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Abstract

Face recognition has achieved significant progress with

the growing scale of collected datasets, which empowers

us to train strong convolutional neural networks (CNNs).

While a variety of CNN architectures and loss functions

have been devised recently, we still have a limited under-

standing of how to train the CNN models with the label

noise inherent in existing face recognition datasets. To

address this issue, this paper develops a novel co-mining

strategy to effectively train on the datasets with noisy la-

bels. Specifically, we simultaneously use the loss val-

ues as the cue to detect noisy labels, exchange the high-

confidence clean faces to alleviate the errors accumulated

issue caused by the sample-selection bias, and re-weight

the predicted clean faces to make them dominate the dis-

criminative model training in a mini-batch fashion. Ex-

tensive experiments by training on three popular datasets

(i.e., CASIA-WebFace, MS-Celeb-1M and VggFace2) and

testing on several benchmarks, including LFW, CALFW,

CPLFW, AgeDB, CFP, RFW, and MegaFace, have demon-

strated the effectiveness of our new approach over the state-

of-the-art alternatives. Our code is available at http:

//www.cbsr.ia.ac.cn/users/xiaobowang/.

1. Introduction

Datasets are of crucial to the development of face recog-

nition. From the early CASIA-WebFace [45] to the more

recent VggFace [27], MS-Celeb-1M [11], VggFace2 [5]

and IMDb [36], face recognition datasets play a main role

in driving the development of new techniques. Not only

face recognition datasets become more diverse, but also the

scale of data is growing tremendously. For instance, MS-

Celeb-1M [11] contains about 10M images of 100K iden-

tities, far exceeding CASIA-WebFace [45] that only has

0.5M images from 10,575 individuals. Large-scale datasets

together with the emergence of deep convolutional neural

networks technique have led to the immense success of face

recognition in recent years. However, these public large-

∗These authors contributed equally to this work.

Figure 1. An illustration of deep face recognition with noisy labels

in MS-Celeb-1M [11]. ”Label Flips” means that the faces have er-

roneously been given the label of another class within the dataset.

”Outlier” means that faces do not belong to any of the classes un-

der consideration, but mistakenly have one of their labels.

scale datasets probably contain noisy faces because most of

them are automatically collected via image search engines

or from movies. Figure 1 gives an example of noisy faces

in MS-Celeb-1M [11]. Detailedly, we refer to the sam-

ples whose identities are mislabeled/incorrectly annotated

as noisy faces and denote their labels as noisy labels. Such

noisy labels can fall into two types, ”Label Flips (closed-

set)” and ”Outliers (open-set)”. More specifically, a label

flip (close-set) noisy label occurs when a noisy face pos-

sesses a true class that is contained within the set of known

classes in the training data (e.g., face in the blue box of Fig-

ure 1). In contrast, an outlier (open-set) noisy label occurs

when a noisy face possesses a true class that is not con-

tained within the set of known classes in the training data

(e.g., faces in the red box of Figure 1).

It is well-known that noisy labels inevitably degenerate

the robustness of learned models, especially for deep CNNs.

Wu et al. [43] adopt a semantic bootstrapping rule to se-

lect the clean samples via the prediction consistency. Deng

et al. [8] resort to the feature dis-similarities to drop the

noisy faces and further manually check the unreliable ones.

The trillion-pairs consortium [1] has published a relatively

clean version of MS-Celeb-1M. These methods try to clean
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a noisy face dataset into a well-annotated one. However,

the process is prohibitively expensive and time-consuming.

Taking CASIA-WebFace [45] as an example, until now, the

data clean processing is still on the agenda [2]. This mo-

tivates researchers to shift their attention to resort to cheap

but imperfect alternatives. Miyato et al. [22] add both ex-

plicit and implicit regularizations to overcome the noisy la-

bels issue, but the permanent regularization bias make the

learned classier barely reaches the optimal performance.

Patrini et al. [29] try to estimate the label transition matrix,

but it is difficult to estimate accurately when the number of

classes is large. Wang et al. [42] use the Local Outlier Fac-

tor (LOF) algorithm [4] to detect the noise samples. But

the process is slow on large-scale dataset. Jiang et al. [16]

design a self-pace learning strategy, which is similar to co-

training, thus it may suffer from the errors accumulated is-

sue. Malach et al. [21] trains two networks simultaneously,

but it does not explicitly address noisy labels. Recently, Han

et al. [12] and Yu et al. [46] develop a co-teaching strategy

to directly handle the noisy labels for training models.

Although the above approaches have achieved promis-

ing results on noisy label problems, they mainly have three

shortcomings: 1) Many works [42, 22, 29] can not detect

the noisy labels effectively and accurately, especially for

large-scale face recognition problem. 2) Most of works

[16, 21, 42] are not aware of the errors accumulated is-

sue caused by the sample-selection bias. 3) Existing works

[12, 46] simply try to distinguish clean samples from the

noise ones, without considering the importance of clean

samples for learning discriminative features.

To overcome the aforementioned shortcomings, this pa-

per proposes a novel Co-Mining strategy, which identifies

the training samples into three parts, noisy faces, high-

confidence clean faces and clean faces. Specifically, it uses

the loss values as the cue to effectively and accurately detect

the noisy faces, exchanges the high-confidence clean faces

to alleviate the errors accumulated issue, and re-weights the

clean faces to make them more important to train the dis-

criminative CNN models. To sum up, the main contribu-

tions of this paper can be summarized as follows:

• We identify the samples in noisy face recognition

dataset as three parts, i.e., the noisy faces, the high-

confidence clean faces and the clean faces.

• We propose a novel co-mining framework, which em-

ploys two peer networks to detect the noisy faces,

exchanges the high-confidence clean faces and re-

weights the clean faces in a mini-batch fashion.

• We emphasize the open-set evaluation for face recog-

nition and conduct extensive experiments on both syn-

thetic and real-world benchmarks, which have verified

the effectiveness of our new approach over the state-

of-the-art alternatives.

2. Related Work

2.1. Deep Face Recognition

Existing deep face recognition mainly comes from three

aspects: i.e., large-scale datasets, effective architectures and

loss functions. For large-scale datasets, from the early

CASIA-WebFace [45] to the recent MS-Celeb-1M [11] and

VggFace2 [5] , the diverse and the scale of face recognition

datasets increase gradually and play a main role in boosting

the development of new techniques. With these datasets, the

effective and representative architectures like VGGNet [31],

GoogleNet [34], ResNet [13], AttentionNet [38] and Mo-

bileFaceNet [7] have been introduced or devised for deep

face recognition. For loss functions, the metric learning loss

functions like the contrastive loss [33, 44] and the triplet

loss [34] may be good candidates. But they usually suffer

from high-computational cost and slow convergence. Re-

cently, researchers start to shift their attention to the classi-

cal softmax loss, and several margin-based softmax losses

[20, 37, 41, 8, 40] have been exploited. Among them, Arc-

Softmax loss [8] is probably the most prevalent one in the

current stage. And the success of it depends on the well-

cleaned datasets. However, large-scale datasets inevitably

contain noisy labels, especially when they are automatically

collected from Internet. On this account, while with a vari-

ety of architectures and loss functions, we still have a lim-

ited understanding of the source and consequence of label

noise inherent in existing face recognition datasets.

2.2. Training with Noisy Labels

Learning with noisy labels has drawn much attention re-

cently in deep learning because it is a data-driven approach

and accurate label annotation is quite expensive. Mnih and

Hinton [23] propose two robust loss functions for noisy la-

bel aerial images. However, it is only applicable for binary

classification. Sukhbaatar et al. [32] consider multi-class

classification for modeling class dependent noise distribu-

tion. Wu et al. [43] propose a semantic bootstrap strategy,

which re-labels the samples by the predictions, and then

does back propagation. Wang et al. [42] detect the noisy

labels by using the discrimiantive features and design a it-

erative learning framework for training with open-set noisy

labels. Jiang at al. [16] resort to an extra pre-trained teacher

network to filter out noisy instances for its student network.

Malach at al. [21] propose a method to update the param-

eters only using the samples which have different predic-

tion from two classifiers. Han et al. [12] develop a co-

teaching strategy to robustly train the deep neural networks.

Although these strategies have been studied for noisy label

problem, most of them are not designed for deep face recog-

nition with large number of classes. It is still an open issue

for massive noisy labels in face recognition.

9359



Figure 2. The framework of the proposed Co-Mining strategy. For each peer network, it uses loss values as the cue to detect noisy labels.

In consequence, according to the sorting of loss values, the mini-batch samples can be identified as three parts, noise faces (red dots),

high-confidence clean faces (blue dots) and clean faces (green dots). For the noise faces, they will be dropped because they may deteriorate

the performance heavily. For the high-confidence clean faces, we exchange them to alleviate the accumulated errors caused by the potential

sample-selection bias. For the clean faces, we re-emphasize them to learn discriminative CNN features for face recognition.

3. Propose Method

Our goal is to learn discriminative CNN features from a

dataset with noisy labels, wherein the noise type and noise

rate are usually unknown in advance. To achieve this goal,

we propose a novel Co-Mining strategy to simultaneously

remove the bad influences of noisy labels, alleviate the is-

sue of accumulated errors, and emphasize the gains of clean

instances. As illustrated in Figure 2, our framework consists

of three major modules: 1) Using loss values as the cue to

detect the noisy labels; 2) Exchanging the high-confidence

clean faces to prevent the potential errors accumulated is-

sue; 3) Re-weighting the clean faces to make them domi-

nant to learn discriminative CNN features.

3.1. Noisy Labels Detection

To detect noisy labels, current methods resort to estimate

the noise transition matrix or use the density-based outlier

detection algorithm. For example, on top of the softmax

layer, Goldberger et al. [10] add an additional softmax layer

to model the noise transition matrix. Patrini et al. [29] lever-

age a two-step solution to estimating the noise transition

matrix heuristically. Wang et al. [42] adopt the density-

based outlier detection LOF algorithm [4] to iteratively de-

tect the noisy labels. However, neither the noise transition

matrix nor the density-based outlier detection is hard to fil-

ter out noisy labels accurately, especially when the number

of classes is large. Fortunately, recent studies [12, 46] on

the memorization effects of deep neural networks show that

they would first memorize training data of clean labels and

then those of noisy labels. This motivates us to use loss

values as the cue to detect noisy labels. Intuitively, when

labels are correct, small-loss instances are more likely to be

the ones which are correctly labeled. Therefore, if we train

our classifier only using small-loss instances in each mini-

batch data, it should be resistant to noisy labels.

Assume that we have estimated the noise rate r of a face

recognition dataset. M is the mini-batch size. Similar to

the works [21, 14, 49], our method also maintains two net-

works simultaneously. That being said, in each mini-batch

of data, each peer network views its small-loss instances as

the useful knowledge and drops about [r ∗ M ] numbers of

big-loss instances as the distractors, leaving the rest of sam-

ples into two parts, intersected faces and non-intersected

faces of these two peer networks. For the intersected faces,

since two peer networks predict them as clean faces, we

have reason to believe that they are clean enough for deep

face recognition. For the non-intersected ones, they have

high confidence to be clean faces. But they may also be

noisy faces, especially when the noise rate r is estimated in-

accurately1. To sum up, we have identified the faces in each

mini-batch as three parts, i.e., noise faces, high-confidence

faces and clean faces.

For the loss function, several margin-based softmax loss

functions [20, 41, 37, 8] have been proposed in recent years.

Without loss of generality, we adopt the Arc-Softmax loss

[8] as the baseline. Specifically, for each normalized feature

x, the Arc-Softmax loss is defined as follows:

LArc = − log
es cos(θwy,x+m)

es cos(θwy,x+m) +
∑K

k 6=y e
s cos(θwk,x)

, (1)

where wk, k ∈ {1, . . . ,K} is the k-th normalized classifier.

y is the corresponding label. m is the margin parameter to

learn discriminative features and s is a preset scale parame-

ter. For more details, please refer to [8].

1Even though the noise rate r of a dataset can be estimated accurately,

in each mini-batch, the noise rate rt is hard to predict.
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3.2. High­Confidence Clean Faces Exchanging

According to the above discussion, we donate the sam-

pled instances of each peer network as S1
n and S2

n, respec-

tively. Since different networks can generate different deci-

sion boundaries and then have different learning abilities.

Thus, when training on noisy labels, they have different

abilities to filter out the noisy labels. In other words, the

sampled instances of each peer network, S1
n and S2

n, are

different. As a consequence, we can further divide the sam-

pled instances into the intersected faces S1
n ∩ S2

n and the

respective ones, S1
n \ (S1

n ∩ S2
n) and S2

n \ (S1
n ∩ S2

n).
In this part, we discuss the respective faces of each peer

network. We identify these faces as high-confidence clean

faces because they may also be noisy labels due to inaccu-

rately estimated noise rate in each mini-batch. If we directly

feed back to itself in the second mini-batch of data, the er-

rors should be increasingly accumulated. To alleviate this

issue, we expect to exchange them. That is, to update pa-

rameters of Θ1 (resp. Θ2) using the high-confidence clean

faces S2
n \ (S1

n ∩ S2
n) (resp. S1

n \ (S1
n ∩ S2

n)) selected from

its peer network Θ
2 (resp. Θ

1). This process is derived

from co-training [6], and these two networks will adaptively

correct the training errors by its peer network. Take ”peer-

review” as a supportive example, when students check their

own exam papers, it is hard for them to find any errors be-

cause they have some personal bias for the answers. Luck-

ily, they can ask peer classmates review their papers. Then,

it becomes much easier to find their potential faults. To sum

up, as the errors from one network will not be directly trans-

ferred back itself, we can expect that exchanging the high-

confidence clean faces can deal with the errors accumulated

issue compared with the self-evolving one.

3.3. Clean Faces Re­weighting

To the intersected faces S1
n ∩ S2

n, since two peer net-

works agree that they are clean faces, we have reason to

believe that they are labeled correctly. Thus we should con-

centrate on them when training the models. Actually, in face

recognition with noisy labels, the center task is to find those

clean faces and mainly using them to learn discriminative

features. In this paper, we adopt two peer networks to col-

laboratively find clean faces and adaptively re-weight them.

Thus we call it Co-Mining strategy. To emphasize the con-

tributions of clean faces, we introduce a novel re-weighting

module. Specifically, we reduce the baseline probability:

p
Arc

=
es cos(θwy,x+m)

es cos(θwy,x+m) +
∑K

k 6=y e
s cos(θwk,x)

(2)

to our re-weighting one:

p
Our

=
es cos(θwy,x+m)

es cos(θwy,x+m) +
∑K

k 6=y g(µ) ∗ e
s cos(θwk,x)

,

(3)

Algorithm 1: Co-Mining Algorithm

Input: The training set S, model parameters Θ1 and Θ
2,

learning rate λ, fixed noise rate r, epoch Tk and T ,

iteration N in each epoch.

for t = 1, 2, . . . , T do
Shuffle the training set S
for n = 1, 2, . . . , N do

1. Fetch mini-batch Sn from the training set S;

2. Sample (1-rt)% of small-loss faces:

S1

n = argminS
′

n:|S
′

n|≥rt|Sn| L
1

Arc(S
′

n) and

S2

n = argminS
′

n:|S
′

n|≥rt|Sn| L
2

Arc(S
′

n);

3. Exchange the high-confidence clean faces and

compute the loss L1

Arc(S
2

n \ (S1

n ∩ S2

n)) and

L2

Arc(S
1

n \ (S1

n ∩ S2

n)) by Eq. (1);

4. Compute the clean faces loss LOur(S
1

n ∩ S2

n) by

Eq. (5);

5. Update the parameters: Θ1 :=
Θ

1−λ▽[L1

Arc(S
2

n\(S
1

n∩S2

n))+LOur(S
1

n∩S2

n)]
and Θ

2 :=
Θ

2−λ▽[L2

Arc(S
1

n\(S
1

n∩S
2

n))+LOur(S
1

n∩S
2

n)];
end

Update the rt = min{ t

Tk
r, r};

end

Output: Model parameters Θ1 and Θ
2.

where x ∈ S1
n ∩ S2

n. g(µ) ≥ 1 is a re-weighting function,

which is defined as follows:

g(µ) = esµ(cos(θwk,x)+1), (4)

where µ is a non-negative value. Obviously, when µ = 0
(i.e., g(µ) = 1), our re-weighting probability (3) becomes

identical to the baseline Arc-Softmax (2). Because the

cross-entropy loss − log(p) is a monotonically decreasing

function, reducing the baseline probability (i.e., p
Our

≤

p
Arc

) will increase the importance of clean samples. In that

way, to the clean faces, their loss function will be changed

into:

LOur = − log
es cos(θwy,x+m)

es cos(θwy,x+m) +
∑K

k 6=y g(µ) ∗ e
s cos(θwk,x)

.

(5)

Meanwhile, according to the memory mechanism [3], the

deep models usually tend to memorize the easy instances

first and gradually adapt to hard instances when training

epochs become large. To rectify the problem of overfit-

ting on noisy labels eventually, we keep more instances

in the mini-batch at the beginning of training. Then, we

gradually increase the drop rate, so that we can keep clean

instances and drop those noisy ones before the networks

memorize them. Specifically, we adaptively set the noise

rate rt = min{ t
Tk

r, r}, where Tk is predefined. For clar-

ity, the whole scheme of our framework is summarized in

Algorithm 1.
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4. Experiments

4.1. Datasets

Training Data. This paper involves three popular training

datasets, including CASIA-WebFace [45], MS-Celeb-1M

[11] and VggFace2 [5]. The original of these three datasets

consist of noisy labels with different unknown noise rate. To

the synthetic noise experiments, we use a clean version of

CASIA-WebFace, i.e., CASIA-WebFace-Clean [2], to train

with different synthetic noises.

Test Data. We use seven benchmarks, including LFW

[15], CALFW [51], CPLFW [50], AgeDB [24], CFP [30],

RFW[39] and MegaFace [17, 25] as the test data. LFW

contains 13,233 web-collected images from 5,749 different

identities, with large variations in pose, expression and il-

luminations. CALFW [51] was collected by crowdsourcing

efforts to seek the pictures of people in LFW with age gap

as large as possible on the Internet. CPLFW [50] is simi-

lar to CALFW, but from the perspective of pose difference.

AgeDB [24] contains images annotated with accurate to the

year, noise-free labels. CFP [30] consists of collected im-

ages of celebrities in frontal and profile views. RFW [39]

is a benchmark for measuring racial bias, which consists

of four test subsets, namely Caucasian, Asian, Indian and

African. MegaFace [17] aims at evaluating the face recog-

nition performance at the million scale of distractors, which

includes gallery set and probe set. In this study, we use the

Facescrub [26] as the probe set.

Dataset Overlap Removal. In face recognition, it is very

important to perform open-set evaluation, i.e., there should

be no overlapping identities between training set and test

set. To this end, we need to carefully remove the over-

lapped identities between the employed training datasets

(i.e., CASIA-WebFace [45], MS-Celeb-1M [11] and Vg-

gFace2 [5]) and the test datasets (including LFW [15],

CALFW [51], CPLFW [50], AgeDB [24], CFP [30], RFW

[39] and MegaFace [17]. For the overlap identities removal

tool, we use the publicly available script provided by [37]

to check whether if two names are of the same person. As

a consequence, we remove 696 identities from the train-

ing set CASIA-WebFace, 14,718 identities from MS-Celeb-

1M, and 1,514 peoples from VggFace2. For clarity, we

donate the refined training datasets as CASIA-R, CASIA-

Clean-R, MsCeleb-R and VggFace2-R, respectively. Im-

portant statistics of the datasets are summarized in Table 1.

To be rigorous, all the experiments in this paper are based on

the refined training datasets. To encourage more researchers

to abide by the open-set protocol, the overlapping lists and

the refined datasets are publicly available.

4.2. Experimental Settings

Data Processing. We detect the faces by adopting the Face-

Boxes detector [48] and localize five landmarks (two eyes,

Datasets Identities Images

Training

CASIA-R [45] 9,879 0.43M

CASIA-Clean-R [2] 9,879 0.38M

MsCeleb-R [11] 85,173 7.03M

VggFace2-R [5] 7,617 2.71M

Test

LFW [15] 5,749 13,233

CALFW [51] 5,749 12,174

CPLFW [50] 5,749 11,652

AgeDB [24] 568 16,488

CFP [30] 500 7,000

RFW [39] 11,430 40,607

MegaFace [17] 530(P) 1M(G)

Table 1. Face datasets for training and testing. ”(P)” and ”(G)”

refer to the probe and gallery set, respectively.

nose tip and two mouth corners) through a simple 6-layer

CNN [9]. The detected faces are cropped and resized to

120×120, and each pixel (ranged between [0,255]) in RGB

images is normalized by subtracting 127.5 and divided by

128. For all the training faces, they are horizontally flipped

with probability 0.5 for data augmentation.

CNN Architecture & Loss Function. In face recognition,

there are many kinds of network architectures [20, 7, 36]

and several loss functions [20, 37, 8]. To be fair, the CNN

architecture and the employed loss function should be the

same to test different methods with noisy labels. Without

loss of generality, we use the MobileFaceNet [7] and the

Arc-Softmax loss [8] as the baseline. To the margin m and

scale s, we set 0.5 and 32, respectively.

Training. All the CNN models are trained with stochastic

gradient descent (SGD) and trained from scratch, with the

batch size of 128 on 4 P40 GPUs parallelly, total batch size

512. All experiments in this paper are implemented by Py-

Torch [28]. The weight decay is set to 0.0005 and the mo-

mentum is 0.9. The learning rate is initially 0.1 and divided

by 10 at the 6, 12, 17 epochs, and we finish the training

process at 20 epochs. Tk is empirically set to 10.

Test. At test stage, only original image features are em-

ployed (512-dimension). We use the backbone-1 of two

peer networks to extract face features. For the evalua-

tion metric, cosine similarity is utilized. We follow the

unrestricted with labelled outside data protocol [15] to re-

port the performance on LFW [15], CALFW [51], CPLFW

[50], AgeDB [24], CFP [30] and RFW [39]. Moreover, we

also report the BLUFR protocol [18] on LFW [15]. On

Megaface [17] challenge, face identification and verifica-

tion are conducted by ranking and thresholding the scores.

Specifically, for face identification, the Cumulative Match

Characteristics (CMC) curves are adopted to evaluate the

Rank-1 accuracy. For face verification, the Receiver Oper-

ating Characteristic (ROC) curves are adopted.
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Strategy
LFW

LFW LFW
CALFW CPLFW AgeDB CFP Average

NLD HCCFE CFR @1e-3 @1e-4

CASIA-R 98.71 96.96 91.79 88.21 79.18 91.46 91.10 91.05

CASIA-Clean-R 98.80 97.59 93.05 88.85 80.31 92.21 91.30 91.73

CASIA-Clean-R
( symmetric=0.1)

98.01 96.69 92.48 87.48 79.43 91.15 91.08 90.90

X 97.98 96.80 92.67 88.06 79.50 91.48 91.32 91.11

X X 98.33 97.33 92.87 88.28 79.60 91.70 91.68 91.39

X X X 98.91 97.91 94.42 89.48 80.03 92.68 91.75 92.16

CASIA-Clean-R
( symmetric=0.2)

88.56 66.30 27.14 76.65 68.56 80.53 80.22 69.70

X 96.90 78.31 37.43 84.81 72.58 87.55 81.75 77.04

X X 97.78 81.84 38.45 85.35 74.11 88.33 84.25 78.58

X X X 98.23 92.85 61.41 87.76 76.85 90.95 79.61 83.95

CASIA-Clean-R
( symmetric=0.3)

81.89 0.05 0.04 50.76 53.31 71.05 72.64 58.81

X 95.53 50.84 11.21 83.35 69.03 85.41 75.34 67.24

X X 96.66 66.74 27.40 83.76 71.08 86.61 78.20 72.92

X X X 97.66 87.67 55.68 86.63 73.50 88.58 79.54 81.32

Table 2. Verification results (%) with different strategies. NLD refers to the Noisy Labels Detection. HCCFE is the High-Confidence Clean

Faces Exchanging. CFR means the Clean Faces Re-weighting. The bold number in each column of sub-boxes represents the best result.

(a) CASIA-Clean-R (b) CASIA-R

Figure 3. From left to right: Cosine similarity distributions of all

positive pairs from CASIA-Clean-R and CASIA-R, respectively.

The face pairs in the red box are possibly with noisy labels.

4.3. Experiments on Synthetic Data

To begin with, we use MobileFaceNet [7] and Arc-

Softamx loss [8] as the baseline to separately train on the

noisy CASIA-R [45] and its clean version CASIA-Clean-

R [2]. From the first two lines of Table 2, we can observe

that the model trained on CASIA-Clean-R performs better

than trained on CASIA-R, even though CASIA-Clean-R is

with smaller size of training images. So it can be concluded

that noisy faces are evil for training models. Further, we

use the SEResNet100-IR model [8] pre-trained on MS1M-

deepglint [1] to show the cosine similarity distribution of

all positive face pairs from these two datasets. Figure 3 dis-

plays the histograms and we can verify that CASIA-R in-

deed contains noisy faces. Next, we use the CASIA-Clean-

R with different synthetic noises to show the robustness and

effectiveness of our method.

The effectiveness of Noisy Labels Detection (NLD). We

do the experiments with/without noisy labels detection un-

der different synthetic noise rate. We use the symmetry flip-

ping [35] to simulate the noisy labels, where labelers may

make mistakes only within very similar classes. From the

first two lines of each sub-boxes in Table 2, we can ob-

serve that with the noisy labels detection (NLD), the aver-

age performance of LFW, CALFW, CPLFW, AgeDB, CFP

has been improved from 90.90 to 91.11 under 0.1 noise rate,

69.70 to 77.04 under 0.2 noise rate, and 58.81 to 67.24 un-

der 0.3 noise rate. Eventually, the experiments have vali-

dated the effectiveness of our noisy labels detection.

The effectiveness of High-Confidence Clean Faces Ex-

changing (HCCFE). We further add the HCCFE strategy to

validate whether it can alleviate the errors accumulated is-

sue caused by sample-selection bias. From the third row of

each sub-boxes in Table 2, we can see that HCCFE can fur-

ther boost the performance, about 0.2% improvement under

0.1 noise rate, 1.5% improvement under 0.2 noise rate, and

5% improvement under 0.3 noise rate. These average accu-

racy improvements, compared to those without this strategy,

can be interpreted as the contribution of the HCCFE mod-

ule. Particularly, with large noise rate, the average accuracy

increases significantly, which indicates that the module can

alleviate the errors accumulated issue effectively.

The effectiveness of Clean Faces Re-weighting (CFR).

We finally add the re-weighting strategy on the clean faces

to make them dominant to train the models. From the last

row of each sub-boxes in Table 2, we can see that under dif-

ferent noise rate, the CFR strategy is helpful for boosting the

performance. Thus we can conclude that the clean faces are

more important when training with noisy faces, especially

with large noise rate, e.g., in the case of symmetric=0.3,

the importance of clean faces are even more obvious. After

tuning the importance parameter µ with several values (i.e.,

from 0 to 0.4, with stepvalue 0.1) on CASIA-Clean-R, we

set µ = 0.1 in the subsequent experiments.
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(a) MsCeleb-R (b) VggFace2-R

Figure 4. From left to right: Cosine similarity distributions of all

positive pairs from MsCeleb-R and VggFace2-R, respectively.

4.4. Experiments on Real­World Data

Similar to CASIA-R, we show the cosine similarity dis-

tributions of all positive face pairs from MsCeleb-R [11]

and VggFace2-R [5] in Figure 4. From the sub-figures, we

notice that MsCeleb-R is with much noise than VggFace2-

R. The rest of experiments are conducted based on these

two real-world training datasets. According to the statistics

in Figure 4, we empirically use the threshold 0.3 to indicate

the noisy labels. As a consequence, we set the noise rates of

MsCeleb-R and VggFace2-R as 0.4 and 0.05, respectively.

For the noise rate r of a specific dataset, one can also infer

it by using validation sets, as previous works [47, 19] do.

4.4.1 Compared Method

We compare our method with the recently proposed six

state-of-the-art competitors, including:

MentorNet (MN) [16]. An auxiliary teacher network is

pre-trained and used to drop noisy faces for its student net-

work. Then, student network is used for face recognition.

De-Coupling (DC) [21]. This method updates the parame-

ters only using the samples which have different predictions

from two classifiers.

DualNet (DN) [14]. Two parallel neural networks are co-

ordinated to learn complementary features. The iterative

training strategy is adopted to make the two networks coop-

erate with each other.

Mutual-Learning (ML) [49]. An ensemble of networks

learn collaboratively in a mutual learning strategy and teach

each other throughout the training process.

Co-Teaching (CT) [12]. The method trains two neural net-

works simultaneously, and let them teach each other in each

mini-batch. Each network back propagates the selected data

without distinction by its peer network and updates itself.

Co-Teaching+ (CT+) [46]. This method is similar to Co-

Teaching [12], but updates the parameters only using the

disagreement of the two predictions.

For all these competitors, the backbone architecture is

the MobileFaceNet [7] and is equipped with Arc-Softmax

loss [8].

Method CALFW CPLFW AgeDB CFP Ave.

Baseline 91.95 81.13 92.76 89.74 88.89

MN[16] 92.94 83.49 94.66 92.58 90.91

DC[21] 90.28 84.01 93.80 92.81 90.22

DN[14] 89.79 76.38 92.26 84.90 85.83

ML[49] 91.89 82.44 93.70 91.54 89.89

CT[12] 92.08 84.83 94.36 92.35 90.90

CT+[46] 92.14 84.26 94.80 92.34 90.88

Our 93.28 85.70 95.80 93.32 92.02

Table 3. Results (%) of different methods training on MsCeleb-R.

Method CALFW CPLFW AgeDB CFP Ave.

Baseline 90.11 86.30 92.81 95.50 91.18

MN[16] 90.14 85.41 92.70 95.20 90.86

DC[21] 90.23 86.14 93.90 95.85 91.53

DN[14] 90.26 85.01 93.33 95.05 90.91

ML[49] 90.08 86.00 93.35 95.51 91.23

CT[12] 89.90 85.05 92.05 95.05 90.62

CT+[46] 89.43 85.23 92.50 95.41 90.64

Our 91.06 87.31 94.05 95.87 92.07

Table 4. Results (%) of different methods training on VggFace2-R.

4.4.2 Results on CALFW, CPLFW, AgeDB and CFP

We use two training sets, MsCeleb-R and VggFace2-R, to

separately train the deep CNN models. Tables 3-4 provide

the quantitative results of the baseline, the competitors and

our method on the test sets CALFW [51], CPLFW [50],

AgeDB [24] and CFP [30], respectively. From the num-

bers, we observe that most of the competitors are better

than the baseline when training on the MsCeleb-R dataset.

It is because that the MsCeleb-R is very noisy. Most of

the competitors can filter out the noisy labels effectively

and thus result in higher performance. To our method, we

not only detect the noisy labels effectively, but also avoid

the errors accumulated issue and absorb the gains of clean

faces. Therefore, our method can reach higher performance

than both the baseline and the competitors. Specifically, we

achieve about 2% average improvement over the baseline

and 1% average improvement over the best competitor Co-

Teaching algorithm [12]. While training on the VggFace2-

R dataset, the competitors are slightly lower than the base-

line. The possible reason is that the noise rate of VggFace2-

R is small. They may drop some essential clean faces during

the training process. In contrast, our method may also dis-

card some important clean faces, but we have re-weighted

most of the remaining clean samples, thus we can also keep

resulting in more discriminative features and achieve more

promising performance. Specifically, we still achieve about

1% average improvement over the baseline, 0.5% average

improvement over the best competitor Decoupling algo-

rithm [21].
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Method
RFW

Ave.
Caucasian Indian Asian African

Baseline 93.83 81.83 86.83 83.16 86.14

MN[16] 95.46 87.50 87.16 83.83 88.48

DC[21] 95.66 84.50 88.33 84.83 88.33

DN[14] 89.83 79.83 80.33 78.16 82.06

ML[49] 91.99 84.33 87.33 83.83 86.87

CT[12] 94.00 86.16 87.66 84.66 88.12

CT+[46] 95.50 86.16 88.33 85.50 88.87

Our 95.83 89.83 89.16 86.16 90.24

Table 5. Results (%) of different methods training on MsCeleb-R.

Method
RFW

Ave.
Caucasian Indian Asian African

Baseline 93.16 85.33 85.83 80.83 86.28

MN[16] 90.83 86.00 86.83 83.16 86.70

DC[21] 93.33 85.00 88.00 83.83 87.50

DN[14] 90.33 86.33 82.83 83.83 85.83

ML[49] 93.66 86.49 90.00 83.00 88.28

CT[12] 92.66 86.16 86.33 83.50 87.16

CT+[46] 92.33 86.49 86.00 79.33 86.03

Our 94.83 87.83 88.00 85.33 88.99

Table 6. Results (%) of different methods training on VggFace2-R.

4.4.3 Results on RFW

Tables 5-6 display the performance comparison of all the

methods on RFW test set. From the values, we can con-

clude that the results exhibit the same trends that emerged

on previous test datasets. Concretely, when training on the

MsCeleb-R dataset, most of the competitors are better than

the baseline because they can filter out the noisy labels ef-

fectively and thus can reduce their influences. When train-

ing on the VggFace2-R dataset, the results are not much

different. For our method, which simultaneously detects the

noisy labels, exchanges the high-confidence clean faces and

re-weights the clean ones, has show its superiority over the

baseline and the state-of-the-art alternatives. Specifically,

our method achieves 90.24 average accuracy when train-

ing on the MsCeleb-R dataset, and 88.99 average accuracy

when training on the VggFace2-R datset, at least 1% aver-

age improvement over the second best one.

4.4.4 Results on MegaFace Challenge

Tables 7-8 show the identification and verification results on

MegaFace dataset. In particular, compared with the base-

line, the competitors have shown their strong abilities to fil-

ter out noisy labels and usually achieve better performance.

For our method, we achieve about 2% improvement at

both the Rank-1@1e6 identification rate and the verification

TPR@FAR=1e-6 rate over the baseline. Compared with the

Data Method
MegaFace MegaFace

Rank1@1e6 TPR@FAR=1e-6

MsCeleb-R

Baseline 84.56 87.72

MN[16] 86.10 89.07

DC[21] 86.52 88.90

DN[14] 78.42 81.23

ML[49] 83.25 86.46

CT[12] 86.45 88.53

CT+[46] 87.46 88.77

Our 87.37 89.69

Table 7. Results (%) of different methods on MegaFace Challenge.

Data Method
MegaFace MegaFace

Rank1@1e6 TPR@FAR=1e-6

VggFace2-R

Baseline 78.04 83.06

MN[16] 76.79 81.91

DC[21] 78.95 82.45

DN[14] 74.38 79.63

ML[49] 78.90 82.48

CT[12] 75.43 80.79

CT+[46] 73.19 78.15

Our 81.51 86.07

Table 8. Results (%) of different methods on MegaFace Challenge.

competitors, the improvement of our method is not quite

large, but is still better than them. Specifically, our method

beats the competitor MentorNet [16] about 1.0% at Rank-1

identification rate and 0.7% verification rate when training

on the MsCeleb-R, achieves about 2.5% at Rank-1 identifi-

cation rate and 3.5% verification rate higher than the com-

petitor Decoupling [21] when training on the VggFace2-R.

To sum up, our co-mining strategy, which effectively de-

tects the noisy labels, exchanges the high-confidence faces

and adaptively concentrates on the clean ones, is inherently

better than the state-of-the-arts.

5. Conclusion

In this paper, we have proposed a novel co-mining strat-

egy to train the CNN models on large-scale face recogni-

tion datasets with noisy labels. Specifically, we identify the

mini-batch samples into three parts, the noisy labels, the

high-confidence clean faces and the clean faces. Next, to

each part, we develop different strategies. For the noisy la-

bels, we drop them to prevent the model degeneration prob-

lem caused by them. For the high-confidence clean faces,

we exchange them to alleviate the errors accumulated is-

sue. For the clean faces, we re-weight them and make them

dominant to learn discriminative features. Extensive ex-

periments on both the synthetic and real-world benchmarks

have demonstrated the advantages of our new approach over

the state-of-the-art alternatives.
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