samples, then

the constraints can be represented as yi = gi for i = 1, . . . , l
and

∑n
i=l+1

yi = σ where σ is a predefined parameter

for the balance constraint. Existing semi-supervised learning

algorithms cannot directly solve this formulation because the

number of label candidates is too large, but we will show

in the multi-view scenario how to learn with a small set of

label candidates in the next section.

III. MULTI-VIEW AMBIGUOUS LEARNING FROM LABEL

CANDIDATES PERSPECTIVE

In the multi-view learning, each training sample is repre-

sented with different views of features. Formally, the training

sample xi is in the form of (x1
i , . . . ,x

V
i ) where xv

i is

the feature in the v-th view and v = 1, . . . , V . Typically,

a classifier fv is trained on the v-th view and the final

classifier is fused by using the classifiers from all views,

i.e. f(x) = 1

V

∑V
v=1

fv(xv).

We have formulated the single-view ambiguous learning

as a learning problem that simultaneously optimizes the

classifier f and the unknown training labels y. In this

section, we show that the multi-view learning can also be

treated as a problem of learning from the label candidate

set, and then we extend the single-view ambiguous learning

to the multi-view scenario.

A. Feed Samples: A Review of Co-training

One of the pioneering works on multi-view learning is

the co-training approach [4]. It was designed for semi-

supervised learning problems with two views. Let us assume

the labeled and unlabeled training sets are L0 and U0. Two

classifiers f1
0 and f2

0 are trained on two views respectively

using the initial labeled training set L0. Then two sets of

unlabeled training samples L̃1
0 and L̃2

0 are selected from the

unlabeled set according to the prediction confidence, and

are labeled as positive or negative by the two classifiers

respectively. After that, the labeled training set is enlarged

by merging the newly labeled data, i.e. L1 = L0

∪

L̃1
0

∪

L̃2
0

and the two classifiers are retrained on the enlarged labeled

set. Such processes are repeated until a fixed number of

iterations is reached.

The co-training can be seen as a process of iteratively

feeding newly labeled training samples to each view. The

classifiers of two views can be improved if the following

assumptions hold: each view is sufficient to train a low-error

classifier and both views are conditionally independent. The

first assumption guarantees that the newly labeled samples

are accurately labeled with high confidence and the second

one ensures that the samples selected by one view are helpful

to the other view. However, those assumptions usually do not

strictly hold for real-world data. Therefore, many theoretical

works on co-training from different perspectives tried to

relax those assumptions, such as weak dependence [2], α-

expansion [3], large diversity [24]and label propagation [25].

Although co-training has been applied in many applica-

tions, there are two major limitations which limit it from

broader applications. First, it was specifically designed for

SSL and cannot be used when there are other constraints

on the unlabeled data. For example, in MIL, the data are

provided in the form of bags, and directly using the sample

selection strategy on instances may violate the constraints on

bags. Second, the labels of the selected unlabeled data are

fixed once they are labeled. If the classifier fv is not robust

enough to make accurate predictions, the wrongly labeled

data will be propagated to subsequent retraining processes,

which may significantly degrade the robustness of retrained

classifiers.

B. Feed Label Candidates: The Co-Labeling Approach

Based on the general ambiguous problem formulation

in (1), we propose our new multi-view approach for general



ambiguous learning problems as:

min
fv,yv∈Yv

V
∑

v=1

(

∥fv∥2 + C
n
∑

i=1

ℓ(fv,xv
i , y

v
i )

)

, (2)

where fv is the classifier on the v-th view, and Yv is the

label candidate set which is constructed by utilizing the

predictions from the other views.

The algorithm of our multi-view approach is depicted in

Algorithm 1. Different from co-training which iteratively

updates the labeled training set by feeding newly labeled

training samples, we let one view to help another by feeding

its predictions to update the label candidate sets of another

view. Therefore, we refer to this approach as co-labeling.

How to update the candidate set of one view using the

predictions from the other views (i.e. line 5 in Algorithm 1)

is the key of our co-labeling approach. To better illuminate

the updating strategy, we detail it step by step by presenting

three strategies, each of which is an improved version of the

previous one. Denoting the label candidate set of the v-th

view at the t-th iteration as Yv
t , we give the first strategy as

follows:

Strategy 1: Yv
t+1 =

∪V
p ̸=v o

p
t where opt is obtained by

projecting the decision value from the p-th view (i.e., zp)

into the feasible set Y defined by the constraints on the

ambiguous training samples.

In other words, the label candidate set is constructed by

using the latest prediction from the other views. In this way,

we treat the label vector as a whole which allows us to easily

enforce the training labels to satisfy any constraints such as

the bag constraints in MIL and the balance constraint in SIL

and MMC. Therefore, the co-labeling does not have the first

limitation of the co-training.

However, the second limitation has not been addressed

yet. The classifiers may also be degraded if the label

candidates are not accurate at one iteration and do harm

to the classifiers trained at the next iteration. To improve

robustness, instead of only using the latest prediction, we

propose to construct the label candidate set for each view

using the predictions of the other views from all previous

iterations, which is formally stated in the following strategy:

Strategy 2: Yv
t+1 = (

∪V
p ̸=v o

p
t )
∪

Yv
t where opt is obtained

in the same manner as in Strategy 1.

With this strategy, the label candidate set of each view is

augmented as the number of iterations increases. If the newly

obtained label candidates are not accurate, it is still possible

to learn a classifier with the label candidates obtained from

previous iterations. In other words, when the label candidates

obtained from different iterations are not consistent, rather

than using the latest one, we leave them to the learner to

make the choice.

However, what if the label candidates from different iter-

ations are consistent but wrong? This possibly happens for

ambiguous learning problems since the learned classifiers in

Algorithm 1 The Co-Labeling Algorithm

Require: Training samples with V views, initial labels y0.

Ensure: Classifier fv’s.

1: Initialize the label candidates set Yv = {y0} for each

view.

2: repeat

3: Train a classifier fv based on Yv on each view.

4: Get the prediction zv of the training examples using

fv on each view.

5: Update the label candidate Yv using zp’s for p ̸= v.

6: until The stop criterion is reached.

7: return fv’s.

ambiguous problems are easily biased. For example, in MIL,

one common approach is to initialize all the instances in

positive bags to positive training samples, which makes the

classifier more likely to predict the negative samples to be

positive. Besides this, in SSL, the limited number of labeled

data also easily cause the classifier to be biased. To handle

this bias problem, instead of only using one prediction with

fixed bias, we use multiple predictions with different biases

to generate the label candidates, as inspired by the recent

work on domain adaptation [20]. In other words, at the t-th
iteration, instead of only obtaining one new label candidate

opt from the p-th view (see Strategy 2), the v-th view can

obtain a set of new label candidates based on predictions

with different biases. In implementation, it simply involves

adding different biases to the original decision values zv .

We formally introduce the new strategy as follows:

Strategy 3: Yv
t+1 = (

∪V
p̸=v O

p
t )
∪

Yv
t where Op

t is a set of

label candidates obtained in the same manner as in Strategy

1 from the predictions with different biases.

C. Discussion

We give a brief discussion of our co-labeling approach

with respect to the co-training method in the SSL setting

with a toy problem shown in Figure 2. View 1 contains

two-moons data and View 2 contains two clusters. We have

one positive sample and one negative sample denoted by the

blue triangle and the red circle, respectively. The magenta

and black rectangles denote the unlabeled samples in the

two classes.

Suppose we use SVM as the base classifier for the co-

training. In the first iteration, the co-training trains one

classifier for each view using the labeled samples. We plot

the decision boundaries of two views in Figure 2. It can be

observed that the classifier trained on View 1 is not good

since we only have two training samples. And next, in the

sample selection step, the samples located at the tails of the

two moons will be selected since they are farthest from the

decision boundary. However, they are wrongly labeled and

will degrade the classifiers trained in the next iteration.
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Figure 2. The toy data with two views. Blue triangles denote labeled
positive samples and red circles denote labeled negative samples. The
magenta/black rectangles denote unlabeled samples in the two classes.

In contrast, our co-labeling does not suffer from this prob-

lem since the wrongly labeled samples will be corrected by

other label candidates from different iterations and different

biases. The final prediction results of two methods are shown

in Section VI. Besides the robustness of our co-labeling

approach, it also can be readily applied on other ambiguous

learning scenarios such as MIL and MMC.

IV. THE IMPLEMENTATION OF CO-LABELING

We have proposed a uniform formulation of ambiguous

learning and a new multi-view algorithm in the last section,

both of which require learning a classifier (i.e. the f in

Equation (1)) from a label candidate set. In this section, we

give the detailed forms of f and ℓ(·), and relax the problem

to an MKL problem which can be solved easily with existing

solvers.

A. The Formulation

We adopt the maximum margin classifier f(x) =
w′ϕ(x) + b where ϕ(·) is the feature mapping function,

and use ρ-SVM with the squared hinge loss1 to solve the

ambiguous learning problem. Based on (2), we arrive at the

following optimization problem for the v-th view:

min
yv∈Yv

min
wv,bv,ρv,ξi

1

2

(

∥wv∥2 + bv 2 + C
n
∑

i=1

ξ2i

)

− ρv,

(3)

s.t. yvi (w
v′

ϕ(xv
i ) + bv) ≥ ρv − ξi, i = 1, . . . , n,

where C is the tradeoff parameter, 2ρv/∥wv∥ defines the

margin and yi is the i-th element of the label vector y.

The superscript v denotes the v-th view, in other words, we

shall optimize the above objective function on each view. For

simplification, we omit the superscript v unless necessary.

B. The MKL solution

By introducing the dual variable α = [α1, . . . , αn]
′ for

the constraints in (3), we derive the dual problem of (3) as:

min
y∈Y

max
α∈A

−
1

2
α

′

(

K ◦ yy′ +
1

C
I

)

α, (4)

1 It has been suggested in [28] that the squared hinge loss is more robust
than the hinge loss for solving the MMC problem.

where K = K̂ + 11′, K̂ = [k(xi,xj)] = [ϕ(xi)
′ϕ(xj)] is

the kernel matrix, and A = {α|α ≥ 0,α′1 = 1} is the

feasible set of α.

Instead of directly solving the mixed-integer problem

in (4), we seek to optimize the linear combination of yy′’s.

Then, the above problem is relaxed to an MKL problem

which is a lower bound of (4). The relaxed formulation is

as follows:

min
d∈D

max
α∈A

−
1

2
α

′





|Y|
∑

t=1

dtK ◦ yty
′
t +

1

C
I



α, (5)

where d is a vector of combination coefficients for the

base kernels K ◦ yty
′
t’s, and D = {d|d ≥ 0,d′1 = 1}

is the feasible set of d. For more details about the above

relaxation, please refer to [17], [16]. Note that the Y is

the label candidate set on each view, and its cardinality

equals the number of iterations in Algorithm 1, which is

very small. Therefore it can be efficiently solved by existing

MKL solvers [27]. Although [17], [16] also formulated the

MMC and MIL problem as an MKL problem in a similar

way, they are single-view approaches and the motivations

are totally different. Moreover, in their methods, the label

candidates were obtained by iteratively finding the most

violated constraint, which is another NP-hard problem.
After solving the MKL on each view, the final classifier

is given by:

f(x)=

V
∑

v=1

f
v(xv)=

V
∑

v=1

1

ρv





n
∑

i=1

α
v
i

|Yv|
∑

t=1

d
v
t y

v
t,i(k(x

v
i ,x

v) + 1)



 .

It is worth noting that the prediction is as fast as the SVM

prediction on each view.

C. The Algorithm

We summarize our detailed algorithm in Algorithm 2. The

initial labels y0 are problem dependent. For example, in SSL

we can use the prediction of the classifier trained on the

labeled data and in MIL we usually initialize all instances

in positive bags as positive and all instances in negative

bags as negative. After the initialization, the classifier will

be trained on each view by solving (5). Then we use the

classifier on each view to predict the labels of training

samples, and obtain a set of predictions by varying the bias.

All the predictions are required to satisfy the constraints

(i.e, bag constraints in MIL or balance constraint in SSL).

Finally the label candidate set of each view is augmented by

merging the predictions from the other views. This process

is repeated until the stop criterion is reached.

The Constraints: We use a simple method to force the

prediction to satisfy the constraints on ambiguous data. Two

typical constraints are discussed in Section II which are

commonly used in SSL and MIL. We first sort the decision

values of all training samples in descending order. The labels

for labeled samples are assigned using their ground-truth



Algorithm 2 The Algorithm of Co-Labeling with MKL

Require: Training samples with V views, initial labels y0.

Ensure: Classifier variables dv’s, αv’s and label candidate

sets Yv’s.

1: Initialize the label candidates set Yv = {y0} for each

view.

2: repeat

3: Solve α
v and dv in (5) based on Yv .

4: Get the decision values of training data zv using α
v

and dv .

5: Vary the biases to obtain a set of decision values Zv

for each view.

6: Get the label candidate set Ov by enforce each

prediction in Zv to satisfy the constraints.

7: Set each Yv = Yv ∪ Op for any p ̸= v.

8: until The stop criterion is reached.

9: return α
v’s, dv’s and Yv’s.

training labels. For the remaining training samples, in SSL

we simply label the first m samples as positive and the

remaining as negative where m is determined by the balance

constraint, and in MIL we label the first mI instances in

the I-th positive bag as positive and the remaining as the

sign of their decision values where mI is determined by the

constraint on the I-th positive bag. It can be verified that

in this way the constraints discussed in Section II can be

satisfied.

Stop Criterion: One observation is that the objective

value in Algorithm 2 decreases monotonously on each view.

The reason is as follows: We solve an MKL problem which

minimizes the objective function in (5) with respect to α
v

and dv . Since the label candidate set Yv is augmented at

each iteration, in the worst case the optimal solution of MKL

at the current iteration should be the same as that at the

last iteration by setting the entries in the coefficient vector

dv corresponding to the newly added label candidates to

zeros. Therefore the objective values of MKL on each view

should decrease monotonicly as the number of iterations

increases. Experimental results of convergence are presented

in Section VI-B4. So the stop criterion in the co-labeling

is that the difference of the objective values between two

iterations is less than a small value on all views or the

maximum number of iterations is reached. Usually, we

observe thast the algorithm runs fast and stops in fewer than

10 iterations.

Time Complexity: The main cost in Algorithm 2 is

the training process of MKL and the testing process on

the training samples. Since the kernel was computed in

the training process, the testing process is only a matrix

multiplication operator and the cost can be ignored compared

with the training process. Considering the non-linear case,

let us denote the complexity of training an MKL as O(MKL)

2 and suppose our algorithm runs T iterations, then the total

time complexity of Algorithm 2 is T · V · O(MKL) where

V is the total number of views. For the linear case, there

exists a fast algorithm to solve the SVM problem in the

primal form, so our co-labeling can be much faster than in

the non-linear case.

V. RELATED WORK

Our work is related to multi-view learning. As the

pioneering work on multi-view learning, Blum and Mitchell

[4] introduced the co-training approach for semi-supervised

learning. The original assumption of co-training that two

views are conditionally independent is too strong for real

applications. Therefore, different explanations were pro-

posed to analyze co-training under more relaxed assump-

tions such as weak dependence [2], α-expansion [3], large

diversity [24] and label propagation [25]. In [21], a co-

regularization approach was proposed to minimize the dis-

agreement of the classifiers of two views. Christoudias et

al. [8], [9] studied the co-training problem with noisy ob-

servations and Li et al. [15] extended the transductive SVM

with co-regularization. Recently, Chen et al. [7] proposed a

feature decomposition approach for co-training when only

one single view exists and recent work [13], [14] extended

the co-training and co-regularization to multi-view spectral

clustering. However, those works are restricted in the multi-

view semi-supervised setting or were specifically designed

for certain cases. In contrast, our co-labeling approach is a

general learning framework for multi-view learning on any

data with ambiguous labels and different constraints.

Our work is also related to the various cases of ambiguous

learning. More work on semi-supervised learning was sum-

marized in [30] and on multiple instance learning in [29]. For

max-margin clustering, readers can refer to [26], [28] and

[17]. The most related work are LGMMC [17] and MIL-

CPB [16]. The MKL algorithm was also used in the two

papers to solve the learning problem. However, our proposed

approach is intrinsically different with these two works.

Our co-labeling approach is motivated from co-training and

aims to study how to effectively utilize the information

from different views which is applicable to different general

ambiguous scenarios. In contrast, those works were designed

for a certain case of ambiguous learning (MMC or MIL) in

the single-view setting.

VI. EXPERIMENTS

In this section, we first compare our co-labeling with

the traditional co-training on the toy problem mentioned in

Section III-C. Then we evaluate our co-labeling approach

2The time complexity of MKL has not been theoretically analyzed.
Usually, the MKL solver needs to train an SVM for tens of iterations.
The empirical analysis shows that optimizing the QP problem in SVM
is O(n2.3) where n is the number of training samples. Therefore, the
complexity of MKL is O(kn2.3) where k is the number of iterations in
MKL.
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Figure 3. The prediction on the toy data by co-training. The blue triangles
denote the predicted positive samples and red circles the predicted negative
samples.
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Figure 4. The prediction on the toy data by our co-labeling. The blue
triangles denote the predicted positive samples and red circles the predicted
negative samples.

on several data sets for two cases: 1) Multi-View Semi-

Supervised Learning (MVSSL), 2) Multi-View Multiple

Instance Learning (MVMIL) .

A. The Toy Problem

The training data of the toy problem are shown in Fig-

ure 2. View 1 contains the two-moons data3 and View 2

contains two clusters which are randomly generated with

the same covariance matrix σ = [1 0.5; 0.5 1] and with the

centers [0; 4] and [4; 0], respectively.

We use SVM as the base classifier to implement the co-

training algorithm. Five positive samples and five negative

samples are selected at each iteration. The classifiers trained

on two views are fused by using the average decision

value. The final predictions of the two classifiers are shown

in Figure 3 and Figure 4, respectively. It can be seen in

Figure 3 that the wrongly labeled data in the first iteration

(the samples located at the tails of the two moons) degrade

the final classifier. The final predictions on those samples

are still not correct. Although our co-labeling also makes

wrong predictions on those samples in the first iteration

since we also train the classifier to initialize the labeling

for unlabeled data in the SSL setting (see Section IV), it

correctly predicts all the samples using the final classifier

because our co-labeling can correct the errors by leveraging

the label candidates obtained from different iterations and

3It is downloaded from http://www.dii.unisi.it/ melacci/lapsvmp/

different biases. The prediction accuracies of the co-training

and our co-labeling are 83.00% and 100.00% respectively.

B. Multi-View Semi-Supervised Learning

1) Data sets: We evaluate our co-labeling approach for

semi-supervised learning on two applications, news classi-

fication and webpage classification. The BBC data set and

BBCSport data set are used for news classification; and the

WebKB data set is used for webpage classification. The

details of these data sets are summarized in Table I and

described as follows:

Table I
SUMMARIZATION OF THE DATA SETS USED IN SSL. D1 AND D2 ARE

THE FEATURE DIMENSIONS OF TWO VIEWS. #c, #l, #u AND #t ARE THE

NUMBERS OF CLASSES, LABELED DATA, UNLABELED DATA AND TEST

DATA, RESPECTIVELY.

Data sets d1 d2 #c #l #u #t

BBC 4817 4818 5 10 1104 1111

BBCSport 2306 2307 5 10 360 367

WebKB 3000 1840 2 12 1039

The BBC and BBCSport data sets: The two data

sets [12] contain news articles collected from the BBC4.

The BBC data set includes 2225 documents from five topics

(business, entertainment, politics, sports and technology) and

the BBCSport data set includes 737 sports news documents

from five classes (athletics, cricket, football, rugby and

tennis). We randomly segment the feature into two views as

in [13]. We partition the data sets into the training set and the

test set, each of which contains 50% of the documents per

class. Ten labeled data are further selected from the training

set.

The WebKB data set: The WebKB data set has been

widely used to evaluate multi-view methods [4], [21], [15]. It

contains 1051 web pages belonging to two categories: course

or non-course. For each web page, there are two views, the

page view which contains the textual content of this page,

and the link view which contains the anchor-text on links

from other webpages pointing to this page. 3000-d features

are extracted for the page view and 1840-d features for the

link view, respectively. 12 samples are selected as the labeled

data and the remaining samples are used as unlabeled data5.

2) Experimental Setting: We compare our co-labeling

with following baselines:

• SVM: The standard SVM trained with the labeled data,

which is a commonly used baseline in semi-supervised

learning.

• TSVM [10]: The transductive SVM trained with the

labeled and unlabeled data. The two views are later

fused to obtain the final result.

4The features can be downloaded from http://mlg.ucd.ie/datasets/bbc.ht
ml

5The indices of labeled data and features are publicly available in
http://people.cs.uchicago.edu/∼vikass/manifoldregularization.html



Table II
PERFORMANCES OF DIFFERENT METHODS ON THREE DATA SETS. THE BEST RESULTS ARE DENOTED IN BOLDFACE. MAPS AND STANDARD

DEVIATIONS ARE REPORTED ON BBC&BBCSPORT. ↑ DENOTES THE RESULT IS SIGNIFICANTLY BETTER THAN THE OTHERS ACCORDING TO THE

T-TEST WITH A SIGNIFICANCE LEVEL AT 0.05. PRBEPS ARE REPORTED ON WEBKB. THE RESULTS OF SVM, TSVM AND CO-LAPSVM ARE FROM

TABLE 1 IN [21]. SINCE THE STANDARD DEVIATIONS OF THESE METHODS ARE NOT AVAILABLE, WE ONLY REPORT THE AVERAGE PRBEPS ON

WEBKB.

BBC BBCSport WebKB

View1 View2 View1+2 View1 View2 View1+2 page link page+link

SVM 66.53(4.08) 63.11(3.67) 74.26(3.37) 70.69(3.42) 66.43(3.98) 76.99(3.76) 74.4 77.8 84.4

TSVM 71.99(5.48) 66.83(3.54) 75.72(3.16) 74.62(5.73) 65.51(3.36) 79.21(6.43) 85.5 91.4 92.2

Co-LapSVM 70.30(3.39) 68.04(4.56) 76.97(3.41) 70.70(3.43) 66.43(3.99) 77.14(3.29) 94.3 93.3 94.2

2V-TSVM 52.70(3.96) 52.61(5.34) 58.39(5.25) 64.00(3.08) 63.50(3.86) 69.82(3.78) 85.7 86.7 87.3

PMC — — 71.57(6.37) — — 79.48(5.41) — — 88.6

Co-Labeling 78.41(3.79)↑ 77.61(3.01) ↑ 81.37(3.14) ↑ 82.10(5.41) ↑ 79.60(4.44) ↑ 84.22(5.11) ↑ 92.5 93.1 95.1

• Co-LapSVM [21]: The Laplacian SVM in the multi-

view setting.

• 2V-TSVM [15]: The TSVM version of co-

regularization, in which both ramp loss and co-

regularization are used to cope with the two-view

setting.

• PMC [7]: An improved version of co-training which

is designed to split the single view features into two

views. We apply PMC on the joint-view of these three

data sets. Due to the randomness in initializing the

feature splits, we run each split five times and use the

split with the minimum objective value of the feature

split algorithm PMD (see [7]).

A binary classifier is trained for all the methods, and

linear kernels are used. The experiments on the BBC and

BBCSport data sets are repeated on 10 training/testing data

splits. The experiments on the WebKB data set are run with

100 training/testing data splits as in [21].

3) Performance: The results on these three data sets

are reported in Table II. Mean average precisions (MAPs)

of 5 classes over 10 rounds are reported for the BBC

and BBCSport data sets. Following [21], the average of

precision-recall break-even point (PRBEP) over 100 splits

are reported for the WebKB data set. The results of SVM,

TSVM and Co-LapSVM on the WebKB data set are copied

from Table 1 in [21].

From the results, we can see that our method achieves

the best results for the joint-view, which demonstrates the

advantage of our co-labeling for semi-supervised learning.

The improvements over the second best in the three data sets

are 4.40%, 4.74% and 0.9%, respectively. It is worth noting

that the co-labeling is significantly better than other methods

on the BBC and BBCSport data sets for each single view

as well as the joint-view. Although the co-labeling does not

achieve best results for the page view and link view on the

WebKB data set, the late fusion result is the best which again

demonstrates that our method can effectively use multi-view

information. The relative improvement is not as significant

as on the BBC and BBCSport data sets because it already

has a very high performance, which can be confirmed by

the fact our method achieves 99.11% in the measurement of

MAP over 100 splits.
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Figure 5. The objective values with respect to the number of iterations
on two views.

Table III
PERFORMANCE OF DIFFERENT VERSIONS OF CO-LABELING ON

BBC-SPORTS.

View1 View2 View1+View2

Co-Labeling(iter) 58.19 61.56 69.77

Co-Labeling(nobias) 74.21 72.00 77.43

Co-Labeling 82.10 79.60 84.22

4) Convergence Analysis: We have analyzed that the

objective value of MKL on each view decreases with respect

to the number of iterations (see Section IV-C). Taking the

first topic (i.e. “athletics”) of the BBC-Sports data set as

an example, we show the objective values of two views in

Figure 5. It can be observed the objective values of the two

views converge very fast and it takes only six iterations to

reach the stop criterion. The average number of iterations

for all 5 classes over 10 splits is 6.36.

5) Strategy Analysis: Three strategies for updating the

label candidate set are discussed in Section III-B. Here we

evaluate those three strategies by introducing two simplified

versions of our co-labeling algorithms: the first version is

Co-Labeling(iter), in which we only use the labeling from

the latest iteration (Strategy 1); and the other one, Co-

Labeling(nobias), uses labelings from all previous iterations

but does not vary biases at each iteration (Strategy 2). We

also take the BBCSport data set as an example, and the

results of those two simplified versions of our co-labeling

approach are shown in Table III. We can observe that the

performance of Co-Labeling(iter) is degraded without using



Table IV
AVERAGE TRAINING TIMES OF DIFFERENT MULTI-VIEW SSL METHODS

PER CLASS PER SPLIT ON THREE DATA SETS (IN SECONDS).

BBC BBCSport WebKB

Co-LapSVM 52.45 2.136 16.69

2V-TSVM 1108 497.3 446.4

PMC 30.64 7.215 55.41

Co-Labeling 36.50 5.111 21.27

MKL and the bias. It is even worse than the results of SVM

reported in Table II which only uses the labeled data. This is

not surprising since the labeling from the trained classifiers

may be very noisy. Directly feeding the labeling as the

training labels to the other view cannot guarantee a robust

classifier as discussed in Section III-B. After using MKL,

the performances of Co-Labeling(nobias) are improved a

lot, which are comparable to other multi-view methods as

reported in Table II. However, Co-Labeling(nobias) still

suffers from the bias problem since we use the prediction

as labeling while other methods do not have this issue.

After varying the biases (Strategy 3), the final results are

significantly better than other methods.

6) Time Comparison: The training time of different

multi-view methods are reported in Table IV. All meth-

ods are performed on a workstation with a 3.3GHz CPU.

We implement the co-labeling with unoptimized MATLAB

code using LIBSVM6. We observe that the co-labeling is

comparable to the Co-LapSVM and PMC in training time

on the three data sets. It demonstrates that the co-labeling is

practical and scalable for real applications considering it can

be further sped up after a better implementation and using a

faster solver (for example LIBLINEAR for the linear case).

C. Multi-View Multiple Instance Learning

MIL has been successfully exploited in Text-Based Im-

age Retreival (TBIR), so we also evaluate our co-labeling

approach for TBIR under the multiple view setting. Similar

to [16], we conduct the experiment on the large-scale NUS-

WIDE data set, which consists of 269,648 images from 81

annotated concepts collected from the website Flickr.com.

Three groups of features are extracted:

• 1) The textual feature is extracted from the associated

tags for each image. The vocabulary is constructed

using 1000 words with the highest frequency. Then,

a 1000 dimensional term-frequency feature is extracted

for each image.

• 2) The global visual features are extracted according

to the procedure in [16], then we concatenate three

types of global features and apply PCA to obtain 119-d

features.

• 3) The local visual feature is based on the SIFT feature

by preserving LCC coding, which is extracted for each

image using the method in [23]. We train a codebook

with 4096 visual words and use a three-level spatial

6It can be further accelerated by using LIBLINEAR which solves the
SVM in the primal form.

Table V
MEAN AVERAGE PRECISIONS (MAPS) OVER 81 CONCEPTS FROM

DIFFERENT METHODS ON THE NUS-WIDE DATA SET.

TG TL TG+TL

MIL-CPB 61.43 57.84 77.07

mi-SVM 59.25 59.26 77.18

sMIL 60.01 62.09 75.48

Co-Labeling 62.56 61.71 79.09

pyramid, and finally we get an 86016 dimensional

sparse vector for each image.

Two views are constructed by using these three types of

features. Specifically, we partition the 1000-d textual feature

into two 500-d vectors, t1 and t2, with even dimensions and

odd dimensions respectively. Then we further concatenate

the two textual vectors with the global visual feature vector

and local visual feature vector to form the final feature

vectors for two views with the form x = [γt;λv], which

are denote as TG view and TL view, respectively. For the

TG view, following [16], we set γ = 1 and λ = 0.1. For TL

view, we empirically set γ = 0.1 and λ = 0.9.

We compare our co-labeling approach with three MIL

methods, MIL-CPB [16], mi-SVM [1] and sMIL [6] which

have the best performances as studied in [16]. Since they

are single-view methods, we use the late fusion method to

average the decision values of the classifiers from different

views 7. For all methods, we construct 25 positive bags using

the top relevant images and 25 negative bags using randomly

selected irrelevant images, with each bag containing 15

instances. A Gaussian kernel is used on the TG view and

a linear kernel is used on the TL view. A binary classifier

is trained for each concept, and the top-100 Mean Average

Precisions (MAPs) are reported in the experiments.

The MAPs over 81 concepts for different methods on two

views as well as the results after using late fusion on the

NUS-WIDE data set are reported in Table V. We have the

following observations:

• Our co-labeling approach achieves the best late fusion

result, which demonstrates the effectiveness of the

proposed method. The improvement over the second

best is 1.9% in terms of MAP over 81 concepts.
• The performances of baseline methods on the TG view

are consistent with the reported results in [16] and our

method also achieves the best result.
• On the TL view, we observe that the instance-based

methods MIL-CPB and mi-SVM are worse than the

bag-based method sMIL. A possible explanation is the

labels inferred in the learning process are quite noisy

because the data cannot be well separated by using a

linear classifier. However, the co-labeling still obtains

a good result as it considers not only the input TL

features but also uses the outputs from the TG view.

Moreover, the late fusion result of sMIL is worse than other

methods, although it has good performance on each view.

7We also tried using early fusion (the average kernel) for these methods.
However, the results are worse than those of late fusion.



It is more likely the classifiers from two views are not

as complementary to each other as in other methods. A

possible reason is that the bag-level MIL methods cannot

effectively use all information on training instances [16].

It also demonstrates the advantage of multi-view methods

which can effectively use the information from different

views.

VII. CONCLUSIONS AND FUTURE WORK

To effectively utilize different types of multi-view am-

biguous data, in this paper we have formulated a uni-

fied multi-view framework which covers various ambiguous

learning problems including SSL and MIL under the multi-

view setting. We firstly propose a general method to solve

the single-view ambiguous learning problem using label

candidates. Then, a unified framework is proposed for multi-

view ambiguous learning tasks in which the label candidate

sets are constructed by using the label predictions from the

classifiers trained on the other views. MKL is used to train

a robust classifier from a set of label candidates for each

view. Extensive experimental results on both MIL and SSL

with real-world data sets demonstrate the effectiveness of

our proposed approach.

In the future, we plan to investigate the proposed approach

on other ambiguous learning tasks, such as MISSL and

MMC.
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